A.B. Царев,

Л.В. Усенко

СРАВНИТЕЛЬНАЯ ОЦЕНКА УПРАВЛЯЕМОСТИ И БЕЗОПАСНОСТИ ТЕРАПЕВТИЧЕСКОЙ ГИПОТЕРМИИ В КОМПЛЕКСЕ ИНТЕНСИВНОЙ ТЕРАПИИ ТЯЖЕЛОЙ ЧЕРЕПНО - МОЗГОВОЙ ТРАВМЫ

ГУ «Днепропетровская медиииская академия МЗ Украины»
кафедра анестезиологии и интенсивной терапии
(зав. - д. мед. н., проф. Ю.Ю. Кобеляцкий)
ул. В. Вернадского, 9, Днепр, 49044, Украина
SE «Dnipropetrovsk medical academy of Health Ministry of Ukraine»
V. Vernadsky str., 9, Dnipro, 49044, Ukraine
e-mail: resuscitation9@gmail.com

Ключевые слова: черепно-мозговая травма, терапевтическая гипотермия, целевой температурный менеджмент, интенсивная терапия
Key words: trauma brain injury, therapeutic hypothermia, target temperature management, intensive care
Реферат. Порівняльна оцінка керованості і безпеки терапевтичної гіпотермії в комплексі інтенсивної терапії тяжкої черепно-мозкової травми. Царьов О.В., Усенко Л.В. У статті представлені результати порівняльного дослідження керованості та безпеки двох технологій терапевтичної гіпотермії в комплексі інтенсивної терапії в паціснтів з ЧМТ: оцінка швидкості ії індукиії, керованості її підтримки, динаміки досягнення нормотермії. Обстежено 24 пачієнти з діагнозом тяжка ЧМТ, які були розподілені на 2 групи: I ($n=12$) - з проведенням лікувальної гіпотермії апаратом «Blanketrol - II» (CSZ) з використанням неінвазивної технології для досягнення цільового значення температури ядра тіла (Тсо) - $34-34,5^{\circ}$ С; II група ($n=12$) проведення лікувальної гіпотермії за допомогою «Blanketrol - II» з використанням езофагального пристрою для гіпотермії з метою досягнення Тсо-34-34,5 5°. Середнє значення часу від моменту індукиії до досягнення цільового значення Тсо в I групі становило $9,5 \pm 2,39$, у II групі - $9 \pm 2,70$ години ($P>0,05$). Період підтримки Тсо на рівні $\leq 34,5^{\circ}$ С у ІІ групі був більше - $10,5 \pm 5,78$ порівняно з $6,83 \pm 3,95$ години в пачієнтів I групи ($p<0,05$). Керованість прочесу зігрівання достовірно була вищою в II групі, що відображалося більш низьким значенням середнього рівня Тсо на етапах 24, 28 і 32 годин. Не було вияялено клінічно значущих побічних ефектів при проведенні терапевтичної гіпотермії.

Abstract

Comparative evaluation of controllability and safety of therapeutic hypothermia in the intensive care of severe traumatic brain injury. Tsarev A.V., Usenko L.V. The article presents the results of a comparative study of control and safety of two technologies of therapeutic hypothermia in intensive care in patients with TBI: an estimate of the rate of its induction, control of its maintenance, dynamics of attaining normothermia. A total of 24 patients with a severe TBI divided into 2 groups were examined: I ($n=12$) - therapeutic hypothermia with "Blanketrol II" (CSZ) with the use of non-invasive technology to achieve the target core body temperature (Tco) of 34-34.5 5°; II group ($n=12$) carrying out therapeutic hypothermia «Blanketrol - II» with the use of an esophageal device for hypothermia to achieve Tco - $34-34,5^{\circ} \mathrm{C}$. The mean time from the moment of induction to achievement of the target Tco in group I was 9.5 ± 2.39 hours, in group II - 9 ± 2.70 hours ($p>0.05$). The maintenance period Tco at the level of $\leq 34.5^{\circ} \mathrm{C}$ in the II group was greater - 10.5 ± 5.78 compared with 6.83 ± 3.95 hours in patients of the I group ($p<0.05$). Control of the warming process was significantly higher in group II, which was reflected by a lower mean of Tco value at 24, 28 and 32 hours. There were no clinically significant adverse effects in therapeutic hypothermia.

При черепно-мозговой травме (ЧМТ) на протяжении периода ишемии повреждение головного мозга определяется двумя основными факторами. Первый - степень выключения тканевого кровотока в момент ишемии, а второй длительность самого ишемического периода. Реципрокное взаимодействие между кровотоком и ишемизированной тканью обуславливает тканевое повреждение. Данные неблагоприятные

аспекты восстановления перфузии характеризуются как реперфузионное повреждение [11].

В настоящее время терапевтическая гипотермия (ТГ) рассматривается как наиболее многообещающий физический метод нейропротекторной защиты головного мозга. В последние годы международной консенсусной конференцией предложена концепция целевого температурного менеджмента (Target Temperature

Management). Профиль целевого температурного менеджмента включает в себя три различные фазы: 1) индукция; 2) поддержание; 3) реверсия - возврат к температурному статусу, поддерживаемому внутренним физиологическим контролем $[5,9,10]$.

Наиболее изученным в клинической практике является использование ТГ для лечения постреанимационной болезни. Всем пациентам без сознания, перенесшим остановку кровообращения, рекомендовано обеспечить поддержание температуры тела в диапазоне $32-36^{\circ} \mathrm{C}$ [3].

Снижение температуры ядра тела (Тсо) на $1^{0} \mathrm{C}$ в среднем снижает скорость церебрального метаболизма на 6-7\% [11]. В целом, в настоящее время выделяют следующие механизмы нейропротекторного действия ТГ:

- Ингибирование деструктивных энзиматических реакций (на $1,5 \%$ при снижении Тсо на $1^{\circ} \mathrm{C}$);
- Супрессия свободно-радикальных реакций;
- Протекция пластичности липопротеинов цитоплазматических мембран;
- Снижение потребления кислорода в регионах головного мозга с низким кровотоком;
- Улучшение доставки кислорода в ишемические зоны головного мозга и снижение внутричерепного давления;
- Снижение внутриклеточного лактатацидоза;
- Ингибирование биосинтеза и продукции эксайтотоксичных нейротрансмиттеров $[5,2,3$, 8, 11].

Молекулярно-клеточные механизмы действия охлаждения организма при повреждении головного мозга также связаны с ослаблением проапоптических сигналов, таких как цитохром c, реализующих активацию каспаз (каспазозависимый апоптоз). Происходит активация антиапоптических механизмов (Erk ½ путь, Akt путь), повышение экспрессии p53, что способствует репарации после фокальной ишемии. Низкие температуры также предотвращают повышенную проницаемость гематэнцефалического барьера за счет ингибирования матрикса металлопротеиназами и предохранения протеинов базального слоя $[5,8,11]$.

Активно проводятся исследования ТГ при ЧМТ, так, было показано, что ТГ, применяемая с целью снижения внутричерепной гипертензии, способна улучшить исходы у пациентов с ЧМТ, при этом была выявлена взаимосвязь длительности лечебной гипотермии и скорости согревания с исходами [7]. В недавнем метаанализе [6] было продемонстрировано благоприятное влияние ТГ $\left(33^{0} \mathrm{C}\right)$ длительностью 72 часа, с

последующим медленным согреванием, на исход ЧМТ в виде снижения уровня летальности на 18%, а также улучшения неврологического исхода на 35% по сравнению с нормотермическими пациентами с ЧМТ в группе контроля [6].

Целью данного исследования явилось сравнительное изучение управляемости и безопасности неинвазивной и эзофагальной технологий терапевтической гипотермии в комплексе интенсивной терапии у пациентов с тяжелой ЧМТ.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Нами были обследованы в 2014-2017 гг. 24 пациента в возрасте от 20 до 66 лет с диагнозом тяжелая черепно-мозговая травма, которым проводилась интенсивная терапия в отделении реанимации и интенсивной терапии политравмы КУ «Днепропетровская областная клиническая больница им. И.И. Мечникова».

Были определены следующие показания к проведению ТГ: первые 24 часа с момента получения тяжелой ЧМТ (как с проведением, так и без проведения оперативного нейрохирургического вмешательства), исходный уровень неврологического дефицита, который оценивался по шкале ком Глазго, в диапазоне 5-7 баллов (что соответствовало коме 1-2 степени) [4].

Критериями исключения были: возраст ≤ 18 лет, уровень неврологического статуса по шкале ком Глазго ≥ 8 и ≤ 4 баллов на момент начала исследования, беременность, рефрактерная артериальная гипотензия с использованием высоких доз вазопрессоров.

Все пациенты, включенные в исследование, были разделены на 2 группы: I ($\mathrm{n}=12$) - данным пациентам осуществлялась терапевтическая гипотермия с использованием неинвазивной технологии охлаждения с помощью гипотерма «Blanketrol - II» (CSZ, США) для достижения целевого значения температуры ядра тела $-34-34,5^{\circ} \mathrm{C}$; II группа ($\mathrm{n}=12$) - проводилась лечебная гипотермия гипотермом «Blanketrol - II» (CSZ, CША) инвазивной технологией с использованием эзофагального устройства для охлаждения (Esophageal Cooling Device, ACT, США) с целью достижения целевого значения температуры ядра тела $-34-34,5^{0} \mathrm{C}$.

Гипотерм «Blanketrol - II» конструктивно имеет возможность подключения 3-х одеял, в которых циркулирует охлажденная вода. Одеяла при проведении ТГ располагаются над и под пациентом. Эзофагальное устройство для охлаждения представляет собой силиконовый зонд, устанавливаемый орофарингеально. Устройство подключается к гипотерму «Blanketrol - II»,

после чего в нем обеспечивается циркуляция охлажденной жидкости, целевое значение Тсо достигается путем охлаждения ядра тела через пищевод.

Аппарат «Blanketrol - II» автоматически обеспечивает достижение и поддержание целевой Тсо путем обратной связи, а также осуществляет динамический мониторинг температуры тела (ядра) пациента, воды в одеяле (эзофагальном устройстве) и заданных параметров.

Пациентам обеих групп проводилась механическая вентиляция легких через эндотрахеальную трубку. Проводилось непрерывное мониторирование поверхностной температуры тела при помощи кардиомонитора. При индукции, поддержании ТГ, а также согревании пациентов температура ядра тела непрерывно измерялась:

- у пациентов I группы посредством эзофагального температурного датчика, подключавшегося к гипотерму «Blanketrol - II»;
- у пациентов II группы ректальным или температурным датчиком, расположенным в мочевом пузыре, которые также подключались к гипотерму «Blanketrol - II».

Индукция терапевтической гипотермии проводилась внутривенной капельной максимально быстрой инфузией $4^{0} \mathrm{C} 0,9 \%$ раствора NaCl в дозе 30 мл/кг массы тела (но не более 2500 мл), с последующим поддержанием ТГ гипотермом «Blanketrol - II» через одеяла или эзофагальное охлаждающее устройство.

Всем пациентам в фазе индукции проводилась аналгоседация и фармакологическое предупреждение развития холодовой дрожи по следующей схеме:

1. Пропофол в дозе 20-50 мкг/кг/мин. внутривенно через перфузор при гемодинамической

стабильности. В случае нетолерантности АД при введении препарата, либо исходной гемодинамической нестабильности, в качестве альтернативы использовали комбинацию тиопентала натрия и натрия оксибутирата;
2. Дополнительно проводилась непрерывная внутривенная инфузия фентанила в дозе 25-100 мкг/ч через перфузор;
3. При сохраняющейся холодовой дрожи, несмотря на вышеуказанную медикацию, вводили внутривенно болюс $10-20$ мг сибазона;
4. Сульфат магния 2-4 г внутривенно капельно;
5. Норкурон 0,1 мг/кг внутривенно болюсно.

В процессе поддержания ТГ оценивалась выраженность холодовой дрожи по шкале BSAS (Bedside Shivering Assessment Scale - прикроватная шкала оценки дрожи) [1], в случае развития холодовой дрожи для ее купирования в процессе ТГ использовалось внутривенное введение фентанила (50-100 мкг) либо промедола (тримеперидин) (в качестве аналога меперидина) в дозе 20-40 мг; а в случае рефрактерности миорелаксанты короткого действия.

Длительность поддержания целевого значения Тсо при проведении терапевтической гипотермии у всех пациентов составляла 24 часа, с последующей реверсией к температурному статусу, поддерживаемому внутренним физиологическим контролем. Скорость согревания у всех пациентов была $0,3^{\circ} \mathrm{C} /$ час. Значение Тсо равное $36,5^{\circ} \mathrm{C}$ считалось достижением нормотермии, которая продолжала контролироваться для поддержания эутермии и недопущения возникновения гипертермии, при развитии которой она немедленно купировалась.

Указанные группы были репрезентативными по основным клиническим и полово-возрастным характеристикам (табл. 1).

Таблициа 1
Характеристика пациентов в группах исследования (M $\pm \mathbf{m}$)

Показатели	I группа $(\mathrm{n}=12)$	II группа ($\mathrm{n}=12$)	P
Возраст, лет	39,3 $\pm 8,77$	37,33 $\pm 9,14$	0,19
Соотношение мужчины / женщины, n	11/1	10/2	0,27
Среднее АД исходно, мм рт. ст.	$103,05 \pm 6,31$	98,61 $\pm 9,47$	0,10
ЧСС исходно, уд./мин.	$85,33 \pm 15,34$	$84,08 \pm 12,02$	0,41
Температура ядра тела исходно, ${ }^{0} \mathbf{C}$	$\mathbf{3 6 , 5} \pm 0,38$	36,45 $\pm 0,45$	0,10
Исходная оценка по шкале ком Глазго, баллы	6,66 $\pm 0,47$	6,58 $\pm 0,79$	0,38

У всех пациентов оценивалась скорость индукции терапевтической гипотермии, управляемость при ее поддержании (регистрировались минимальные значения Тсо за период наблюдения) и достижении нормотермии, динамика числа сердечных сокращений, среднего артериального давления, регистрировались побочные эффекты.

Исследование проводилось на следующих этапах: исходно, на $2,4,6,8,10,18,24,28,32$ и 36 час с момента начала проведения лечебной гипотермии.

Статистическую обработку результатов исследования проводили с использованием табличного процессора LibreOffice.org (версия 5.3.5.1.) и статистических онлайн калькуляторов (http://www.socscistatistics.com).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В I и II группах пациентов не было выявлено достоверных различий исходного уровня температуры ядра тела, которые составляли $36,5 \pm 0,38$ и $36,45 \pm 0,45^{\circ} \mathrm{C}$ соответственно (рис. 1). Среднее значение времени от момента индукции до достижения целевого значения Тсо $34,5^{\circ} \mathrm{C}$ в I группе было $9,5 \pm 2,39$ часа, во II группе $-9 \pm 2,70$ часа ($\mathrm{p}>0,05$). Причем в первые 5 часов целевое значение Тсо было достигнуто в I группе в $16,7 \%$ ($\mathrm{n}=2$), во II группе в $25 \%(\mathrm{n}=3)$ случаев. При этом необходимо подчеркнуть, что указанные пациенты в обеих группах имели Тсо $36^{\circ} \mathrm{C}$ до

момента индукции, что было обусловлено проведенными оперативными нейрохирургическими вмешательствами и создавало условия для ускорения достижения целевых значений.

При анализе времени удержания Tсо на уровне $\leq 34,5^{\circ} \mathrm{C}$ по двум использованным технологиям лечебной гипотермии в I-й группе оно составило $6,83 \pm 3,95$ по сравнению с $10,5 \pm 5,78$ часами во II-й группе, данные различия носили достоверный характер ($\mathrm{p}<0,05$). Это свидетельствовало о лучшей управляемости инвазивной технологии с использованием эзофагального устройства в поддержании ТГ, что отражалось стабильным температурным профилем поддержания целевого значения Тсо.

Изучение стабильности температурного профиля в процессе поддержания целевого значения Тсо в первые 12 часов ТГ показало, что в І-й группе он был достигнут у 8 пациентов (66,7\%), в то время как во II-й группе у 12 пациентов ($83,3 \%$) при этом указанные различия не были достоверными ($\mathrm{p}>0,05$).

При анализе длительности поддержания установочного значения Тсо в диапазоне $34-34,5^{\circ} \mathrm{C}$ на протяжении всего 24 -часового периода поддержания ТГ была выявлена аналогичная тенденция между группами: 9,33 $\pm 5,12$ и $12,66 \pm 5,24$ часа соответственно в первой и второй группах ($\mathrm{p}>0,05$).

Рис. 1. Динамика температуры ядра тела в группах исследования на этапах проведения терапевтической гипотермии

Анализ межгрупповых различий периода времени, при котором имело место неадекватное поддержание целевого значения Tсо (Тсо $>34,5^{\circ} \mathrm{C}$) в течение 24 -часового периода проведения ТГ, выявил их недостоверный характер. Так, он составлял $10,25 \pm 3,56$ и $8,16 \pm 2,79$ часа соответственно в первой и второй группе исследования ($\mathrm{p}>0,05$).

При изучении управляемости в процессе согревания пациентов для достижения нормотермии после периода поддержания терапевтической гипотермии между группами выявлено достоверные различия на этапах 24,28 и 32 часов
(табл. 2). Так, во второй группе было получено достоверно более низкое значение уровня Тсо на указанных этапах, что свидетельствовало о лучшей управляемости процесса согревания и обеспечения целевого значения скорости согревания пациентов - $0,3^{0} \mathrm{C} /$ час. Напротив, в I й группе с использованием неинвазивной технологии у пациентов имел место больший разброс значений Тсо, что не всегда позволяло обеспечивать целевую скорость согревания и требовало пролонгации целевого температурного менеджмента для поддержания эутермии.

Таблицุа 2
Средние значения Тсо на этапе контролированного восстановления нормотермии ($\mathrm{M} \pm \mathrm{m}$)

Этап	$\begin{gathered} \text { Tco, }{ }^{0} \mathrm{C} \\ \text { I группа } \\ (\mathrm{n}=12) \end{gathered}$	Tco, ${ }^{0} \mathrm{C}$ II группа ($\mathrm{n}=12$)	P
24 ч.	$34,93 \pm 0,78$	34,42 $\pm 0,24 *$	0,02
28 ч.	$\mathbf{3 6 , 8 3} \pm 0,59$	35,6 $\pm 0,37 *$	0,002
32 ч.	37,2 $\pm 0,30$	$36,74 \pm 0,39 *$	0,003

Примечание . * - достоверность различий показателей между группами ($\mathrm{p}<0,05$).

Нами не было выявлено каких-либо клинически значимых побочных эффектов использованных методов индуцирования терапевтической гипотермии. Летальных исходов также не было ни в одной группе обследованных пациентов.

Таким образом, необходимо отметить, что скорость индукции ТГ зависела от целого ряда факторов, включающих скорость инфузии oxлажденного физиологического раствора, массы тела пациента и величины мышечной массы, что напрямую определяло степень выраженности холодовой дрожи и соответственно сложность ее купирования, глубины аналгоседации. Полученные результаты исследования свидетельствовали о лучшей управляемости ТГ при использовании эзофагального охлаждающего устройства.

ВЫВОДЫ

1. Среднее значение времени от момента индукции до достижения целевого значения Тсо $34,5^{\circ} \mathrm{C}$ в группе с неинвазивной технологией терапевтической гипотермии составляло $9,5 \pm 2,39$

часа, в группе с использованием эзофагального охлаждающего устройства - $9 \pm 2,70$ часа ($\mathrm{p}>0,05$).
2. Период поддержания Тсо на уровне $\leq 34,5^{\circ} \mathrm{C}$ в группе с использованием эзофагального охлаждающего устройства достоверно был больше и составлял $10,5 \pm 5,78$ часа по сравнению с $6,83 \pm 3,95$ часа при применении неинвазивной технологии ($\mathrm{p}<0,05$).
3. Управляемость процесса согревания пациентов для достижения нормотермии после периода поддержания терапевтической гипотермии достоверно была выше в группе с применением эзофагального охлаждающего устройства, что отражалось более низким значением среднего уровня Тсо на этапах 24,28 и 32 часов исследования.
4. Побочных эффектов при использовании технологии терапевтической гипотермии обнаружено не было, что указывает на безопасность предложенных способов при строгом учете противопоказаний и соблюдении особенностей ее проведения.

СПИСОК ЛИТЕРАТУРЫ

1. Assessment of the metabolic impact of shivering: the bedside shivering assessment scale (BSAS) / N. Badjatia, M. Strongilis, E. Buitrago [et al.] // Neurocritical Care. - 2007. - Vol. 6. - P. 228.
2. Cellular mechanisms of neuronal damage from hyperthermia / M.G. White, L.E. Luca, D. Nonner [et al.] // Prog. Brain Res. - 2007. - Vol. 162. - P. 347-371.
3. European Resuscitation Council Guidelines for Resuscitation 2015. Section 3. Adult advanced life support / J. Soar, J.P. Nolan, B. Bottiger [et al.] // Resuscitation. - 2015. - Vol. 95. - P. 100-147.
4. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Brain Trauma Foundation / N. Carney, A.M. Totten, C. O'Reilly [et al.] // Neurosurgery. - 2017. - Vol. 80. - P. 6-15.
5. Kochanek P.M. The brain and hypothermia from Aristotle to Target Temperature Management / P.M. Kochanek, T.C. Jackson // Crit. Care Med. - 2017. - Vol. 45. - P. 305-310
6. Meta-analysis of therapeutic hypothermia for traumatic brain injury in adult and pediatric patients /
E.M. Crompton, I. Lubomirova, I. Cotlarcius [et al.] // Crit. Care Med. - 2017. - Vol. 45. - P. 575-583.
7. Peterson K. Hypothermia treatment for traumatic brain injury: A systematic review and meta-analysis / K. Peterson, S. Carson, N. Cairney // J. Neurotrauma. 2008. - Vol. 26. - P. 62-71
8. Polderman K.H. Induced hypothermia and fever control for prevention and treatment of neurological injuries / K.H. Polderman // Lancet. - 2008. - Vol. 371. P. 1955-1965.
9. Polderman K.H. Therapeutic hypothermia and controlled normothermia in the ICU: Practical considerations, side effects, and cooling methods / K.H. Polderman, I. Herold // Crit. Care Med. - 2009. - Vol. 37. - P. 1101-1120.
10. Target temperature management at 330 C versus 360C after cardiac arrest / N. Nielsen, J. Wetterslev, T. Cronberg [et al.] // NEJM. - 2013. - Vol. 369. P. 2197-2206.
11. Therapeutic Hypothermia after Cardiac Arrest. Clinical Application and Management / J.B. Lundbye (ED). - Heidelberg, New York. London: Springer, 2012. - 122 p.

REFERENCES

1. Badjatia N, Strongilis M, Buitrago E, Fernandez A, Palestrant D, Parra A, Mayer S. Assessment of the metabolic impact of shivering: the bedside shivering assessment scale (BSAS). Neurocritical Care. 2007;6:228
2. White MG, Luca LE, Nonner D, et al. Cellular mechanisms of neuronal damage from hyperthermia. Prog. Brain Res. 2007;162:347-71.
3. Soar J, Nolan JP, Bottiger B. European Resuscitation Council Guidelines for Resuscitation 2015. Section 3. Adult advanced life support. Resuscitation. 2015;95:100-47.
4. Carney N, Totten AM, O'Reilly C, et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Brain Trauma Foundation. Neurosurgery. 2017;80:6-15.
5. Kochanek PM, Jackson TC. The brain and hypothermia - from Aristotle to Target Temperature Management. Crit. Care Med. 2017;45:305-10.
6. Crompton EM, Lubomirova I, Cotlarcius I. Metaanalysis of therapeutic hypothermia for traumatic brain
injury in adult and pediatric patients. Crit. Care Med. 2017;45:575-83.
7. Peterson K, Carson S, Cairney N. Hypothermia treatment for traumatic brain injury: A systematic review and meta-analysis. Journal of Neurotrauma. 2008;26:62-71.
8. Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet. 2008;371:1955-65.
9. Polderman KH, Herold I. Therapeutic hypothermia and controlled normothermia in the ICU: Practical considerations, side effects, and cooling methods Crit. Care Med. 2009;37:1101-20.
10. Nielsen N, Wetterslev J, Cronberg T, et al. Target temperature management at 330 C versus 360 C after cardiac arrest. NEJM. 2013;369:2197-206.
11. Lundbye JB (Ed.). Therapeutic Hypothermia after Cardiac Arrest. Clinical Application and Management. Heidelberg - New York - London: Springer; 2012.
