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Abstract— Nowadays, we have access to unprecedented high-performance computing (HPC) resources that can be utilized to solve 

complex and computationally expensive optimization problem. However, one of the problems with existing metaheuristics algorithms 

is that they do not scale well. For example, particle swarm optimization (PSO) which is one of the most known metaheuristics 

performs poorly in terms of accuracy and convergence speed with large dimensional problems. In this paper, we propose a broadcast 

and distributed PSO using message passing interface (MPI) that showed to be faster and more accurate than the commonly utilized 

distributed master-slave version of PSO for the studied large-scale optimization problems. 
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I. INTRODUCTION  

Various optimization problems are difficult to solve using 
exact optimization methods [1] such as software engineering, 
energy systems design, bioinformatics, telecommunication, and 
finance among others because they encompass complexities 
such as discontinuity, large dimensionality, non-
differentiability, non-concavity, multimodality, and/or black 
box problems [2][3]. Consequently, bio-inspired methods such 
as particles swarms and evolutionary algorithms are the main 
alternatives to solve such complex problems [4][5]. These 
nature-inspired computational methods tend to optimize a 
problem by iteratively trying to improve a candidate solution; 
they do not guarantee optimality but in general they do provide 
optimal or close to optimal solutions [6]. A comprehensive 
description of such methods referred as metaheuristics can be 
found in [7].  

 

Figure 1: Master-Slave PSO. Every circle represents a particle that 

communicates with leader (master) particle at every iteration. 

The fast hardware development invigorated the development 
of advanced simulation tools that are computationally intensive 
due to expensive evaluation functions [8] such as design of 
energy systems [9] or mechanical engineering models [10] 
which can involve a large number of variables. Therefore, high 
performance computing (HPC) arises naturally to solve such 
problems. Particle swarm optimization (PSO) [11] is the most 
popular metaheuristic due to its efficiency, there have been over 
1000 publications per year related to PSO since 2010 [12]. 
However, despite the advantage of high-performance 
computing, PSO does not scale well with large dimensional 
problems [12], [13]. For example, the master slave version of 
PSO (MS-PSO), illustrated in Figure 1, is the most known 
version of distributed PSO, but it suffers from bottlenecks which 
are due to centralized processing at the master particle level at 
every iteration because of the data provided by the entire swarm 
to the master particle. This is especially true with large 
dimensional optimization problems where the number of 
variables is high in consequence of which the size of the 
population is also increased.  

To solve this problem, in this work, we propose a broadcast 
distributed model of PSO (BD-PSO) where there is no master 
node, rather the entire particles do identical tasks which 
eliminates the bottleneck caused by a centralized 
communication at the master node in consequence of which the 
convergence speed is improved due to asynchronous 
communication. Furthermore, when solving large dimensional 
optimization problems (D>100), a higher accuracy is achieved 
because 1) the proposed BD-PSO enhances the pseudo-
randomness [14] when generating new solutions on various 
nodes rather than having the same master node generating all 
new solutions, and 2) the best found solution is broadcasted 
faster to the swarms due to the asynchronous communication 
model. For testing purposes, we utilize the CEC2013 
competition [9] benchmark problems which can take several 
hours to be solved using a personal computer. The distribution 
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of PSO is done using the MPI library. We compare the BD-PSO 
with the classical PSO in terms of accuracy, and we compare it 
to the MS-PSO in terms of convergence speed in order to 
demonstrate that the use of a decentralized and asynchronous 
approach can lead to faster and more accurate results especially 
when solving large scale optimization problems. 

II. LITERATURE REVIEW 

Development of distributed metaheuristics is a very active 
research area; a comprehensive survey about distribution of 
metaheuristics can be found in [15]. However, as we focus in 
this work on distributed PSO (DPSO), we will present in this 
section only the most important works related to DPSO.  

Most works used distribution or parallelisation for the sole 
purpose of accelerating the convergence speed of PSO using the 
master/slave (M/S) model. For example, in [16] the M/S model 
was utilized to solve a job shop problem with blocking. The 
proposed algorithm was compared with a distributed and a 
classical branch and bound (BB) using four nodes. The results 
of the proposed DPSO were either similar or more accurate than 
the sequential PSO depending on the problem; however, the BB 
achieved better results in most of the instances. In [17], a DPSO 
was proposed with M/S model using C-Cuda. Most of the code 
is executed is parallel; five benchmark problems were utilized 
for comparison purposes. Only the acceleration was studied; the 
results showed respective speedups of [4.44, 16.9] and [4.5, 
17.3] for 10,000 and 100,000 iterations. In [18], the M/S DPSO 
model was utilized to solve a coverage problem of pursuit-
evasion games using MPI with respectively 1, 2, 4, 5 and 10 
processors, and a population size of 20. The results showed a 
speedup of over 3.0 with 4 processors which decreased to over 
2.5 with 10 processors. Also, there are several applied works 
which utilized MS-based DPSO. For example, in [19] MS-
DPSO was utilized with GPU for the optimization of an antenna 
adaptive beam forming problem. In [20], a DPSO named PSO-
LSSVM was proposed with a M/S communication model using 
Hadoop (3 processors on a cloud) to predict the benefits of 
electronic commerce over a period of two years. The results of 
PSO-LSSVM were the most accurate only during the second-
year period. In [21], MS-DPSO was proposed using map reduce 
paradigm to solve an intrusion detection problem. The speed-up 
was only linear until to eight nodes. In [22], MS-DPSO was 
utilized to optimize the soil sampling network in China. In 
addition to speed, the proposed DPSO required only 85 % of the 
samples needed compared to classical PSO.  

Some other works proposed other DPSO but focused only on 
low dimensional problems (D<30) such as [23], [12] and [24]. 
Some other works proposed DPSO for especial applications 
such as robotics [25-28] or multi-agent platform [29]. There are 
also multi-objective version of DPSO that can be found in [30], 
[31], and [32]. 

An interesting work was proposed by [32] in parallelizing 
COMPSO which is a cooperative version of PSO. Two different 
distributed platforms were used, namely, Sharcnet and a shared-
memory multi-core PCs. Five problems were utilized for testing 
purposes with a respective number of variables of 300, 600, and 
1000. The subswarms populations were composed of five 
particles for a total abnormally large size population [33-34] 

which are respectively composed of 500, 1000, and 2000 
particles. Up to 33 nodes were utilized. Interestingly, only low 
numbers of CPU (1, 3, and 9) achieved the most accurate results 
compared to 17, 25, and 33 CPUs. However, in this case every 
particle works only on a part of the solutions, which means only 
a portion of variables is modified to generate new solutions 
which differs from the classical way PSO works. Although, the 
paper is rich of experiments, they don't compare the proposed 
algorithms with classical PSO in terms of accuracy.  

Overall, it can be said that despite the high popularity of 
PSO, limited work has been done of PSO to attempt to solve 
large scale optimization problems using high performance 
computing which ultimately could lead to solve many real-life 
problems. In addition, the use of HPC can improve the 
randomness of variables by distributing them across 
heterogeneous cores (CPUs) [14]. Also, the use of distributed 
nodes, which can be of very large numbers, will permit to solve 
large scale optimization problems which cannot be solved with 
shared-memory platforms due to limited memory capacity [8]. 
Furthermore, asynchronous communication models are faster 
because they reduce unnecessary communication and 
bottlenecks caused by synchronization [35] [23] in consequence 
of which the population tend to move more promptly [25].  

III. BROADCAST DISTRIBUTED PSO 

In this section, we describe the proposed algorithm called 
broadcast and distributed PSO (BD-PSO). The broadcast 
communication model serves to eliminate bottlenecks caused by 
centralized communication at the master particle and have 
instead an asynchronous broadcast communication model 
among all particles to share the best-found solution information 
among the swarm as soon as it is found which will lead to a faster 
convergence speed. The implementation of BD-PSO is done on 
the shared hierarchical academic research computing network 
(SHARCNET) which is an academic cluster for distributed 
computations platform which is based on MPI. 

By proposing BD-PSO, we target the enhancement of both 
the accuracy and convergence speed when solving large scale 
optimization problems that would be computationally too 
expensive to be solved using classical computation. BD-PSO 
uses classical parameter settings with a constant population size 
as recommended in [37] or based on the number of variables of 
a problem n using the rule 2𝑛 < 𝑃 < 5𝑛  [35]. Recent works 
[34] recommended even to have population sizes significantly 
smaller than the dimensions 𝑃 ≪ 𝑛. To assess PB-PSO in terms 
of accuracy and acceleration, BD-PSO is compared with both 
PSO and MS-PSO which is the most utilized DPSO. 
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 Algorithm 1: BD- PSO 

Code executed at every node rather than Master node. 

Random initialization of whole swarm  

repeat 

 for all particles i do 

  Update velocities: 

𝑣⃗i (𝑡) = 𝑤. 𝑣⃗i(𝑡 − 1) + 𝐶1. 𝑟1(𝑥⃗𝑝𝑖
− 𝑥⃗i) + 𝐶2. 𝑟2 (𝑥⃗𝐺𝑖

− 𝑥⃗i) 

(t) 

  Move to the new position: 𝑥⃗i(t) = 𝑥⃗i (𝑡 − 1)+ 𝑣⃗i(𝑡) 

  if 𝑓(𝑥⃗i) < 𝑓(𝑥⃗𝑝𝑖
)then 

    𝑥⃗𝑝𝑖
= 𝑥⃗i 

  end if 

  if 𝑓(𝑥⃗i) < 𝑓(𝑥⃗𝐺𝑖
)then 

    𝑥⃗𝐺𝑖
= 𝑥⃗i 

    InformOtherParticles(𝑥⃗𝐺𝑖
); 

  end if 

  Update(𝑥⃗i, 𝑣⃗i) 

 end for 

until Stopping Criteria 

 
where 𝑥⃗𝑝𝑖

 is the (local) best found candidate solution by the 

particle 𝑥⃗i , 𝑥⃗𝐺𝑖
 is the (global) best found particle in the entire 

swarm called leader. 𝑤 is the particle inertia weight representing 
a trade-off between the global and local experiences, 𝑟1 and 𝑟2 
are random variables in the range [0,1], and 𝐶1  and 𝐶2  are 
learning factors towards respectively the particles personal 
success and its neighbor’s success. 

 

 
Figure 2.   Broadcast communication model among PSO particles. 

The proposed BD-PSO will consists in eliminating the 
master particle by distributing equally all the tasks to the entire 
particles of the swarm. Consequently, all the particles will have 
the same tasks; however, they will share their found solution at 
every iteration. This way, there will be no idle processing node, 
as in the master-slave model, while the master particle located 
on the node does the comparison of the found solution. The 
number of nodes is equal to the number of particles. As shown 
in Figure 2, the communication process is more intense as 
compared the master-slave model because of the broadcasting 
done at every iteration. However, the butterfly effect of the 

“AllReduce()” function will alleviate that effect. Also, as shown 
in Algorithm 1, the function “InformOtherParticles()” will serve 
to inform the other particles of the new best found solution as 
soon as it is found using asynchronous communication with the 
aim of achieving a faster convergence speed and also a better 
accuracy. It is important to mention that random generation 
function of every particle located on a separate node is 
completely independent, i.e. the pseudo-randomness effect is 
reduced which also should lead to a better accuracy.  

IV. EXPERIMENTS SETTINGS 

In this section, we present the experiments details which 
include parameter settings, benchmark problems description, 
measuring metrics for assessment performance, and the 
experiments results. 

A. Parameter Settings 

For a fair comparison, we kept identical parameters settings 
for all the algorithms as suggested in [22]: population size = 100, 
w = 0.729844, number of function calls =1*106 per swarm, C1 
= C2 = 1.49618, and the number of nodes = 100 for distributed 
PSOs. 

B. Benchmark Optimization Problems 

Eight well-known scalable benchmark problems [9], that are 
commonly utilized, have been used for testing purposes; they are 
composed of different landscape properties such as multi-
modality, deceptiveness, and non-convexity. The global optima 
of these problems are known beforehand.  

To make the selected problems complex to solve, every 
problem is set respectively to 100 then to 500 variables which 
makes them time consuming (several hours) to be solved 
sequentially. In addition, every problem is shifted to a random 
location in a search space which makes the problem further 
harder to solve. 

C. Comparative Metrics 

The most common metrics utilized by the metaheuristics 
research community to assess the performance of distributed 
algorithms are the speedup (𝛹) and accuracy (α) [38].  

The speedup measures how fast is a distributed algorithm in 
comparison with its corresponding sequential version. It is 
calculated as the ratio of the sequential execution time over the 
parallel execution time. The ideal case scenario for a distributed 
algorithm should lead to a linear speedup whereas in most cases 
a sub-linear speedup is achieved. The poor (sub-linear) speedup 
is due to either the serial portion of the code or the distributed 
overhead. The speedup is described below.  

 

𝛹(𝑛, 𝑝) =  𝑇
𝑛,1

𝑇
(𝑛, 𝑝)            (4) 

 
where 𝑛  is the population size, 𝑝  is the number of 

processors, 𝑇 (𝑛, 1) is the time required to solve a problem of 
size 𝑛 on a single processor (serial processing), and 𝑇 (𝑛, 𝑝) is 
the time required to solve a problem of size 𝑛 on 𝑝 processors 
(distributed processing). 
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The other measure used for comparison is the accuracy (𝛼) 
of an algorithm which consists in calculating the difference 
between the fitness of the best-found solution and the global 
optimum as shown below. The closer to zero is the value of 𝛼, 
the more accurate is the optimization algorithm. An ideal 
optimization algorithm should have 𝛼 equal to zero. 

 

𝛼 = |𝑆𝑓(𝑥) − 𝑆̂𝑓(𝑥)|          (6) 

 
where 𝑆𝑓(𝑥) is the best-found solution by the algorithm and 

𝑆̂𝑓(𝑥) is the global optimum of the function 𝑓(𝑥). 

For a fear accuracy comparison, the stopping criteria is fixed 
for all the compared PSO methods to 1*106 function calls which 
is classically utilized [9]. 

V. EXPERIMENTS RESULTS 

In this section, we present the experimental results by 
comparing the proposed BD-PSO with the parent PSO algorithm 
and MS-PSO. Two series of tests are performed for the 
evaluation of the performance of the algorithms with large 
dimensional problems which are respectively 100 and 500 
variables. 

A. Experiments with 100 variables 

Both the Figure 3 and Table 1 show the execution time of the 
three compared algorithms when solving problems of dimension 
D = 100. It can be seen that the proposed BD-PSO is the fastest 
algorithm for all the problems which is due to the broadcast 
communication model.  

 

 
 

Figure 3.   Execution time in seconds with functions scaled to 100 variables. 
The execution time of PSO for f3 has been shortened for better visualization. 

Shorter histograms are of better results. 

Table 2 and 4 show the speed-up when solving the eight 
benchmarking problems set to 100 variables after 1,000,000 
function calls. BD-PSO achieved the highest speedup with an 
average of 12.0 compared to 4.2 for MS-PSO which makes BD-
PSO in average three time faster than MS-PSO. This 
performance of BD-PSO is due to the elimination of bottleneck 
communication at the master particle which is still persistent 
within the MS-PSO algorithm. For the most expensive problem 
f3 the speedup of PB-PSO is the closest to MS-PSO with BD-
PSO being 1.7 faster than MS-PSO, and for the less expensive 
problem f1 the BD-PSO achieved the highest speed-up 

difference with BD-PSO being 3.9 faster than MS-PSO. So, the 
less expensive is the objective function, the faster is the 
convergence speed of an algorithm using a broadcast 
communication model. 

TABLE I.  EXECUTION TIME IN SECONDS WITH FUNCTIONS SCALED TO 

100 VARIABLES (DARK GREY IS THE FASTEST ALGORITHM; LIGHT GREY IS THE 

SECOND FASTEST ALGORITHM) 

Function PSO MS-PSO BD-PSO 

f1 13.3 10 2.6 

f2 40.6 10.5 4.9 

f3 386.2 15.9 9.3 

f4 82.7 11 3.9 

f5 53 10.4 3.4 

f6 33.3 10.3 3.0 

f7 29.5 10.4 2.9 

f8 45.1 10.3 2.9 

 

 
 

Figure 4.   Speedup measure (Ψ) of the compared algorithms with functions 
scaled to 100 variables. Higher histograms are of better quality. The speed-up 

of BD-PSO for the function F3 is shortened for better visualization results. 

TABLE II.  SPEEDUP Ψ MEASURE OF THE COMPARED ALGORITHMS WITH 

FUNCTIONS SCALED TO 100 VARIABLES. DARK GREY IS THE ALGORITHM 

HAVING THE HIGHEST SPEEDUP MEASURE, THE LAST COLUMN SHOWS HOW 

FAST IS THE PROPOSED BD-PSO COMPARED TO THE MS-PSO. 

 

Function MS-PSO BD-PSO ΨDAPDPSO / ΨMS-PSO 

f1 1.3 5.2 3.9 

f2 3.9 8.3 2.2 

f3 5.3 9.2 1.7 

f4 7.5 21.3 2.8 

f5 5.1 15.4 3.0 

f6 3.2 11.2 3.5 

f7 2.8 10.2 3.6 

f8 4.4 15.3 3.5 

Avg. 4.2 12.0 3.0 

With regards to the accuracy (α), as shown in Table 3, BD-
PSO is the most accurate method for three out of eight studied 
problems, and second most accurate for four problems. There is 
no clear pattern to explain why some problems are more difficult 
to solve. As an example, the function f3 which is the most 
expensive and the most difficult to solve is unimodal and convex 
whereas f8 is the second easiest to solve is multi-modal, irregular 
and non-separable. Overall, BD-PSO achieved comparable 
results with MS-PSO for all the problems with the exception of 
f6 and f7 where MS-PSO was more accurate than BD-PSO; note 
that f6 is highly multimodal and f7 is unimodal. As it will be 
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shown in the next sub-section, the performance of BD-BSO tend 
to improve with a larger number of variables. 

TABLE III.  ACCURACY (Α) OF THE COMPARED OPTIMIZATION 

ALGORITHMS WITH FUNCTIONS SET TO 100 VARIABLES. DARK GREY IS THE 

ALGORITHM HAVING THE BEST ACCURACY MEASURE, THE LAST COLUMN 

SHOWS HOW MANY TIMES FASTER IS IT. 

 

Function PSO MS-PSO BD-PSO 

f1 370.0 63.3 61.5 

f2 15128.5 3779.4 4156.1 

f3 127294.5 99264.0 64218.7 

f4 12652.8 1905.1 2803.8 

f5 1212.2 1397.3 1159.5 

f6 1112.9 30.4 180.0 

f7 0.2 0.0 118.7 

f8 20.3 20.3 21.4 

 

B. Results with 500 variables 

The convergence speed results of BD-PSO, PSO, and MS-
PSO when solving problems of 500 variables are shown in 
Tables 4 and Figure 5. Overall, the execution time of BD-PSO 
is the fastest; however, when the objective function is expensive 
such as f3, the effect of the broadcast communication gets 
attenuated.  

TABLE IV.  EXECUTION TIME IN SECONDS WITH FUNCTIONS SCALED TO 

500 VARIABLES. DARK GREY IS THE FASTEST ALGORITHM; LIGHT GREY IS THE 

SECOND FASTEST ALGORITHM. 

Function PSO MS-PSO BD-PSO 

f1 203.7      157 9.3 

f2 841.4 128.7 25.4 

f3 43493.5       626 9.3 

f4 1767.7 144.6 42.7 

f5 1170.9 134.9 30.4 

f6 725.9 121.9 23.4 

f7 616.4 117.9 19.4 

f8 203.7        157 24.2 

 
As shown in Table 5 and Figure 6, BD-PSO is in average 6 

times faster than MS-PSO with the exception of f3 which is the 
most expensive function (10 times more expensive than other 
functions). BD-PSO becomes faster for larger dimensional 
problems; the speedup difference between BD-PSO and MS-
PSO is more accentuated because MS-PSO suffers from a 
stronger convoy effect at the master particle level where every 
input vector requires more processing time by the master particle 
due to a larger number of variables of every solution.  

 

 

 

 

 

 

 

TABLE V.  SPEEDUP Ψ MEASURE OF THE COMPARED ALGORITHMS WITH 

FUNCTIONS SCALED TO 500 VARIABLES. DARK GREY IS THE ALGORITHM 

HAVING THE HIGHEST SPEEDUP MEASURE, THE LAST COLUMN SHOWS HOW 

FAST IS THE PROPOSED BD-PSO COMPARED TO THE MS-PSO. 

Function MS-PSO BD-PSO ΨBD-PSO / ΨMS-PSO 

f1 1.3 21.9 16.9 

f2 6.5 33.2 5.1 

f3 24.3 41.7 1.7 

f4 12.2 41.4 3.4 

f5 8.7 38.5 4.4 

cf6 6.0 31.0 5.2 

f7 5.2 31.7 6.1 

f8 8.0 39.7 5.0 

Avg. 9.0 34.9 6.0 

 

 

Figure 5.   Speedup measure (Ψ) of the compared algorithms with functions 

scaled to 500 variables. Higher histograms are of better quality. 

When solving problems with 500 variables, as shown in 
Table 6, the accuracy of BD-PSO is improved becoming the best 
for six out of eight problems. The differences in the result are 
significant now, so we can say that BD-PSO is significantly 
more accurate than MS-PSO for four problems, namely, f1, f2, 
f4, and f6 whereas it achieved a lower accuracy than MS-PSO 
for the same problems with D =100. In fact, BD-PSO performs 
poorly only with f7. In brief, based on these results, it can be said 
that the broadcast communication model led to good results in 
terms of both accuracy and convergence speed especially for 
large dimensions D=500. It should be further studied for larger 
dimension problems to determine whether it is the asynchronous 
communication model or tye enhanced pseudo-randomness of 
the distributed model that are enhancing the accuracy of the 
proposed BD-PSO. 

TABLE VI.  ACCURACY (Α) OF THE COMPARED OPTIMIZATION 

ALGORITHMS WITH FUNCTIONS SET TO 500 VARIABLES. DARK GREY IS THE 

ALGORITHM HAVING THE BEST ACCURACY MEASURE, THE LAST COLUMN 

SHOWS HOW MANY TIMES FASTER IS IT 

Function PSO MS-PSO  BD-PSO 

f1 4,263 1,567 297 

f2 982,453 369,373 108,875 

f3 2,661,250 99,264 64,219 

f4 207,721 68,141 17,740 

f5 8,501 8,601 7,753 

f6 14,645 5,434 1,759 

f7 724,202 4.5 7.3E+22 

f8 21.0 21.0 21.5 
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VI. CONCLUSIONS 

In this paper, we have proposed a broadcast distributed 
particle swarm optimization (BD-PSO) to solve large 
dimensional optimization problems using MPI. The BD-PSO 
was in average three times faster than MS-PSO when solving 
problems D=100 and achieved comparable accuracy results to 
MS-PSO. However, for D=500, BD-PSO become in average 6 
times faster and significantly more accurate than MS-PSO and 
PSO. These promising preliminary results should lead the 
community to further study the broadcast communication model 
in solving large scale and big optimization problems and 
particularly how can we improve the design of distributed 
metaheuristics to solve big optimization problems. 

HPC cannot only accelerate the convergence speed of 
metaheuristics but also lead to more accurate results by 
proposing appropriate algorithms design which should be further 
studied by the research community. In the, future we aim to 
study in big optimization problems having expensive objective 
functions.  
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