
World of Computer Science and Information Technology Journal (WCSIT)

ISSN: 2221-0741

Vol. 8, No. 6, 43-49, 2018

43

Broadcast Distributed PSO for Large Scale Problems

Farid Bourennani

Department of Computer Science

Faculty of Computing and IT, University of Jeddah, Saudi Arabia

Abstract— Nowadays, we have access to unprecedented high-performance computing (HPC) resources that can be utilized to solve

complex and computationally expensive optimization problem. However, one of the problems with existing metaheuristics algorithms

is that they do not scale well. For example, particle swarm optimization (PSO) which is one of the most known metaheuristics

performs poorly in terms of accuracy and convergence speed with large dimensional problems. In this paper, we propose a broadcast

and distributed PSO using message passing interface (MPI) that showed to be faster and more accurate than the commonly utilized

distributed master-slave version of PSO for the studied large-scale optimization problems.

Keywords- Particle swarm optimization; distributed computing; large scale optimization; big optimization.

I. INTRODUCTION

Various optimization problems are difficult to solve using
exact optimization methods [1] such as software engineering,
energy systems design, bioinformatics, telecommunication, and
finance among others because they encompass complexities
such as discontinuity, large dimensionality, non-
differentiability, non-concavity, multimodality, and/or black
box problems [2][3]. Consequently, bio-inspired methods such
as particles swarms and evolutionary algorithms are the main
alternatives to solve such complex problems [4][5]. These
nature-inspired computational methods tend to optimize a
problem by iteratively trying to improve a candidate solution;
they do not guarantee optimality but in general they do provide
optimal or close to optimal solutions [6]. A comprehensive
description of such methods referred as metaheuristics can be
found in [7].

Figure 1: Master-Slave PSO. Every circle represents a particle that

communicates with leader (master) particle at every iteration.

The fast hardware development invigorated the development
of advanced simulation tools that are computationally intensive
due to expensive evaluation functions [8] such as design of
energy systems [9] or mechanical engineering models [10]
which can involve a large number of variables. Therefore, high
performance computing (HPC) arises naturally to solve such
problems. Particle swarm optimization (PSO) [11] is the most
popular metaheuristic due to its efficiency, there have been over
1000 publications per year related to PSO since 2010 [12].
However, despite the advantage of high-performance
computing, PSO does not scale well with large dimensional
problems [12], [13]. For example, the master slave version of
PSO (MS-PSO), illustrated in Figure 1, is the most known
version of distributed PSO, but it suffers from bottlenecks which
are due to centralized processing at the master particle level at
every iteration because of the data provided by the entire swarm
to the master particle. This is especially true with large
dimensional optimization problems where the number of
variables is high in consequence of which the size of the
population is also increased.

To solve this problem, in this work, we propose a broadcast
distributed model of PSO (BD-PSO) where there is no master
node, rather the entire particles do identical tasks which
eliminates the bottleneck caused by a centralized
communication at the master node in consequence of which the
convergence speed is improved due to asynchronous
communication. Furthermore, when solving large dimensional
optimization problems (D>100), a higher accuracy is achieved
because 1) the proposed BD-PSO enhances the pseudo-
randomness [14] when generating new solutions on various
nodes rather than having the same master node generating all
new solutions, and 2) the best found solution is broadcasted
faster to the swarms due to the asynchronous communication
model. For testing purposes, we utilize the CEC2013
competition [9] benchmark problems which can take several
hours to be solved using a personal computer. The distribution

WCSIT 8 (6), 43 -49, 2018

44

of PSO is done using the MPI library. We compare the BD-PSO
with the classical PSO in terms of accuracy, and we compare it
to the MS-PSO in terms of convergence speed in order to
demonstrate that the use of a decentralized and asynchronous
approach can lead to faster and more accurate results especially
when solving large scale optimization problems.

II. LITERATURE REVIEW

Development of distributed metaheuristics is a very active
research area; a comprehensive survey about distribution of
metaheuristics can be found in [15]. However, as we focus in
this work on distributed PSO (DPSO), we will present in this
section only the most important works related to DPSO.

Most works used distribution or parallelisation for the sole
purpose of accelerating the convergence speed of PSO using the
master/slave (M/S) model. For example, in [16] the M/S model
was utilized to solve a job shop problem with blocking. The
proposed algorithm was compared with a distributed and a
classical branch and bound (BB) using four nodes. The results
of the proposed DPSO were either similar or more accurate than
the sequential PSO depending on the problem; however, the BB
achieved better results in most of the instances. In [17], a DPSO
was proposed with M/S model using C-Cuda. Most of the code
is executed is parallel; five benchmark problems were utilized
for comparison purposes. Only the acceleration was studied; the
results showed respective speedups of [4.44, 16.9] and [4.5,
17.3] for 10,000 and 100,000 iterations. In [18], the M/S DPSO
model was utilized to solve a coverage problem of pursuit-
evasion games using MPI with respectively 1, 2, 4, 5 and 10
processors, and a population size of 20. The results showed a
speedup of over 3.0 with 4 processors which decreased to over
2.5 with 10 processors. Also, there are several applied works
which utilized MS-based DPSO. For example, in [19] MS-
DPSO was utilized with GPU for the optimization of an antenna
adaptive beam forming problem. In [20], a DPSO named PSO-
LSSVM was proposed with a M/S communication model using
Hadoop (3 processors on a cloud) to predict the benefits of
electronic commerce over a period of two years. The results of
PSO-LSSVM were the most accurate only during the second-
year period. In [21], MS-DPSO was proposed using map reduce
paradigm to solve an intrusion detection problem. The speed-up
was only linear until to eight nodes. In [22], MS-DPSO was
utilized to optimize the soil sampling network in China. In
addition to speed, the proposed DPSO required only 85 % of the
samples needed compared to classical PSO.

Some other works proposed other DPSO but focused only on
low dimensional problems (D<30) such as [23], [12] and [24].
Some other works proposed DPSO for especial applications
such as robotics [25-28] or multi-agent platform [29]. There are
also multi-objective version of DPSO that can be found in [30],
[31], and [32].

An interesting work was proposed by [32] in parallelizing
COMPSO which is a cooperative version of PSO. Two different
distributed platforms were used, namely, Sharcnet and a shared-
memory multi-core PCs. Five problems were utilized for testing
purposes with a respective number of variables of 300, 600, and
1000. The subswarms populations were composed of five
particles for a total abnormally large size population [33-34]

which are respectively composed of 500, 1000, and 2000
particles. Up to 33 nodes were utilized. Interestingly, only low
numbers of CPU (1, 3, and 9) achieved the most accurate results
compared to 17, 25, and 33 CPUs. However, in this case every
particle works only on a part of the solutions, which means only
a portion of variables is modified to generate new solutions
which differs from the classical way PSO works. Although, the
paper is rich of experiments, they don't compare the proposed
algorithms with classical PSO in terms of accuracy.

Overall, it can be said that despite the high popularity of
PSO, limited work has been done of PSO to attempt to solve
large scale optimization problems using high performance
computing which ultimately could lead to solve many real-life
problems. In addition, the use of HPC can improve the
randomness of variables by distributing them across
heterogeneous cores (CPUs) [14]. Also, the use of distributed
nodes, which can be of very large numbers, will permit to solve
large scale optimization problems which cannot be solved with
shared-memory platforms due to limited memory capacity [8].
Furthermore, asynchronous communication models are faster
because they reduce unnecessary communication and
bottlenecks caused by synchronization [35] [23] in consequence
of which the population tend to move more promptly [25].

III. BROADCAST DISTRIBUTED PSO

In this section, we describe the proposed algorithm called
broadcast and distributed PSO (BD-PSO). The broadcast
communication model serves to eliminate bottlenecks caused by
centralized communication at the master particle and have
instead an asynchronous broadcast communication model
among all particles to share the best-found solution information
among the swarm as soon as it is found which will lead to a faster
convergence speed. The implementation of BD-PSO is done on
the shared hierarchical academic research computing network
(SHARCNET) which is an academic cluster for distributed
computations platform which is based on MPI.

By proposing BD-PSO, we target the enhancement of both
the accuracy and convergence speed when solving large scale
optimization problems that would be computationally too
expensive to be solved using classical computation. BD-PSO
uses classical parameter settings with a constant population size
as recommended in [37] or based on the number of variables of
a problem n using the rule 2𝑛 < 𝑃 < 5𝑛 [35]. Recent works
[34] recommended even to have population sizes significantly
smaller than the dimensions 𝑃 ≪ 𝑛. To assess PB-PSO in terms
of accuracy and acceleration, BD-PSO is compared with both
PSO and MS-PSO which is the most utilized DPSO.

WCSIT 8 (6), 43 -49, 2018

45

 Algorithm 1: BD- PSO

Code executed at every node rather than Master node.

Random initialization of whole swarm

repeat

 for all particles i do

 Update velocities:

𝑣⃗i (𝑡) = 𝑤. 𝑣⃗i(𝑡 − 1) + 𝐶1. 𝑟1(𝑥⃗𝑝𝑖
− 𝑥⃗i) + 𝐶2. 𝑟2 (𝑥⃗𝐺𝑖

− 𝑥⃗i)

(t)

 Move to the new position: 𝑥⃗i(t) = 𝑥⃗i (𝑡 − 1)+ 𝑣⃗i(𝑡)

 if 𝑓(𝑥⃗i) < 𝑓(𝑥⃗𝑝𝑖
)then

 𝑥⃗𝑝𝑖
= 𝑥⃗i

 end if

 if 𝑓(𝑥⃗i) < 𝑓(𝑥⃗𝐺𝑖
)then

 𝑥⃗𝐺𝑖
= 𝑥⃗i

 InformOtherParticles(𝑥⃗𝐺𝑖
);

 end if

 Update(𝑥⃗i, 𝑣⃗i)

 end for

until Stopping Criteria

where 𝑥⃗𝑝𝑖

 is the (local) best found candidate solution by the

particle 𝑥⃗i , 𝑥⃗𝐺𝑖
 is the (global) best found particle in the entire

swarm called leader. 𝑤 is the particle inertia weight representing
a trade-off between the global and local experiences, 𝑟1 and 𝑟2
are random variables in the range [0,1], and 𝐶1 and 𝐶2 are
learning factors towards respectively the particles personal
success and its neighbor’s success.

Figure 2. Broadcast communication model among PSO particles.

The proposed BD-PSO will consists in eliminating the
master particle by distributing equally all the tasks to the entire
particles of the swarm. Consequently, all the particles will have
the same tasks; however, they will share their found solution at
every iteration. This way, there will be no idle processing node,
as in the master-slave model, while the master particle located
on the node does the comparison of the found solution. The
number of nodes is equal to the number of particles. As shown
in Figure 2, the communication process is more intense as
compared the master-slave model because of the broadcasting
done at every iteration. However, the butterfly effect of the

“AllReduce()” function will alleviate that effect. Also, as shown
in Algorithm 1, the function “InformOtherParticles()” will serve
to inform the other particles of the new best found solution as
soon as it is found using asynchronous communication with the
aim of achieving a faster convergence speed and also a better
accuracy. It is important to mention that random generation
function of every particle located on a separate node is
completely independent, i.e. the pseudo-randomness effect is
reduced which also should lead to a better accuracy.

IV. EXPERIMENTS SETTINGS

In this section, we present the experiments details which
include parameter settings, benchmark problems description,
measuring metrics for assessment performance, and the
experiments results.

A. Parameter Settings

For a fair comparison, we kept identical parameters settings
for all the algorithms as suggested in [22]: population size = 100,
w = 0.729844, number of function calls =1*106 per swarm, C1
= C2 = 1.49618, and the number of nodes = 100 for distributed
PSOs.

B. Benchmark Optimization Problems

Eight well-known scalable benchmark problems [9], that are
commonly utilized, have been used for testing purposes; they are
composed of different landscape properties such as multi-
modality, deceptiveness, and non-convexity. The global optima
of these problems are known beforehand.

To make the selected problems complex to solve, every
problem is set respectively to 100 then to 500 variables which
makes them time consuming (several hours) to be solved
sequentially. In addition, every problem is shifted to a random
location in a search space which makes the problem further
harder to solve.

C. Comparative Metrics

The most common metrics utilized by the metaheuristics
research community to assess the performance of distributed
algorithms are the speedup (𝛹) and accuracy (α) [38].

The speedup measures how fast is a distributed algorithm in
comparison with its corresponding sequential version. It is
calculated as the ratio of the sequential execution time over the
parallel execution time. The ideal case scenario for a distributed
algorithm should lead to a linear speedup whereas in most cases
a sub-linear speedup is achieved. The poor (sub-linear) speedup
is due to either the serial portion of the code or the distributed
overhead. The speedup is described below.

𝛹(𝑛, 𝑝) = 𝑇
𝑛,1

𝑇
(𝑛, 𝑝) (4)

where 𝑛 is the population size, 𝑝 is the number of

processors, 𝑇 (𝑛, 1) is the time required to solve a problem of
size 𝑛 on a single processor (serial processing), and 𝑇 (𝑛, 𝑝) is
the time required to solve a problem of size 𝑛 on 𝑝 processors
(distributed processing).

WCSIT 8 (6), 43 -49, 2018

46

The other measure used for comparison is the accuracy (𝛼)
of an algorithm which consists in calculating the difference
between the fitness of the best-found solution and the global
optimum as shown below. The closer to zero is the value of 𝛼,
the more accurate is the optimization algorithm. An ideal
optimization algorithm should have 𝛼 equal to zero.

𝛼 = |𝑆𝑓(𝑥) − 𝑆̂𝑓(𝑥)| (6)

where 𝑆𝑓(𝑥) is the best-found solution by the algorithm and

𝑆̂𝑓(𝑥) is the global optimum of the function 𝑓(𝑥).

For a fear accuracy comparison, the stopping criteria is fixed
for all the compared PSO methods to 1*106 function calls which
is classically utilized [9].

V. EXPERIMENTS RESULTS

In this section, we present the experimental results by
comparing the proposed BD-PSO with the parent PSO algorithm
and MS-PSO. Two series of tests are performed for the
evaluation of the performance of the algorithms with large
dimensional problems which are respectively 100 and 500
variables.

A. Experiments with 100 variables

Both the Figure 3 and Table 1 show the execution time of the
three compared algorithms when solving problems of dimension
D = 100. It can be seen that the proposed BD-PSO is the fastest
algorithm for all the problems which is due to the broadcast
communication model.

Figure 3. Execution time in seconds with functions scaled to 100 variables.
The execution time of PSO for f3 has been shortened for better visualization.

Shorter histograms are of better results.

Table 2 and 4 show the speed-up when solving the eight
benchmarking problems set to 100 variables after 1,000,000
function calls. BD-PSO achieved the highest speedup with an
average of 12.0 compared to 4.2 for MS-PSO which makes BD-
PSO in average three time faster than MS-PSO. This
performance of BD-PSO is due to the elimination of bottleneck
communication at the master particle which is still persistent
within the MS-PSO algorithm. For the most expensive problem
f3 the speedup of PB-PSO is the closest to MS-PSO with BD-
PSO being 1.7 faster than MS-PSO, and for the less expensive
problem f1 the BD-PSO achieved the highest speed-up

difference with BD-PSO being 3.9 faster than MS-PSO. So, the
less expensive is the objective function, the faster is the
convergence speed of an algorithm using a broadcast
communication model.

TABLE I. EXECUTION TIME IN SECONDS WITH FUNCTIONS SCALED TO

100 VARIABLES (DARK GREY IS THE FASTEST ALGORITHM; LIGHT GREY IS THE

SECOND FASTEST ALGORITHM)

Function PSO MS-PSO BD-PSO

f1 13.3 10 2.6

f2 40.6 10.5 4.9

f3 386.2 15.9 9.3

f4 82.7 11 3.9

f5 53 10.4 3.4

f6 33.3 10.3 3.0

f7 29.5 10.4 2.9

f8 45.1 10.3 2.9

Figure 4. Speedup measure (Ψ) of the compared algorithms with functions
scaled to 100 variables. Higher histograms are of better quality. The speed-up

of BD-PSO for the function F3 is shortened for better visualization results.

TABLE II. SPEEDUP Ψ MEASURE OF THE COMPARED ALGORITHMS WITH

FUNCTIONS SCALED TO 100 VARIABLES. DARK GREY IS THE ALGORITHM

HAVING THE HIGHEST SPEEDUP MEASURE, THE LAST COLUMN SHOWS HOW

FAST IS THE PROPOSED BD-PSO COMPARED TO THE MS-PSO.

Function MS-PSO BD-PSO ΨDAPDPSO / ΨMS-PSO

f1 1.3 5.2 3.9

f2 3.9 8.3 2.2

f3 5.3 9.2 1.7

f4 7.5 21.3 2.8

f5 5.1 15.4 3.0

f6 3.2 11.2 3.5

f7 2.8 10.2 3.6

f8 4.4 15.3 3.5

Avg. 4.2 12.0 3.0

With regards to the accuracy (α), as shown in Table 3, BD-
PSO is the most accurate method for three out of eight studied
problems, and second most accurate for four problems. There is
no clear pattern to explain why some problems are more difficult
to solve. As an example, the function f3 which is the most
expensive and the most difficult to solve is unimodal and convex
whereas f8 is the second easiest to solve is multi-modal, irregular
and non-separable. Overall, BD-PSO achieved comparable
results with MS-PSO for all the problems with the exception of
f6 and f7 where MS-PSO was more accurate than BD-PSO; note
that f6 is highly multimodal and f7 is unimodal. As it will be

0

20

40

60

80

100

f1 f2 f3 f4 f5 f6 f7 f8

PSO

MS-PSO

BP-PSO

0

20

40

60

80

100

120

f1 f2 f3 f4 f5 f6 f7 f8

PSO

MS-PSO

WCSIT 8 (6), 43 -49, 2018

47

shown in the next sub-section, the performance of BD-BSO tend
to improve with a larger number of variables.

TABLE III. ACCURACY (Α) OF THE COMPARED OPTIMIZATION

ALGORITHMS WITH FUNCTIONS SET TO 100 VARIABLES. DARK GREY IS THE

ALGORITHM HAVING THE BEST ACCURACY MEASURE, THE LAST COLUMN

SHOWS HOW MANY TIMES FASTER IS IT.

Function PSO MS-PSO BD-PSO

f1 370.0 63.3 61.5

f2 15128.5 3779.4 4156.1

f3 127294.5 99264.0 64218.7

f4 12652.8 1905.1 2803.8

f5 1212.2 1397.3 1159.5

f6 1112.9 30.4 180.0

f7 0.2 0.0 118.7

f8 20.3 20.3 21.4

B. Results with 500 variables

The convergence speed results of BD-PSO, PSO, and MS-
PSO when solving problems of 500 variables are shown in
Tables 4 and Figure 5. Overall, the execution time of BD-PSO
is the fastest; however, when the objective function is expensive
such as f3, the effect of the broadcast communication gets
attenuated.

TABLE IV. EXECUTION TIME IN SECONDS WITH FUNCTIONS SCALED TO

500 VARIABLES. DARK GREY IS THE FASTEST ALGORITHM; LIGHT GREY IS THE

SECOND FASTEST ALGORITHM.

Function PSO MS-PSO BD-PSO

f1 203.7 157 9.3

f2 841.4 128.7 25.4

f3 43493.5 626 9.3

f4 1767.7 144.6 42.7

f5 1170.9 134.9 30.4

f6 725.9 121.9 23.4

f7 616.4 117.9 19.4

f8 203.7 157 24.2

As shown in Table 5 and Figure 6, BD-PSO is in average 6

times faster than MS-PSO with the exception of f3 which is the
most expensive function (10 times more expensive than other
functions). BD-PSO becomes faster for larger dimensional
problems; the speedup difference between BD-PSO and MS-
PSO is more accentuated because MS-PSO suffers from a
stronger convoy effect at the master particle level where every
input vector requires more processing time by the master particle
due to a larger number of variables of every solution.

TABLE V. SPEEDUP Ψ MEASURE OF THE COMPARED ALGORITHMS WITH

FUNCTIONS SCALED TO 500 VARIABLES. DARK GREY IS THE ALGORITHM

HAVING THE HIGHEST SPEEDUP MEASURE, THE LAST COLUMN SHOWS HOW

FAST IS THE PROPOSED BD-PSO COMPARED TO THE MS-PSO.

Function MS-PSO BD-PSO ΨBD-PSO / ΨMS-PSO

f1 1.3 21.9 16.9

f2 6.5 33.2 5.1

f3 24.3 41.7 1.7

f4 12.2 41.4 3.4

f5 8.7 38.5 4.4

cf6 6.0 31.0 5.2

f7 5.2 31.7 6.1

f8 8.0 39.7 5.0

Avg. 9.0 34.9 6.0

Figure 5. Speedup measure (Ψ) of the compared algorithms with functions

scaled to 500 variables. Higher histograms are of better quality.

When solving problems with 500 variables, as shown in
Table 6, the accuracy of BD-PSO is improved becoming the best
for six out of eight problems. The differences in the result are
significant now, so we can say that BD-PSO is significantly
more accurate than MS-PSO for four problems, namely, f1, f2,
f4, and f6 whereas it achieved a lower accuracy than MS-PSO
for the same problems with D =100. In fact, BD-PSO performs
poorly only with f7. In brief, based on these results, it can be said
that the broadcast communication model led to good results in
terms of both accuracy and convergence speed especially for
large dimensions D=500. It should be further studied for larger
dimension problems to determine whether it is the asynchronous
communication model or tye enhanced pseudo-randomness of
the distributed model that are enhancing the accuracy of the
proposed BD-PSO.

TABLE VI. ACCURACY (Α) OF THE COMPARED OPTIMIZATION

ALGORITHMS WITH FUNCTIONS SET TO 500 VARIABLES. DARK GREY IS THE

ALGORITHM HAVING THE BEST ACCURACY MEASURE, THE LAST COLUMN

SHOWS HOW MANY TIMES FASTER IS IT

Function PSO MS-PSO BD-PSO

f1 4,263 1,567 297

f2 982,453 369,373 108,875

f3 2,661,250 99,264 64,219

f4 207,721 68,141 17,740

f5 8,501 8,601 7,753

f6 14,645 5,434 1,759

f7 724,202 4.5 7.3E+22

f8 21.0 21.0 21.5

0.0

10.0

20.0

30.0

40.0

50.0

f1 f2 f3 f4 f5 f6 f7 f8

MS-PSO

BP-PSO

WCSIT 8 (6), 43 -49, 2018

48

VI. CONCLUSIONS

In this paper, we have proposed a broadcast distributed
particle swarm optimization (BD-PSO) to solve large
dimensional optimization problems using MPI. The BD-PSO
was in average three times faster than MS-PSO when solving
problems D=100 and achieved comparable accuracy results to
MS-PSO. However, for D=500, BD-PSO become in average 6
times faster and significantly more accurate than MS-PSO and
PSO. These promising preliminary results should lead the
community to further study the broadcast communication model
in solving large scale and big optimization problems and
particularly how can we improve the design of distributed
metaheuristics to solve big optimization problems.

HPC cannot only accelerate the convergence speed of
metaheuristics but also lead to more accurate results by
proposing appropriate algorithms design which should be further
studied by the research community. In the, future we aim to
study in big optimization problems having expensive objective
functions.

REFERENCES

[1] J. Prateek and P. Kar. "Non-convex optimization for machine learning."
Foundations and Trends® in Machine Learning vol. 10, no. 3-4, pp. 142-
336, 2017.

[2] P. M. Pardalos et al. "A Brief Review of Non-convex Single-Objective
Optimization." Non-Convex Multi-Objective Optimization. Springer, pp.
33-42. 2017.

[3] I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization
metaheuristics,” Inf. Sci. (Ny)., vol. 237, pp. 82–117, 2013.

[4] G. Gutmann, "Parallel Interaction Detection Algorithms for a Particle-
based Live Controlled Real-time Microtubule Gliding Simulation System
Accelerated by GPGPU", New Generation Computing, vol. 35, no. 2, pp.
157-180, 2017.

[5] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “An Improved Self-
Adaptive Differential Evolution Algorithm for Optimization Problems,”
IEEE Trans. Ind. Informatics, vol. 9, no. 2, pp. 89–99, 2012.

[6] S.J Nanda, and P. Ganapati. "A survey on nature inspired metaheuristic
algorithms for partitional clustering", Swarm and Evolutionary
computation, vol. 16, pp. 1-18, 2014.

[7] E. Talbi, Metaheuristics from Design to Implematation. John Wiley &
Sons Publication Inc, 2009.

[8] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics: recent
advances and new trends,” Int. Trans. Oper. Res., vol. 20, no. 1, pp. 1–48,
2013.

[9] Xiaodong, L., Tang, K., Mohammad, N. O., Zhenyu, Y., & Kai, Q.
Benchmark functions for the CEC 2013 special session and competition
on large-scale global optimization. Gene, vol. 7, no. 33, 1–8, 2013.

[10] K. Yaji et al. "Large-scale topology optimization incorporating local-in-
time adjoint-based method for unsteady thermal-fluid problem."
Structural and Multidisciplinary Optimization, pp. 1-6, 2018.

[11] R. C. Eberhart and J. Kennedy, “Particle Swarm Optimization,” in 1995
IEEE International Conference on Neural Networks, pp. 1942–1948,
1995.

[12] Y. Zhang, S. Wang, G. Ji, Y. Zhang, S. Wang, and G. Ji, “A
Comprehensive Survey on Particle Swarm Optimization Algorithm and
Its Applications,” Math. Probl. Eng., vol. 2015, pp. 1–38, 2015.

[13] X. Li, and Y. Xin. "Cooperatively coevolving particle swarms for large
scale optimization", IEEE Transactions on Evolutionary Computation,
vol. 16, no. 2, pp. 210-224, 2012.

[14] R. Impagliazzo, R. Shaltiel, and A. Wigderson, “Near-optimal conversion
of hardness into pseudo-randomness,” in In IEEE 40th Annual
Symposium on Foundations of Computer Science, pp. 181–190, 1999.

[15] Gong, Yue-Jiao, et al. "Distributed evolutionary algorithms and their
models: A survey of the state-of-the-art." Applied Soft Computing, vol.
34, pp. 286-300, 2015.

[16] A. AitZai and M. Boudhar, “Parallel branch-and-bound and parallel PSO
algorithms for job shop scheduling problem with blocking,” Int. J. Oper.
Res., vol. 16, no. 1, pp. 14–37, 2013.

[17] J. Kaur, S. Singh, and S. Singh, “Parallel Implementation of PSO
Algorithm using GPGPU,” in The Second International Conference on
Computational Intelligence & Communication Technology, Hyderabad,
India pp. 155–160, 2016.

 [18] J. Shiyuan, D. Damian, and Q. Zhihua, “Parallel Particle Swarm
Optimization (PPSO) on the Coverage Problem in Games, Pursuit-
evasion,” in HPC ’12, Symposium on High Performance Computing,
Orlando, Florida, 2012.

[19] E. Ahmed, K. R. Mahmoud, S. Hamad, and Z. T. Fayed, “Real Time
Parallel PSO and CFO for Adaptive Beam-forming Applications,” in
PIERS Proceedings, 2013, pp. 816–820.

[20] Z. Fu, “Research on the Prediction of the E-commerce Profit Based on the
Improved Parallel PSO-LSSVM Algorithm in Cloud Computing
Environment,” vol. 9, no. 6, pp. 369–380, 2016.

[21] I. Aljarah and S. A. Ludwig, “Towards a Scalable Intrusion Detection
System based on Parallel PSO Clustering Using MapReduce Categories
and Subject Descriptors,” in Gecco’13, 2013.

[22] D. Liu, Y. Liu, Y. Liu, and Z. Xiang, “A Parallelized Multi-objective
Particle Swarm Optimization model to design soil sampling network,” in
Geoinformatics (GEOINFORMATICS), 2012 20th International
Conference on, pp. 1–6, 2012.

[23] T. Gonsalves and A. Egashira, “Parallel Swarms Oriented Particle Swarm
Optimization”, Appl. Comp. Intell. Soft Comput., vol. 2013, no. 756719,
pp. 1–8, 2013.

[24] G. W. Zhang et al., “Parallel Particle Swarm Optimization Using Message
Passing Interface,” in Proceedings of the 18th Asia Pacific Symposium on
Intelligent and Evolutionary Systems, 2015, vol. 1, no. 61125205, pp. 55–
64.

[25] L. Mussi, Y. S. G. Nashed, and S. Cagnoni, “GPU-based asynchronous
particle swarm optimization,” in Proceedings of the 13th annual
conference on Genetic and evolutionary computation - GECCO ’11, pp.
1555–1562, 2011.

[26] A. Ayari & S. Bouamama "A new multiple robot path planning algorithm:
dynamic distributed particle swarm optimization", Robot. Biomim, vol.
4, no. 8, 2017.

[27] K. Ishikawa et al., "Consensus-Based Distributed Particle Swarm
Optimization with Event-Triggered Communication", IEICE
TRANSACTIONS on Fundamentals of Electronics, Communications and
Computer Sciences, Vol. E101-A, No.2, pp.338-344, 2018

[28] J. M. Hereford, “A particle swarm algorithm for multiobjective design
optimization,” in 2006 IEEE Congress on Evolutionary Computatio,
2006, vol. 1, pp. 1678–1685.

[29] Ş. Gülcü and H. Kodaz, “A novel parallel multi-swarm algorithm based
on comprehensive learning particle swarm optimization,” Eng. Appl.
Artif. Intell., vol. 45, pp. 33–45, 2015.

[30] S. N. Omkar, A. Venkatesh, and M. Mudigere, “MPI-based parallel
synchronous vector evaluated particle swarm optimization for multi-
objective design optimization of composite structures,” Eng. Appl. Artif.
Intell., vol. 25, no. 8, pp. 1611–1627, 2012.

[31] W. Du and B. Li, “Multi-strategy ensemble particle swarm optimization
for dynamic optimization,” Inf. Sci. (Ny)., vol. 178, no. 15, pp. 3096–
3109, 2008.

[32] S. Mostaghim, “Parallel multi-objective optimization using self-organized
heterogeneous resources,” in Parallel and Distributed Studies in
Computational Intelligence, Springer., vol. 269, Berlin Heidelberg, 2010,
pp. 165–179.

[33] K. E. Parsopoulos, “Parallel cooperative micro-particle swarm
optimization: A master-slave model,” Appl. Soft Comput. J., vol. 12, no.
11, pp. 3552–3579, 2012.

[34] S. Chen, J. Montgomery, and A. Bolufé-Röhler, “Some measurements on
the effects of the curse of dimensionality,” in Proceedings of the 2014

WCSIT 8 (6), 43 -49, 2018

49

conference companion on Genetic and evolutionary computation
companion - GECCO Comp ’14, 2014, no. July, pp. 1447–1448.

[35] M. Pant, R. Thangara, and A. Ajith, “Particle swarm optimization:
performance tuning and empirical analysis.",” Found. Comput. Intell.,
vol. 3, pp. 101–128, 2009.

[36] A. McNabb and K. Seppi, “Serial PSO results are irrelevant in a multi-
core parallel world,” in Proceedings of the 2014 IEEE Congress on
Evolutionary Computation, CEC 2014, 2014, pp. 3143–3150.

[37] D. Bratton and J. Kennedy, “Defining a Standard for Particle Swarm
Optimization,” in Swarm Intelligence Symposium, 2007, pp. 120–127.

[38] A. H. Karp and H. P. Flatt., “Measuring Parallel Processor Performance,”
Commun. ACM, vol. 33, no. 5, pp. 539–543, 1990.

AUTHORS PROFILE

Dr. Farid Bourennani is an Assistant Professor in the Faculty of Computing and
Information Technology at the University of Jeddah. His research projects
focus on metaheuristics optimization methods to solve real engineering
problems. Furthermore, Dr. Bourennani is actively working in data
science especially in heterogeneous data mining area that he pioneers. He
has published over 20 peer reviewed articles in international journals and
conferences. During his PhD, Farid Bourennani was twice the recipient
the Jeffrey Boyce Engineering Award which is the highest and most
prestigious award at University of Ontario Institute of Technology,
Canada. He was nominated for PhD Alumni Gold Medal with a GPA of
4.3/4.3, and he received other awards such Ontario Graduate Scholarship
(OGS), and Best Paper Award at the DBKDA'09 conference among
others. Prior to that, Dr. Bourennani worked several years in the industry
in north America with known companies such as IBM, Bell Canada,
Sabic, Einstein, Alis Technology, Look Communication, and AxessUP
among others.

