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1 Introduction and Main Results

Nonlinear Schrödinger systems are studied extensively from the view points of theory and applications, (see
e.g., [1], [5], [20]). In this paper, we consider the Cauchy problem for the following nonlinear Schrödinger
system 

i∂tv1 + 1
2m1

∂2
xv1 = λ1|v1|p1v1 + µ1v2v

2
3 ,

i∂tv2 + 1
2m2

∂2
xv2 = λ2|v2|p2v2 + µ2v1v

2
3 ,

i∂tv3 + 1
2m3

∂2
xv3 = λ3|v3|p3v3 + µ3v1v2v3,

vj(0, x) = φj(x),

(1.1)

in one space dimension, where x ∈ R, t > 0,mj is a mass of a particle, vj is an unknown function,
pj > 0, λj , µj ∈ C\{0} for j = 1, 2, 3. We assume that the mass resonance condition

m1 +m2 = 2m3. (1.2)

We define E = e−
i
2 t|ξ|

2
,M = e−

i
2t |x|

2
, Dtφ = (it)−

1
2 φ
(
x
t

)
and F is the Fourier transform. For δ 6= 0,

evolution operator Uδ (t) is written as

Uδ (t) = M−
1
δDδtFM−

1
δ .

We also have
Uδ (−t) = iM

1
δF−1EδD 1

δt
.

These formulas are used to study asymptotic behavior of solutions to nonlinear Schrödinger equations
(see [10]).

There is a large amount of studies (see e.g.,[2], [22],[25] and [6] ) on the following nonlinear Schrödinger
equation

i∂tu+ 1
2∂

2
xu = |u|qu (1.3)

in one space dimension, where x ∈ R, q > 0. When 0 < q ≤ 2, nonexistence of asymptotic free solutions
to (1.3) was studied in [2]. On the other hand, existence of asymptotic free solutions to (1.3) was studied
in [25], if q > 2 holds. Therefore q = 2 is regarded as the borderline of the short range interactions and
long range ones in (1.3). The initial value problem for nonlinear Schrödinger equation

i∂tu+ 1
2∂

2
xu = λ|u|qu (1.4)
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in one space dimension, where x ∈ R, t > 0, λ ∈ C \{0}, q = 2, was studied in [24] for small initial data
in the case of Imλ < 0. If q < 2 and q is close to 2, (1.4) was investigated in [15] under the dissipative
condition such that Imλ < 0 with the smallness conditions on the initial data, and in [16] and [12] under
the strong dissipative conditions such that Imλ < 0 and |Imλ| ≥ q

2
√
q+1 |Reλ| without smallness conditions

on the initial data. In these cases, nonlinear effects of the equation (1.4) are considered as dissipative ones.
In [22], the final state problem for nonlinear Schrödinger equation with the nonlinear interaction term

i∂tu+ 1
2∂

2
xu = λ|u|2u+ µ|u|qu (1.5)

in one space dimension, where x ∈ R, t > 0, u is an unknown function, q > 2, λ ∈ R\{0}, µ ∈ R, was
considered and modified scattering operator was constructed. In this case, the first term of the equation
(1.5) acts as the long range effect. On the other hand, the initial value problem for the equation (1.5) was
studied in [6] and the existence of modified scattering states was shown. After these works, scattering
problem for the similar equations was developed by many authors ( see e.g., [3] and [7]), and asymptotic
behavior of the solutions are well known. Some derivative nonlinear Schrödinger equations were also
considered (see e.g., [19] and [23]). For the Schrödinger systems with long range interactions, asymptotic
behavior of solutions was known on the final state problem (see, e.g., [21], [9]). There are some results on
the initial value problem for the Schrödinger systems (see e.g., [8], [13], [14] and [18]) and time decay
estimates of the solutions were studied in some critical cases. The existence of ground states for some
nonlinear Schrödinger systems was investigated in [11]. To the authors’ knowledge, there is no previous
research about the system of nonlinear Schrödinger equations with critical and supcritical nonlinearities
or critical and subcritical nonlinearities.

From the previous works (see e.g., [8], [13] and [14] ), it is known that the asymptotic behavior or
time decay of solutions to (1.1) is determined by solutions to the system of ordinary differential equations

i∂tw1 = λ1t
− p1

2 |w1|p1w1 + µ1t
−1w2w

2
3,

i∂tw2 = λ2t
− p2

2 |w2|p2w2 + µ2t
−1w1w

2
3,

i∂tw3 = λ3t
− p3

2 |w3|p3w3 + µ3t
−1w1w2w3,

(1.6)

since we have from (1.1) 
i∂tu1 = λ1t

− p1
2 |u1|p1u1 + µ1t

−1u2u
2
3 +R1,

i∂tu2 = λ2t
− p2

2 |u2|p2u2 + µ2t
−1u1u

2
3 +R2,

i∂tu3 = λ3t
− p3

2 |u3|p3u3 + µ3t
−1u1u2u3 +R3,

where
uj = D 1

mj

FU 1
mj

(−t) vj

and Rj are the remainder terms under some conditions on pj , λj , µj for j = 1, 2, 3. We note here that we
do not know the asymptotic behavior of solutions of the system (1.6). This is the reason why asymptotic
behavior of solutions to our problems is not derived except the time decay. When pj = 2 for j = 1, 2, 3,
the system (1.1) becomes 

i∂tv1 + 1
2m1

∂2
xv1 = λ1|v1|2v1 + µ1v2v

2
3 ,

i∂tv2 + 1
2m2

∂2
xv2 = λ2|v2|2v2 + µ2v1v

2
3 ,

i∂tv3 + 1
2m3

∂2
xv3 = λ3|v3|2v3 + µ3v1v2v3,

vj(0, x) = φj(x).

(1.7)

Therefore the system (1.7) is a special situation of the system (1.1). Global existence of small solutions to
the system (1.7) was studied in [14] on some situations of λj , µj for j = 1, 2, 3. A similar system in two
space dimensions 

i∂tv1 + 1
2m1

∆v1 = λ1|v1|v1 + µ1v2v3,

i∂tv2 + 1
2m2

∆v2 = λ2|v2|v2 + µ2v1v3,

i∂tv3 + 1
2m3

∆v3 = λ3|v3|v3 + µ3v1v2,

vj(0, x) = φj(x)

(1.8)
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was first studied in [13]. The author of [14] treats (1.7) by using the similar techniques as [13]. In [14],
two theorems are presented. One of them says that if the estimate

d

dt

3∑
j=1
|uj | ≤ C

3∑
j=1
|Rj | (1.9)

holds, where uj = D 1
mj

FU 1
mj

(−t)vj , then (1.7) has global small solutions with time decay such that

‖v (t) ‖L∞ ≤ Ct−
1
2 for t ≥ 1. Another one of them says that if there exists a positive constant k such that

d

dt

3∑
j=1
|uj |+ kt−1

3∑
j=1
|uj |3 ≤ C

3∑
j=1
|Rj | (1.10)

holds, where uj = D 1
mj

FU 1
mj

(−t)vj , then global small solution v (t) to (1.7) exists and we have the time

decay such that ‖v (t) ‖L∞ ≤ Ct−
1
2 (log (1 + t))−

1
2 for t ≥ 0. We assume that there exist some positive

constants k1, k2, k3 > 0 such that
k1µ1 + k2µ2 = k3µ3 (1.11)

and
Imλj ≤ 0 (1.12)

for j = 1, 2, 3. Then we have (1.9). In addition to (1.11), we assume that

Imλj < 0 (1.13)

for j = 1, 2, 3. Then we have (1.10). The main idea to get time decay of solutions as ‖v (t) ‖L∞ ≤
Ct−

1
2 (log (1 + t))−

1
2 for t ≥ 0 in [14] can be seen in [13]. We consider the following generalized nonlinear

Schrödinger system 
i∂tv1 + 1

2m1
∂2
xv1 = λ1|v1|p1v1 +G1(v1, v2, v3),

i∂tv2 + 1
2m2

∂2
xv2 = λ2|v2|p2v2 +G2(v1, v2, v3),

i∂tv3 + 1
2m3

∂2
xv3 = λ3|v3|p3v3 +G3(v1, v2, v3),
vj(0, x) = φj(x),

in one space dimension, where x ∈ R, t > 0,mj is a mass of a particle, vj is an unknown function,
pj > 0, λj ∈ C\{0} , and Gj(v1, v2, v3) is a cubic nonlinear term with the following form

Gj(v1, v2, v3) =
∑

1≤m≤n≤l≤6
µjm,n,lvmvnvl

for j = 1, 2, 3, vm, vn, vl are elements of the set

A = {v1, v2, v3, v1, v2, v3} = {v1, v2, v3, v4, v5, v6}

and µjm,n,l ∈ C\{0}. We assume the gauge condition

Gj(v1, v2, v3) = eimjθGj
(
e−im1θv1, e

−im2θv2, e
−im3θv3

)
for any θ ∈ R. Then we obtain that the system (1.1) with the condition (1.2) is a special case of the
generalized system satisfying the gauge condition above. We can solve the initial value problem of the
generalized Schrödinger system with the gauge condition by using the similar method as this paper.

In this paper, we consider the problem (1.1) under different situations on λj , µj for small initial data
in the function space H0, 1

2 +s (R) ∩H 1
2 +s,0 (R), where 1

2 < s < 1. In particular, L∞ (R)− time decay of
solutions to (1.1) is obtained. We consider (1.1) under the long-long and long-short range interactions,
respectively. We treat the case of long-short range interactions (Theorem 1.1) by using the similar method
as [8]. The results on long-long range interactions are new. We consider two situations of long-long range
interactions. One of our results below (Theorem 1.2) says that if Imλj < 0 and |Imλj | is large enough,
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then the first terms of the right hand sides of (1.1) are considered as strong dissipation terms when pj < 2
for j = 1, 2, 3 and the second terms of the right hand sides of (1.1) will be remainder ones . However if
|Imλj | is not large enough, then our result (Theorem 1.3) says that we can not find which ones will be
the main terms. Therefore we assume that (1.11) holds in Theorem 1.3 to make the second terms of the
right hand sides of (1.1) be negligeable.

To state our results, we introduce the function spaces. Let Lp (R) denote the usual Lebesgue space
with the norm

‖φ‖Lp(R) =
(∫

R
|φ (x)|p dx

) 1
p

if 1 ≤ p <∞ and
‖φ‖L∞(R) = ess.sup

x∈R
|φ (x)| .

For m, r ∈ R and 1 ≤ p ≤ ∞, weighted Sobolev space Hm,r
p (R) is defined by

Hm,r
p (R) =

{
f ∈ Lp (R) ; ‖f‖Hm,r

p (R) =
∥∥(1− ∂2

x)m2 (1 + |x|2) r2 f
∥∥

Lp(R) <∞
}
.

We write ‖f‖L2(R) = ‖f‖ , ‖f‖L∞(R) = ‖f‖L∞ ,H
m,r
2 (R) = Hm,r and Hm,0 (R) = Hm for simplicity. We

denote by the same letter C various positive constants.
We define the fractional derivatives of J 1

m
= U 1

m
(t)xU 1

m
(−t) as

|J 1
m
|γ (t) = U 1

m
(t) |x|γU 1

m
(−t) ,

where γ ≥ 0. From [10], We have |J 1
m
|γ (t) = M−m

(
− t2

m2∆
) γ

2
Mm. We also have commutation relations

with |J 1
m
|γ and L 1

m
= i∂t + 1

2m∂
2
x such that[

L 1
m
, |J 1

m
|γ
]

= 0.

First we state our result for pj > 2 for j = 1, 2, 3. In this case, the first terms and the second terms on
the right hand sides of (1.1) are considered as short and long range interactions, respectively. Therefore
the first terms are regarded as remainder ones of the system (1.1).

Theorem 1.1 We assume that (1.2) holds, pj > 2 for j = 1, 2, 3 and there exist some positive constants
k1, k2, k3 > 0 such that (1.11) holds. Let φj ∈ H0, 1

2 +s ∩ H 1
2 +s,

∑3
j=1 ‖φj‖H0, 1

2 +s∩H
1
2 +s ≤ ε, where

ε is sufficiently small, and 1
2 < s < 1. Then there exists a unique global solution (vj(t))j=1,2,3 ∈

C
(

[0,∞) ; H0, 1
2 +s ∩H 1

2 +s
)
to the system (1.1). Moreover, we have the following time decay estimate

‖vj(t)‖L∞ ≤ C(1 + t)− 1
2

for t ≥ 0 and j = 1, 2, 3.

Next result says the case 0 < pj < 2 for j = 1, 2, 3, namely long-long interactions. In this case, second
terms on the right hand sides of (1.1) are considered as remainder terms under the condition (1.13) with
a strong dissipative condition such that

1
ε
√
ε
≤ |Imλj | . (1.14)

Therefore we do not need to assume (1.11). Time decay of solutions of (1.1) is still open problem if we do
not assume (1.13) and (1.14).

Theorem 1.2 We assume that (1.2), (1.13) and (1.14) hold, pj = 2 −
√
ε, φj ∈ H0, 1

2 +s ∩H 1
2 +s for

j = 1, 2, 3,
∑3
j=1 ‖φj‖H0, 1

2 +s∩H
1
2 +s ≤ ε, where ε is sufficiently small, and 1

2 < s < 1. Then there exists a
unique global solution

(vj(t))j=1,2,3 ∈ C
(

[0,∞) ; H0, 1
2 +s ∩H 1

2 +s
)
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to the system (1.1). Moreover, we have the following time decay estimate

‖vj(t)‖L∞ ≤ C(1 + t)−
1
pj

for t ≥ 0 and j = 1, 2, 3.

If we do not assume (1.14), namely |Imλj | ≤ C, then it seems that dissipation property of the first
terms on the right hand sides of (1.1) do not control the time decay of second terms. In this case we use
the dispersive condition (1.11) on the second terms.

Theorem 1.3 We assume that (1.2), (1.13) and there exist some positive constants k1, k2, k3 > 0 such
that (1.11) holds. Let pj = 2 − εpj , φj ∈ H0, 1

2 +s ∩H 1
2 +s for j = 1, 2, 3,

∑3
j=1 ‖φj‖H0, 1

2 +s∩H
1
2 +s ≤ ε,

where ε is sufficiently small, and 1
2 < s < 1. Then there exists a unique global solution

(vj(t))j=1,2,3 ∈ C
(

[0,∞) ; H0, 1
2 +s ∩H 1

2 +s
)

to the system (1.1). Moreover, we have the following time decay estimate

‖vj(t)‖L∞ ≤ C(1 + t)−
1
pj

for t ≥ 0 and j = 1, 2, 3.

2 Proof of Theorem 1.1

We define

‖v‖XT = supt∈[0,T ]

3∑
j=1

(
(1 + t)−

√
ε‖U 1

mj

(−t)vj‖H0, 1
2 +s + ‖D 1

mj

FU 1
mj

(−t) vj‖L∞
)
,

where 1
2 < s < 1, T > 0 and ε > 0 is sufficiently small.

Lemma 2.1 We assume that assumptions in Theorem 1.1 hold. Then the system (1.1) has a unique pair
of solution v = (vj)j=1,2,3 ∈ XT such that

‖v‖XT ≤ 2ε.

Local existence of solutions to (1.1) is obtained by a standard method, (see, e.g., [4]). Therefore, we
prove global existence and time decay estimates of solutions to (1.1). By the local existence result, we
may assume that

3∑
j=1

(
‖U 1

mj

(−1)vj (1) ‖
H0, 1

2 +s + ‖D 1
mj

FU 1
mj

(−1) vj (1) ‖L∞
)
≤ 2ε.

We prove that for any T, the estimate

supt∈[1,T ]

3∑
j=1

(
t−
√
ε‖U 1

mj

(−t)vj‖H0, 1
2 +s + ‖D 1

mj

FU 1
mj

(−t) vj‖L∞
)
< ε

2
3

holds. By the contradiction, we assume that there exists a time T such that

supt∈[1,T ]

3∑
j=1

(
t−
√
ε‖U 1

mj

(−t)vj‖H0, 1
2 +s + ‖D 1

mj

FU 1
mj

(−t) vj‖L∞
)
≤ ε 2

3 . (2.1)
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Let

F1 := F1(v1, v2, v3) = µ1v2v
2
3 ,

F2 := F2(v1, v2, v3) = µ2v1v
2
3 ,

F3 := F3(v1, v2, v3) = µ3v1v2v3.

We multiply both sides of (1.1) by D 1
mj

FU 1
mj

(−t) to get

i∂tuj = λjD 1
mj

FU 1
mj

(−t) |vj |pjvj +D 1
mj

FU 1
mj

(−t)Fj , (2.2)

where uj = D 1
mj

FU 1
mj

(−t) vj . Then we have by using the factorization formula FU 1
mj

(−t) = iMmjE
1
mj Dmj

t

withMmj = FMmjF−1 to find that

D 1
mj

FU 1
mj

(−t) (λj |vj |pjvj) = λjt
−
pj
2 |uj |pjuj +D 1

mj

2∑
h=1

Rh,j ,

where

R1j = λj

(
it

mj

)− pj2 (
|FM−mjU 1

mj

(−t)vj |pjFM−mjU 1
mj

(−t)vj

−|FU 1
mj

(−t)vj |pjFU 1
mj

(−t)vj
)

and

R2j = λj

(
it

mj

)− pj2
F(Mmj − 1)F−1|FM−mjU 1

mj

(−t)vj |pjFM−mjU 1
mj

(−t)vj .

In the same way as the proof in [17], we have by the resonance gauge condition (1.2)

D 1
mj

FU 1
mj

(−t)Fj (v1, v2, v3)

= 1
t
Fj (u1, u2, , u3) +D 1

mj

4∑
h=3

Rh,j ,

where

R3,j

= i
1
2
(
Mmj − I

) mj

t
Fj

(
Dmj

m1
M−1

m1
D−1

1
m1
u1, Dmj

m2
M−1

m2
D−1

1
m2
u2, Dmj

m3
M−1

m3
D−1

1
m3
u3

)
and

R4,j

= i
1
2
mj

t
Fj

(
Dmj

m1
M−1

m1
D−1

1
m1
u1, Dmj

m2
M−1

m2
D−1

1
m2
u2, Dmj

m3
M−1

m3
D−1

1
m3
u3

)
−i 1

2
mj

t
Fj

(
Dmj

m1
D−1

1
m1
u1, Dmj

m2
D−1

1
m2
u2, Dmj

m3
D−1

1
m3
u3

)
.

Therefore we have

i∂tuj = λjt
−
pj
2 |uj |pjuj + 1

t
Fj (u1, u2, u3) +D 1

mj

4∑
h=1

Rh,j . (2.3)

In what follows, we only consider the case t ≥ 1.
To prove our main results, we first show
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Lemma 2.2 Let (vj)j=1,2,3 be a solution of the system (1.1) satisfying (2.1) and 1
2 < s < 1, then we

have
2∑

h=1
‖Rh,j‖L∞ ≤ Cε

2
3 (pj+1)t−

pj
2 −

s
2 +
√
ε(pj+1)

and
4∑

h=3
‖Rh,j‖L∞ ≤ Cε

2t−1− s2 +3
√
ε

for t ∈ [1, T ] and j = 1, 2, 3.

Proof By using the similar method as Lemma 2.1 in [12], we have

2∑
h=1
‖Rh,j‖L∞ ≤ Ct

−
pj
2 −

s
2

3∑
j=1
‖U 1

mj

(−t)vj‖
pj+1

H0, 1
2 +s .

Now we consider
∑4
h=3 ‖Rh,j‖L∞ . By the Sobolev inequality, we have

‖f‖L∞ ≤ C ‖f‖
1

1+2s

H
1
2 +s ‖f‖

2s
1+2s
L2 , (2.4)

which implies ∥∥(Mmj − I
)
f
∥∥

L∞ ≤ C ‖f‖
1

1+2s

H
1
2 +s

∥∥(Mmj − I
)
f
∥∥ 2s

1+2s
L2 ≤ Ct− s2 ‖f‖

H
1
2 +s .

Therefore

‖R3,j‖L∞

=
∥∥∥∥(Mmj − I

) mj

t
Fj

(
Dmj

m1
M−1

m1
D−1

1
m1
u1, Dmj

m2
M−1

m2
D−1

1
m2
u2, Dmj

m3
M−1

m3
D−1

1
m3
u3

)∥∥∥∥
L∞

≤ Ct−1− s2

∥∥∥∥Fj (Dmj
m1
M−1

m1
D−1

1
m1
u1, Dmj

m2
M−1

m2
D−1

1
m2
u2, Dmj

m3
M−1

m3
D−1

1
m3
u3

)∥∥∥∥
H

1
2 +s

,

where Fj is a cubic nonlinearity which satisfies (1.2). Hence we have

‖R3,j‖L∞ ≤ Ct
−1− s2

3∑
j=1

∥∥∥U 1
mj

(−t)vj
∥∥∥3

H0, 1
2 +s

for t ≥ 1. In the same way as above we obtain

‖R4,j‖L∞ ≤ Ct
−1− s2

3∑
j=1

∥∥∥U 1
mj

(−t)vj
∥∥∥3

H0, 1
2 +s

for t ≥ 1. Combining all the inequalities obtained above, we have the lemma. �

Lemma 2.3 Let (vj)j=1,2,3 be a solution of the system (1.1) satisfying (2.1) and 1
2 < s < 1, then there

exist kj > 0 for j = 1, 2, 3 such that the estimate

d

dt

3∑
j=1

kj

∥∥∥D 1
mj

FU 1
mj

(−t)vj
∥∥∥

L∞

≤ C

 3∑
j=1

ε
2
3 (pj+1)t−

pj
2 +
√
ε +

3∑
j=1

ε
2
3 (pj+1)t−

pj
2 −

s
2pj+

√
ε(pj+1) + ε2t−1− s2 +3

√
ε


holds for any t ∈ [1, T ], where uj = D 1

mj

FU 1
mj

(−t)vj .
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Proof (2.2) shows that

i∂tuj = λjD 1
mj

FU 1
mj

(−t) |vj |pjvj +D 1
mj

FU 1
mj

(−t)Fj ,

where uj = D 1
mj

FU 1
mj

(−t) vj . By (1.2), we have

i∂tuj = λjD 1
mj

FU 1
mj

(−t) |vj |pjvj + 1
t
Fj(u1, u2, u2) +D 1

mj

4∑
3
Rh,j ,

From (1.11), we have

d

dt

 3∑
j=1

kj |uj |

 ≤ C 3∑
j=1

4∑
h=3
|Rh,j |+ C

3∑
j=1

∥∥∥FU 1
mj

(−t) |vj |pj vj
∥∥∥

L∞
, (2.5)

where kj > 0 for j = 1, 2, 3. By Lemma 2.2, we have

3∑
j=1

4∑
h=3
|Rh,j | ≤ Cε2t−1− s2 +3

√
ε.

From (2.4) and Lemma 2.1 in [15], it follows that
3∑
j=1

∥∥∥FU 1
mj

(−t) |vj |pj vj
∥∥∥

L∞

≤ C
3∑
j=1

∥∥∥FU 1
mj

(−t) |vj |pj vj
∥∥∥ 1

1+2s

H
1
2 +s

∥∥∥FU 1
mj

(−t) |vj |pj vj
∥∥∥ 2s

1+2s

L2

≤ C
3∑
j=1

(
‖vj‖

pj
L∞

∥∥∥U 1
mj

(−t)vj
∥∥∥

H0, 1
2 +s

) 1
1+2s

‖|vj |pj vj‖
2s

1+2s
L2

≤ C
3∑
j=1
‖vj‖pjL∞

∥∥∥U 1
mj

(−t)vj
∥∥∥ 1

1+2s

H0, 1
2 +s
‖vj‖

2s
1+2s
L2

≤ C
3∑
j=1
‖vj‖pjL∞

∥∥∥U 1
mj

(−t)vj
∥∥∥

H0, 1
2 +s

. (2.6)

Since
‖vj‖L∞ ≤ Ct−

1
2 ‖FU 1

mj

(−t)vj‖L∞ + Ct−
1
2−

s
2 ‖U 1

mj

(−t)vj‖H0, 1
2 +s , (2.7)

we obtain
3∑
j=1

∥∥∥FU 1
mj

(−t) |vj |pj vj
∥∥∥

L∞
≤ C

3∑
j=1

ε
2
3 (pj+1)

(
t−

pj
2 +
√
ε + t−

pj
2 −

s
2pj+

√
ε(pj+1)

)
.

This completes the proof of the lemma. �

Lemma 2.4 Let (vj)j=1,2,3 be a solution of the system (1.1) satisfying (2.1). Then we have

d

dt

3∑
j=1

∥∥∥|J 1
mj

| 12 +svj

∥∥∥ ≤ C (t−1+
√
ε + t−1−s+3

√
ε
)
ε2

+C
3∑
j=1

(
t−

pj
2 +
√
ε + t−

pj
2 −

pj
2 s+(pj+1)

√
ε
)
ε

2
3 (pj+1)

for any t ∈ [1, T ].
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Proof Let

N1 := N1(v1, v2, v3) = λ1|v1|p1v1 + F1,

N2 := N2(v1, v2, v3) = λ2|v2|p2v2 + F2,

N3 := N3(v1, v2, v3) = λ3|v3|p3v3 + F3.

Since the commutation relation
[
i∂t + 1

2mj ∂
2
x, |J 1

mj

|γ
]

= 0 holds, we have the following result from the
system (1.1)

(i∂t + 1
2mj

∂2
x)|J 1

mj

|γvj = |J 1
mj

|γNj . (2.8)

We multiply both sides of (2.8) by |J 1
mj

|γvj , integrate in space and take the imaginary parts to obtain

d

dt

∥∥∥|J 1
mj

|γvj
∥∥∥2

= 2Im
∫
R
|J 1

mj

|γNj · |J 1
mj

|γvjdx.

From |J 1
mj

|γ (t) = M−mj
(
− t2

m2
j
∆
) γ

2
Mmj and the mass resonance condition (1.2), we have

|J 1
mj

|γFj(v1, v2, v3) = M−mj

(
− t2

m2
j

∆

) γ
2

Fj(Mm1v1,M
m2v2,M

m3v3).

By Lemma 2.1 in [15] and (2.7) we get with γ = 1
2 + s

d

dt

∥∥∥|J 1
mj

|γvj
∥∥∥

≤ C
3∑
j=1

(
‖vj‖2

L∞ + ‖vj‖
pj
L∞
) 3∑
j=1

∥∥∥|J 1
mj

|γvj
∥∥∥

≤ C
(
t−1+

√
ε + t−1−s+3

√
ε
)
ε2

+C
3∑
j=1

(
t−

pj
2 +
√
ε + t−

pj
2 −

pj
2 s+(pj+1)

√
ε
)
ε

2
3 (pj+1). (2.9)

This completes the proof of the lemma. �
By Lemmas 2.3, 2.4 we have

3∑
j=1

kj

∥∥∥D 1
mj

FU 1
mj

(−t)vj
∥∥∥

L∞
≤ Cε+

3∑
j=1

ε
2
3 (pj+1) + ε2 < Cε

and
3∑
j=1
‖U 1

mj

(−t)vj‖H0, 1
2 +s ≤ 2ε+ ε2t

√
ε +

3∑
j=1

ε
2
3 (pj+1) < Cεt

√
ε,

since s > 0, pj > 2, there exists ε > 0 such that s
2 > 3

√
ε,
pj−2

2 >
√
ε. This is the desired contradiction.

Therefore, we have a unique global solution of the system (1.1) satisfying

sup
t∈[1,T ]

3∑
j=1

(
(1 + t)−

√
ε‖U 1

mj

(−t)vj‖H0, 1
2 +s + ‖D 1

mj

FU 1
mj

(−t) vj‖L∞
)
< ε

2
3

for any T > 1. Time decay estimates of solutions to the system (1.1) comes from (2.7). Namely we have

‖vj‖L∞ ≤ Ct−
1
2 ε

2
3 + Ct−

1
2−

s
2 +
√
εε

2
3 .

This completes the proof of Theorem 1.1.
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3 Proof of Theorems 1.2 and 1.3

We define

‖v‖XT = supt∈[0,T ]

3∑
j=1

(
(1 + t)−

√
ε‖U 1

mj

(−t)vj‖H0, 1
2 +s + (1 + t)

1
p−

1
2 ‖D 1

mj

FU 1
mj

(−t) vj‖L∞
)
,

where p = pj , j = 1, 2, 3, 1
2 < s ≤ 1, T > 0 and ε > 0 is sufficiently small. In the same way as in the proof

of Theorem 1.1, we may assume that

3∑
j=1

(
‖U 1

mj

(−1)vj (1) ‖
H0, 1

2 +s + ‖D 1
mj

FU 1
mj

(−1) vj (1) ‖L∞
)
≤ 2ε.

By the contradiction method, we prove for any T > 1 the estimate

supt∈[1,T ]

3∑
j=1

(
t−
√
ε‖U 1

mj

(−t)vj‖H0, 1
2 +s + t

1
p−

1
2 ‖D 1

mj

FU 1
mj

(−t) vj‖L∞
)
< εp−1

holds. We assume that there exists a time T such that

supt∈[1,T ]

3∑
j=1

(
t−
√
ε‖U 1

mj

(−t)vj‖H0, 1
2 +s + t

1
p−

1
2 ‖D 1

mj

FU 1
mj

(−t) vj‖L∞
)
≤ εp−1.

We derive the desired contradiction to extend the proof in [13] to subcritical nonlinearities.

3.1 Proof of Theorem 1.2

We have by (2.3)

d

dt
fj + |Imλj | t−

p
2 fp+1
j

≤ Ct−1 |Fj (u1, u2, u3)|+ C

∣∣∣∣∣D 1
mj

4∑
h=1

Rh,j

∣∣∣∣∣ , (3.1)

where fj = |uj | =
∣∣∣D 1

mj

FU 1
mj

(−t) vj
∣∣∣ . Let gj be the positive solution of

d

dt
gj + |Imλj | t−

p
2 gp+1
j = 0, gj (1) =

∣∣∣D 1
mj

FU 1
mj

(−1) vj (1)
∣∣∣ . (3.2)

We may assume that ε ≤ gj (1) ≤ 2ε by the local existence result in Lemma 2.1. Explicit solution of (3.2)
is given by

gj (t) = gj (1)(
1 + 2p|Imλj |

2−p gj (1)p
(
t1−

p
2 − 1

)) 1
p

. (3.3)

The strong dissipation assumption (1.14) implies that (3.1) is valid if we replace |Imλj | by 1
ε
√
ε
. To keep

gj (t) small enough, we use p = 2−
√
ε and explicit solution of (3.3) with 1

ε
√
ε

= |Imλj |. Namely,

gj (t) = gj (1)(
1 + 2p

ε2 gj (1)p
(
t1−

p
2 − 1

)) 1
p

. (3.4)

Then we find that there exist positive constants C1, C2 such that

C2ε
2
p t−

1
p+ 1

2 ≤ gj (t) ≤ C1ε
2
p t−

1
p+ 1

2 (3.5)
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for a large t. Multiplying both sides of (3.1) by g−p−1
j , we have

d

dt

(
g−p−1
j fj

)
≤ t−

p
2

1
ε
√
ε

(
(p+ 1) g−1

j fj − g−p−1
j f

pj+1
j

)
+ Cg−p−1

j Rj ,

where

Rj = Ct−1 |Fj (u1, u2, u3)|+ C

∣∣∣∣∣D 1
mj

4∑
h=1

Rh,j

∣∣∣∣∣ .
In the same way as in the proof of Lemma 2.2, we get∣∣∣∣∣D 1

mj

4∑
h=1

Rh,j

∣∣∣∣∣ ≤ Cε3(p−1)t−1− s2 +3
√
ε + Cε−

3
2 ε(p−1)(p+1)t−

p
2−

s
2 +(p+1)

√
ε. (3.6)

Hence we get

R =
3∑
j=1

Rj ≤ Cε3(p−1)t−1+3( 1
2−

1
p ) + Cε3(p−1)t−1− s2 +3

√
ε

+Cε− 3
2 ε(p−1)(p+1)t−

p
2−

s
2 +(p+1)

√
ε. (3.7)

The second and third terms of the right hand side of (3.7) are considered as remainder terms. We note here
that the third term has ε− 3

2 since the condition (1.14). By the Young inequality |a| |b| ≤ 1
p |a|

p + 1
q |b|

q

with 1
p + 1

q = 1, we get

(p+ 1) g−1
j fj =

(
(p+ 1)

1
p+1 g−1

j fj

)
(p+ 1)

p
p+1 ≤ g−p−1

j fp+1
j + p.

Hence
d

dt

(
g
−pj−1
j fj

)
≤ p 1

ε
√
ε
t−

p
2 + Cg−p−1

j R.

Integrating in time, we obtain by (3.5)

fj (t) ≤ g−p−1
j (1) fj (1) gp+1

j (t) + 2p
2− pg

p+1
j (t) 1

ε
√
ε

(
t1−

p
2 − 1

)
+Cgp+1

j (t)
∫ t

1
g−p−1
j (τ)R(τ)dτ

≤ Cε2+ 2
p−pt(

1
2−

1
p )(p+1) + Cε

2
p t(

1
2−

1
p )(p+1)t1−

p
2

+Ct(
1
2−

1
p )(p+1)

∫ t

1
τ−( 1

2−
1
p )(p+1)R(τ)dτ.

We apply (3.7) to the right hand side of the above to get

fj (t) ≤ Cε2+ 2
p−pt(

1
2−

1
p )(p+1) + Cε

2
p t(

1
2−

1
p )(p+1)t1−

p
2

+Cε3(p−1)t(
1
2−

1
p )(p+1)

∫ t

1
τ−( 1

2−
1
p )(p+1)+( 1

2−
3
p )dτ, (3.8)

if we take a suitable s. Since

−
(

1
2 −

1
p

)
(p+ 1) +

(
1
2 −

3
p

)
= −1− ε

2 (2−
√
ε)
,

we get ∫ t

1
τ−( 1

2−
1
p )(p+1)+ 1

2−
3
p dτ ≤ Cε−1.
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Hence
fj (t) ≤ Cεt(

1
2−

1
p ) + Cε3p−3ε−1t(

1
2−

1
p )(p+1),

from which it follows that

t
1
p−

1
2

∥∥∥D 1
mj

FU 1
mj

(−t) vj
∥∥∥

L∞
≤ Cε+ Cε3p−4 ≤ Cε,

where p ≥ 5
3 . By (2.7), we obtain

‖vj‖L∞ ≤ Cεt−
1
p + Cεp−1t−

1
2−

s
2 +
√
ε ≤ Cεp−1t−

1
p (3.9)

if − s2 +
√
ε < 1

2 −
1
p . In the same way as in the proof of (2.9) with γ = 1

2 + s

d

dt

3∑
j=1

∥∥∥|J 1
mj

|γvj
∥∥∥

≤ C
3∑
j=1
‖vj‖

pj
L∞

∥∥∥|J 1
mj

|γvj
∥∥∥+

3∑
j=1
‖vj‖2

L∞

3∑
j=1

∥∥∥|J 1
mj

|γvj
∥∥∥

≤ C

t−1ε(p−1)p
3∑
j=1

∥∥∥|J 1
mj

|γvj
∥∥∥+ ε2(p−1)t−

2
p

3∑
j=1

∥∥∥|J 1
mj

|γvj
∥∥∥


≤ Cε(p−1)p
(
t−1 + t−

2
p

) 3∑
j=1

∥∥∥|J 1
mj

|γvj
∥∥∥

≤ Cε(p−1)pt−1
3∑
j=1

∥∥∥|J 1
mj

|γvj
∥∥∥ .

Gronwall’s inequality says that

3∑
j=1

∥∥∥|J 1
mj

|γvj
∥∥∥ ≤ CεeC ∫ t1 ε(p−1)pτ−1dτ = CεtCε

(p−1)p
≤ Cεt

√
ε.

Hence
t

1
p−

1
2

∥∥∥D 1
mj

FU 1
mj

(−t) vj
∥∥∥

L∞
+ t−

√
ε
∥∥∥|J 1

mj

|γvj
∥∥∥ ≤ Cε < εp−1.

This is the desired contradiction. Time decay of solutions is obtained by (3.9). This completes the proof
of Theorem 1.2.

3.2 Proof of Theorem 1.3

By the condition of (1.11), we have in the same way as in the proof of (3.1)

3∑
j=1

kj

(
d

dt
fj + |Imλj | t−

p
2 fp+1
j

)
≤ Q, (3.10)

where by (3.6)

Q = C

∣∣∣∣∣∣
3∑
j=1

kjD 1
mj

4∑
h=1

Rh,j

∣∣∣∣∣∣
≤ Cε3(p−1)t−1− s2 +3

√
ε + Cε(p−1)(p+1)t−

p
2−

s
2 +(p+1)

√
ε.
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We put f =
∑3
j=1 kjfj , then there exists a positive constant k such that

d

dt
f + kt−

p
2 fp+1 ≤ CQ. (3.11)

Let g be the positive solution of

d

dt
g + kt−

p
2 gp+1 = 0, g (1) =

3∑
j=1

kj

∣∣∣D 1
mj

FU 1
mj

(−1) vj (1)
∣∣∣ . (3.12)

Explicit solution of (3.12) is given by

g (t) = g (1)(
1 + 2pk

2−pg (1)p
(
t1−

p
2 − 1

)) 1
p

.

If p = 2− εp, then we find that there exist positive constants C3, C4 such that

C3εt
− 1
p+ 1

2 ≤ g (t) ≤ C4εt
− 1
p+ 1

2 .

In the same way as in the proof of (3.8)

f (t) ≤ g−p−1 (1) f (1) gp+1 (t) + 2p
2− pg

p+1 (t) k
(
t1−

p
2 − 1

)
+Cgp+1 (t)

∫ t

1
g−p−1 (τ)Q(τ)dτ

≤ Cεt(
1
2−

1
p )(p+1) + Cεt(

1
2−

1
p )(p+1)t1−

p
2 ,

which implies that
t

1
p−

1
2

∥∥∥D 1
mj

FU 1
mj

(−t) vj
∥∥∥

L∞
≤ Cε.

The rest of the proof is the same as in the proof of Theorem 1.2, and so we omit it.
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