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Abstract
This paper is devoted to experimental and numerical studies of heat distribution in an external building
bulkhead. It analyzes the variation of temperature across the width of the bulkheads including the impact of
changing external conditions. Mathematical model used in the research is formulated based on a fractional
differential equation, which was proven to be a useful tool for describing this type of process in previous paper.
Numerical results are compared with experiment data for different bulkhead configurations.
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Introduction
Reduction of the negative human impact on the climate is one of the challenges for European Union Member
States, which is reflected in both its legislation and strategic priorities adopted in the next financial
perspectives [1,2,3,4]. Currently, EU actions are aimed, among other things, at reducing the greenhouse gas
emissions by 80% by 2050 year compared to the 1990 level with transition stages up to 2030 (40% reduction)
and until 2040 (40% reduction). Undoubtedly, realization of such assumptions requires an active participation
of all Member States. That is why in recent years a huge progress has been made in Poland in the field of
energy efficiency. In the national legislation on energy, environmental protection and construction law,
significant changes have been introduced to support energy efficiency [5,6,7]. Certainly, the leading roles in a
low-emission economy will be played by sustainable construction. Due to the low standard of a large part of
Polish buildings, the energy consumption is inefficient. In many cases the consumed energy is wasted as the
heat "escapes" through poorly constructed and insulated walls and roofs. The most important challenge for
achieving such results in 2050 will be thermo-modernization of existing buildings. It should be emphasized that
currently as much as 70 percent of flats and houses in Poland are not insulated, and their thermo-
modernization would allow at low cost to reduce the heat losses, which could cause significant a drop in energy
demand. At present, at the investment stage, which requires a building permit, energy-saving documents are
necessary. One of the actions that are taken to improve the energy parameters in existing buildings is the
insulation of external walls, where the heat losses are in the range 24% - 35%. The most common is the
insulation in the form of adding additional insulating material to the existing wall from outside. Partitions
(walls) used in the construction industry consist of many layers of different materials firmly adjacent to each
other. Styrofoam or mineral wool layer are the most popular, however, fillings in the form of rigid foam or
various mixtures are also used [8]. Knowledge of physical processes and chemical phenomena occurring in
building materials [9] facilitates their proper selection and allows designing buildings with regard to energy
saving [10]. Heat transfer occurring in the interior of solid materials consists in the transfer of energy between
adjacent particles. The intensity of this process depends on the structure and properties of the material. That is
why the construction of external partitions is very important in construction industry. The basis of the heat
exchange phenomenon is the temperature difference. Therefore, one should look for solutions that allow to
correctly defining the temperature distribution in its interior. More accurate understanding of the heat transfer
phenomenon between particular bulkhead layers (insulating walls) will allow better control of temperature
changes. A big problem in the detailed description of the heat flow process is the multitude of dependencies
and factors needed to describe the structure of insulating walls. Definition of general dependence allowing
determining the thermal conductivity is complicated due to the thermal properties of individual components.

From the literature it can be stated that in the classic approach the heat flow is described by the Kirchhoff
equation. The basic disadvantage of this model is the necessity of knowing all material parameters of the
insulating layers and the numerous empirical correlations needed to describe their thermal properties. For this
reason, in this work it was decided to move away from the classic approach and replace it with a new model
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based on fractional calculus. Models using the fractional derivatives are considered to be an excellent tool for
describing the memory and hereditary properties of various materials and processes. Fractional differential
equations, both ordinary and partial, are used in the modelling of various phenomena in the fields of physics,
mechanics, control theory, biochemistry, bioengineering and economics [11-17]. Their application is also found
in mechanics, in the field of signal processing [18] and in modelling of phenomena occurring in construction
industry [19]. As a result, the fractional differential equations gain more and more applications and
importance. In [20] the classical thermal conductivity equation was replaced with an ordinary differential
equation containing the composition of the left and right-sided fractional derivative. The equations of this type
are obtained by modification the least action principle and the use of fractional method of integration by parts
[21,22,23]. One of the basic problems which appears while modelling the heat flow in a complex system is the
multiplicity of interrelations, factors and coefficients necessary to describe the structure of the examined
system. This paper proposes a description which does not investigate the structure but assumes some degree
of its heterogeneity. When used with a simple differential equation including left- and right-sided fractional
derivatives we arrive at a model which has such a quality that it does not investigate the structure and does not
include such a number of factors. The considered problems faced in the process of heat flow during the paper
will be analysed from the practical and theoretical points of view. In this paper a fractional differential equation
containing the left and right-sided Caputo derivative in the restricted area was applied. One of the basic
problems that arise in the fractional equations is a lack or very complex form of analytical solutions. The
fractional equation are discretized because the results obtained so far, including those based on the fixed-point
theorem [24], do not give the possibility to apply them in practice. The solution in discretized form is presented
as a series of left and right sides of fractional integrals. In the paper, the simulations of heat flow through one,
two and three-layer barriers were performed and their inner temperature distributions were determined. The
results obtained using the commercial Leca program are also presented. A description of the temperature
distribution based on fractional calculus has been proposed and the obtained results were compared with the
experimental data.

Experiment
Simulations of heat flow and temperature distributions in building partitions allow designing them in a way
reducing the cost of building to minimum. Because external walls have a big influence on the energetic
characteristics of the buildings the knowledge of temperature distributions inside them is so important. It
allows correct evaluation of their insulation. The article presents the results of research on the heat flow
through the external layers with three types of partitions: one-layer, two-layer and three-layer.

Fig.1. A partition prepared for testing
Source: Author’s
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The first of them was built of cellular concrete (48 cm). The two-layer partition (48 cm) consisted with cellular
concrete layer (32 cm) and was additionally supplemented with a layer of styrofoam EPS 032 (16 cm). The
three-layer partition (48 cm) consisted of a cellular concrete layer (32 cm), styrofoam EPS 032 (8 cm) and an
elevation brick (8 cm). Each wall was covered on both sides with cement and lime plaster. The thermal
parameters of the materials used were as follows: concrete (density 2100 kg/m3, thermal conductivity
coefficient 1,1 W/(m·K), specific heat 840 J/(kg·K)), styrofoam EPS 032 (density 40 kg/m3, thermal conductivity
coefficient 0,032 W/(m·K), specific heat 1460 J/(kg·K)), elevation brick (density 1900 kg/m3, thermal
conductivity coefficient 1,05 W/(m·K), specific heat 880 J/(kg·K)). Measurements of thermal conductivity were
carried out using a plate apparatus with a a heat flux density sensor HFM P.A. Hilton B480. The specific heat
was determined by the calorimetric method, while the density measurement was based on Archimedes' law.
An example of the tested wall composed of two layers (cellular concrete and styrofoam) is presented in Figure
1.

Figure 2 presents a symbolic construction of the tested wall and temperature distribution in one, two and
three-layer partitions determined using the commercial calculation program Leca. It can be seen that the
temperature across particular layers changes linearly. As will be shown later such an approximation is
inconsistent with the experiment and simulations performed by the fractional calculus method.

Fig.2. Construction and distribution of temperatures in one, two and three-layer partitions determined by Leca's
commercial calculation program.

Source: Author’s

Measurements of the temperature were performed by thermocouples placed in the holes drilled inside the
layers. Empty spaces between the test center and the thermocouple were filled with drilling dust or pieces of
styrofoam, so that the thermocouple adhered closely to the material tested. The tested partitions were
30x30x48 cm. Thermocouples in each partition were placed on 7 levels (level every 8 cm). Five thermocouples
were installed in each of the following configurations (cm, cm): T1: (X, Y) = (7.5,7.5), T2: (X, Y) = (7,5,22.5),
T3: (X, Y) = (15.15), T4: (X, Y) = (22.5,7.5), T5: (X, Y) = (22.5,22.5). This arrangement was intended to minimize
measurement errors. As the data from the thermocouples on the individual levels were similar, they were
averaged and added as one measuring point on the graph. The walls constructed in this way were placed in
a climatic chamber (Fig. 3), which enabled setting of external temperatures and their precise control during the
whole experiment. External temperature values were changed in a similar way to daily temperature
fluctuations in Poland.
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Fig.3. Climatic chamber
Source: Author’s

Model
The complexity of the heat transfer process generates the need to create new models for its description.
Numerical methods, such as the method based on fractional calculus, are increasingly being used for such
purposes. As already mentioned, in the comparison to classical methods it requires much smaller number of
coefficients. In this work we apply an ordinary differential equation containing the composition of left and
right-sided derivatives of a non-integer order. To describe the considered phenomenon, a non-integer equation
is proposed with the left and right-sided Caputo derivative in the form:
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where T – temperature,  - scale parameter,  - order of derivative. The fractional derivatives have the
following form [25]:
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The formulas (2) and (3) are respectively the left-sided and the right-sided Caputo derivative. It is assumed that
temperature varies only in the "x" direction perpendicular to the partition.
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Equation (1) has been supplemented with the boundary conditions:
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where the length of the layer is assumed L=1.

Numerical solution
Here, mathematical analysis is used increasingly often for designing granular material assemblies, such as, for
example, fractional differential equation, which requires a significantly-smaller number of coefficients. The
form of the analytical solution of equation (1) is complicated [26] and it is not possible to apply it for the
analysed phenomenon. Therefore, equation (1) is discretized by means of a series of expansions with
coefficients ν. Along with the boundary conditions (4) it can be written in the following form [20,27]:T = Ta∑ ν(n − i, n − k) · ∑ ν(k, j)T + λT = 0, for i = 1, … , n − 1 (5)T = Tb
where n is number of nodes, is the value of the function at point and coefficient ν is defined as

ν(i, j) = (∆ )( ) −i + (i − 1)(i − j + 1) − 2(i − j) + (i − j − 1)1 for j = 0for j = 1,… , i − 1for j = i (6)

where ∆ = /( − 1) stands for a distance between the computational nodes, which number changes in the
range = 20 ÷ 140. The symbol Γ in Eq.(6) is the Gamma function.

The convergence rate (EOC) of series (5) for parameters 1Ta , 0Tb and 02.0 is determined
according to the equation:
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is the order of the method determined on the basis of one of 9 selected points in the computation area.
Analysis of convergence rate was determined for four computation grids with x = 1/20, 1/40, 1/80, 1/120.
Note that )(
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 are numerical value in the points xix 10/ for .9,...,2,1i Table 1 shows the EOC values for∈ {0.1,0.3,0.5,0.7,0.9} and λ = 0.02.
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Tab. 1. Estimation of the discretization order of (5) for four computational grids

EOC

x  =0.1  =0.3  =0.5  =0.7  =0.9

1/20 1.21 1.11 0.96 0.80 0.65

1/40 1.10 1.08 1.00 0.87 0.74

1/80 1.05 1.05 1.00 0.91 0.79

1/120 1.03 1.03 1.00 0.94 0.83

Source: Author’s

Analysing the values in Table 1, it can be observed that the convergence rate of (5) slightly depends on the 
parameter  and its value is close to 1. Figure 4 presents the solutions of equation (1) for different values of the
parameter . It shows that the temperature profiles are strongly dependent on it. The deviation of  from
integer value (equal to 1 in classical approach) causes that the obtained solutions behave as if they were
obtained using the classical method with variable heat conductivity of the layer.

Fig. 4. Numerical solutions of the equation (1) for λ=0.02 I α∈ {0.1; 0.3; 0.5; 0.7; 0.9}
Source: Author’s

Results
Figures 5-7 present the experimental and numerical temperature profiles inside the partitions. The
temperature distributions were determined for the outside temperature T(L) changing from -20 ° C to 18 ° C at
the outer layer. The steady states were selected for further analysis. In this case we considered the layers with
L=48cm. The temperature on the inner side T(0) was computed assuming the Neumann boundary conditions.
During the experiment, the thermocouples were placed in the same distance from each other and from the
outer and inner layers. The graphs show experimental data for selected time moments. The results presented
14,200 second from the beginning of measurements when the outside temperature was 9oC. For comparison
the results obtained using the classical approach are also presented in the figures. They are denoted as
"mathematical integer order". It can be seen that the results obtained the fractional order are much more
accurate.
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Fig. 5. Comparison of the numerical solution with experimental data for a single-layer partition
for an external temperature of 9oC, α=0,85

Source: Author’s

Fig.6. Comparison of the numerical solution with experimental data for a two-layer partition
for an external temperature of 9oC, α=0,25

Source: Author’s
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Fig.7 Comparison of a numerical solution with experimental data for a three-layer partition
for an external temperature of 9oC, α=0,3

Source: Author’s

As can be seen in Fig.5 for the monolayer partition consisting of cellular concrete the measured data only
slightly differ from the simulation results. It is visible that at all measuring points the deviations were at a
similar level. Accidental larger discrepancies could be due to a measurement error estimated at 2oC.
Differences in temperature values for two-layer partition are also small, as can be seen in Fig.6. Depending on
the measurement point, the results are over and underestimated in relation to the experimental data. These
fluctuations did not occur regularly and therefore their origin could not be identified. The largest deviations
from the curve obtained on the basis of simulations can be seen for three-layer partition (see Fig. 7). The
differences occur here in the whole width of the partition and are the most pronounced among the tested
partitions. Most likely, in this case the discrepancies between the simulation and measurements results from a
complex structure of partitions. However, the trend of the temperature variations is well captured. In general,
when comparing experimental data with the results of a fractional model, it can be noticed that the differences
between experimental and numerical data are small. The method proposed in this paper allows modelling of
real external temperature changes and allows for analysis of temperature distribution inside the partitions.

Summary
The article presented the results of research on heat transfer phenomenon in external building walls composed
of one, two and three-layered partitions. The experimental tests and simulations were conducted under
variable temperature conditions reflecting daily temperature fluctuations. Both the cellular concrete layer and
the insulator were considered, which in the present case was a styrofoam and a material in the form of a
elevation brick.  The mathematical model presented in the paper was based on fractional differential calculus
and it turned out to be an efficient and accurate tool, which characterized stable convergence rate. The
proposed model allows to describe the theoretical problem of thermal conductivity and may be regarded as an
alternative to others classical approaches known for problems with the multitude of different types of
correlations and coefficients. Relatively small differences between the numerical and experimental results
indicate high accuracy of the proposed model. It is believed that it can be used for optimization purposes
during the construction of partitions, achieving measurable economic effects.
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