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1 Introduction

The curves theory of Minkowski spacetime (or called Minkowski space) is very important and interesting
in both physics and mathematics. Locally, there exist spacelike curves, timelike curves and null curves
(lightlike curves) in Minkowski space. For the study of the curves in Minkowski space, there are many more
differences between the null curves and the spacelike curves or timelike curves. A. Nersessian etc. studied
geometrical particle model associated with null paths (null curves) in Minkowski spacetime ([11]-[14]).
W. Bonnor, G. Clément, A. Ferrández etc. studied the null curves in Minkowski space ([1], [3]-[8]). In
this paper, we consider the null curves in three dimensional Minkowski spacetime (simply, Minkowski
3-space). At first we deal with the null arc length parameter and the relation with the arbitrary parameter
of the null curve. Then we give a kind of representation formula for the null curve with the null arc
length parameter in Minkowski 3-space E3

1 and define structure function of such null curve. Using this
representation formula and the characters of the structure function of the null curve, by solving certain
differential equations, we characterize some special null curves and obtain certain classification results.

This paper is arranged as follows. In Section 2 we discuss the arc length parameter of the null curve
and define the null curvature function and null Frenet frames of the null curve. Then we give the relation
of the null arc length parameter and the arbitrary parameter of the null curve. In section 3, using the
tangent indicatrix of the null curve we give a kind of representation formula for the null curve with the
null arc length parameter in Minkowski 3-space and define the structure function of the null curve. Then
the relation between the null curvature function and the structure function is given. In section 4 we
discuss some special null curves, for examples, helix, rectifying curves etc. and obtain some classification
results.

2 Null Curves in Minkowski 3-space E3
1

Let r(t) be a null curve in Minkowski 3-space E3
1 with the indefinite Minkowski inner product

〈a, b〉 = a1b1 + a2b2 − a3b3, (1)

for a = (a1, a2, a3) and b = (b1, b2, b3) ∈ E3
1. Putting

dr(t)
dt = r′(t), since 〈r′(t), r′(t)〉 = 0, we have

〈r′′(t), r′(t)〉 = 0. In the following we always assume that r′′(t) ∦ r′(t). In this case, r′′(t) is spacelike, so
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we can choose the parameter t such that 〈r′′(t), r′′(t)〉 = 1. By the parameter transformation s = s(t),
putting dr(s)

ds = ṙ(s), we have

ṙ(s) = r′(t) dt
ds ,

r̈(s) = r′′(t)
(

dt
ds

)2
+ r′(t) d2t

ds2 ,

...
r (s) = r′′′(t)

(
dt
ds

)3
+ 3r′′(t)

(
dt
ds

)(
d2t

ds2

)
+ r′(t) d3t

ds3 .

(2)

Then

〈r̈(s), r̈(s)〉 = 〈r′′(t), r′′(t)〉
(

dt
ds

)4
. (3)

Hence
4
√
〈r̈(s), r̈(s)〉ds = ± 4

√
〈r′′(t), r′′(t)〉dt (4)

yields that
4
√
〈r′′(t), r′′(t)〉dt (5)

is an invariant of the null curve r(t) in Minkowski 3-space E3
1. Therefore the parameter s of the null curve

r(s) is uniquely defined such that 〈r̈(s), r̈(s)〉 = 1 in the sense of the parameter change s→ −s.

Definition 2.1. Let r(s) be a null curve in Minkowski 3-space E3
1 with parameter s. If 〈r̈(s), r̈(s)〉 ≡ 1

we call s null arc length parameter (simply, arc length parameter) of the null curve r(s) in E3
1.

Let r(s) be a null curve in Minkowski 3-space E3
1 with the arc length parameter s. Putting ṙ(s) = x(s),

r̈(s) = ẋ(s) = α(s) and

y(s) = −ẍ(s)− 1
2 〈ẍ(s), ẍ(s)〉x(s) = −...r (s)− 1

2 〈
...
r (s), ...r (s)〉ṙ(s), (6)

we have {
〈x(s), x(s)〉 = 〈y(s), y(s)〉 = 〈x(s), α(s)〉 = 〈α(s), y(s)〉= 0,

〈x(s), y(s)〉 = 〈α(s), α(s)〉= 1. (7)

Therefore we know that {x(s), α(s), y(s)} forms an asymptotic orthonormal frame along the null curve
r(s) and the Frenet formulas of r(s) are given by

ṙ(s) = x(s),
ẋ(s) = α(s),
α̇(s) = κ(s)x(s)− y(s),
ẏ(s) = −κ(s)α(s).

(8)

Definition 2.2. The function κ(s) defined in (8) is called standard null curvature function or null
curvature function (simply, curvature) of the null curve r(s) with the null arc length parameter s in E3

1.
The frame {x(s), α(s), y(s)} is called null Frenet frame of the null curve r(s).

From (8) we have
κ(s) = −1

2 〈
...
r (s), ...r (s)〉, (9)

and ....
r (s)− 2κ(s)r̈(s)− κ̇(s)ṙ(s) = 0. (10)

Then by (2), 〈r̈(s), r̈(s)〉 = 1 and (6), for the arbitrary parameter t of the null curve r(t), we get

(
dt
ds

)
= 〈r′′, r′′〉− 1

4 ,(
d2t

ds2

)
= −1

2 〈r
′′, r′′〉− 3

2 〈r′′, r′′′〉,(
d3t

ds3

)
= 3

2 〈r
′′, r′′〉− 11

4 〈r′′, r′′′〉2 − 1
2 〈r
′′, r′′〉− 7

4 [〈r′′′, r′′′〉+ 〈r′′, r′′′′〉],

(11)
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and

−2κ(t) = 〈r′′′, r′′′〉〈r′′, r′′〉− 3
2 + 9

4 〈r
′′, r′′〉− 5

2 〈r′′, r′′′〉2

−3〈r′′, r′′〉− 5
2 〈r′′, r′′′〉2 + 〈r′′, r′′〉− 3

2 [〈r′′′, r′′′〉+ 〈r′′, r′′′′〉]
−3〈r′′, r′′〉− 5

2 〈r′′, r′′′〉2,

that is

−2κ(t) = 2〈r′′, r′′〉− 3
2 〈r′′′, r′′′〉 − 15

4 〈r
′′, r′′〉− 5

2 〈r′′, r′′′〉2 + 〈r′′, r′′〉− 3
2 〈r′′, r′′′′〉. (12)

Proposition 2.1. Let r(t) be a null curve in Minkowski 3-space E3
1 with arbitrary parameter t. The null

curvature function κ(t) of r(t) is given by

κ(t) = −8〈r′′, r′′〉〈r′′′, r′′′〉+ 15〈r′′, r′′′〉2 − 4〈r′′, r′′〉〈r′′, r′′′′〉
8〈r′′, r′′〉 5

2
. (13)

3 Representation Formulas of the Null Curves

Let r(s) : I→ E3
1 be a null curve in Minkowski 3-space E3

1 with the arc length parameter s. Since ṙ(s) is
lightlike, we know that 〈ṙ(s), ṙ(s)〉 ≡ 0. Then putting ṙ(s) = (ξ1(s), ξ2(s), ξ3(s)) we have

ξ2
1 + ξ2

2 − ξ2
3 = 0.

From ξ2
1 − ξ2

3 = −ξ2
2 we get

ξ1 + ξ3

ξ2
= −ξ2

ξ1 − ξ3
, or ξ1 + ξ3

−ξ2
= ξ2

ξ1 − ξ3
.

Without loss of generality, for a null curve x : I → E3
1 with ṙ(s) = x(s) = (ξ1(s), ξ2(s), ξ3(s)), we may

assume that

ξ1 + ξ3

ξ2
= −ξ2

ξ1 − ξ3
= f(s), (14)

and
ξ2 = 2ρ(s). (15)

From (14) and (15) we get  ξ1 + ξ3 = 2ρf,
ξ1 − ξ3 = −2ρf−1,

ξ2 = 2ρ,
(16)

therefore,  ξ1 = ρ(f − f−1),
ξ2 = 2ρ,
ξ3 = ρ(f + f−1).

(17)

That is, the null curve r(s) : I→ E3
1 can be written as

r(s) =
∫
ṙ(s)ds =

∫
x(s)ds =

∫
(ξ1(s), ξ2(s), ξ3(s))ds =

∫
ρ(f − f−1, 2, f + f−1)ds. (18)

In the following, for the convenience we use

f ′(s) = ḟ(s) = fs(s) = df(s)
ds .
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From (18) we have

r̈(s) = ẋ(s) = ρs(f − f−1, 2, f + f−1) + ρfs(1 + f−2, 0, 1− f−2).

Since s is the null arc length parameter of the null curve r(s), we have

4ρ2f2
s f
−2 = 1. (19)

Therefore we know that fs 6= 0 and by an appropriate transformation, if necessary, we may assume that

ρ(s) = f(s)
2fs(s)

. (20)

Then we get the following conclusion.

Theorem 3.1. Let r(s) : I → E3
1 be a null curve in E3

1 with the null arc length parameter s. Then
r(s) = (x1(s), x2(s), x3(s)) can be written as

r(s) =
∫

f

2fs
(f − f−1, 2, f + f−1)ds (21)

=
∫ 1

2f
−1
s (f2 − 1, 2f, f2 + 1)ds (22)

or 

x1(s) =
∫ (

f2(s)− 1
2fs(s)

)
ds,

x2(s) =
∫ (

f(s)
fs(s)

)
ds,

x3(s) =
∫ (

f2(s) + 1
2fs(s)

)
ds,

(23)

for some non constant function f(s). Here, fs = df
ds .

Definition 3.1. The function f(s) in Theorem 3.1 is called structure function of the null curve r(s) :
I→ E3

1 with the null arc length parameter s.

In the following, we discuss the relations between the structure function and null curvature function
of the null curve. From (21) we have

2r̈(s) = 2ẋ(s) = −f−2
s fss(f2 − 1, 2f, f2 + 1) + 2(f, 1, f),

2...r (s) = 2ẍ(s) = (2f−3
s f2

ss − f−2
s fsss)(f2 − 1, 2f, f2 + 1)

−2f−1
s fss(f, 1, f) + 2fs(1, 0, 1).

Then

〈...r (s), ...r (s)〉 = 〈ẍ, ẍ〉 = f−2
s f2

ss − 2fs(2f−3
s f2

ss − f−2
s fsss) (24)

= − [(log fs)s]2 + 2[(log fs)s]s.

From (6) we have

y(s) = −...r (s)− 1
2 〈

...
r (s), ...r (s)〉ṙ(s) (25)

= −1
2f
−2
s f2

ss x+ f−1
s fss(f, 1, f)− fs(1, 0, 1).

Definition 3.2. Let r(s) : I→ E3
1 be a null curve in E3

1 with the null arc length parameter s. Then

r̄(s) =
∫
y(s)ds, (26)

where y(s) is defined by (6), and is also a null curve in E3
1 and is called associated null curve (or dual

null curve) of the null curve r(s).
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From (9) and (24) we know that the null curvature function κ(s) of the null curve r(s) satisfies

κ(s) = −1
2 〈

...
r (s), ...r (s)〉 (27)

= 1
2 [(log fs)s]2 − [(log fs)s]s.

This is a Riccati equation of ξ(s) = (log fs)s and the linear term of it is zero.
Remark 3.1. For the Riccati equation

ξ′(s) = dξ(s)
ds = 1

2ξ
2(s)− κ(s), (28)

putting

η(s) = exp
(
−
∫ 1

2ξ(s)ds
)
, (29)

the equation (28) can be written as
η′′(s)− 1

2κ(s)η(s) = 0. (30)

This is a linear equation of second order for η(s).
Remark 3.2. Using Theorem 3.1 and the relation (27) we can study the properties of the null curves and
construct certain null curves with some characters.

4 Some Special Null Curves in E3
1

In this section we consider some special null curves in Minkowski 3-space. The null curvature functions of
such null curves also give the solutions of the Riccati equation (27) (or liner equation of second order
(30)).

Theorem 4.1. Let r(s) : I→ E3
1 be a null curve with the null curvature function κ(s) = constant and

the null arc length parameter s. Then r(s) can be written as the following

(i) r(s) = C1s
3 + C2s

2 + C3s, for κ = 0;
(ii) r(s) = C1 sinh (

√
2κ)s+ C2 cosh (

√
2κ)s+ C3s, for κ > 0;

(iii) r(s) = C1 sin (
√
−2κ)s+ C2 cos (

√
−2κ)s+ C3s, for κ < 0;

where C1, C2, C3 ∈ E3
1.

Proof. From (8) and the null curvature function κ = constant, we have
....
r (s) = 2κr̈(s).

Solving this equation we obtain that

r(s) = C1s
3 + C2s

2 + C3s+ C4, κ = 0,
r(s) = C1 sinh (

√
2κ)s+ C2 cosh (

√
2κ)s+ C3s+ C4, κ > 0,

r(s) = C1 sin (
√
−2κ)s+ C2 cos (

√
−2κ)s+ C3s+ C4, κ < 0,

where C1, C2, C3, C4 ∈ E3
1. By a translation in E3

1 we get the conclusion of this theorem.

Corollary 4.2. Let r(s) : I→ E3
1 be a null curve in E3

1 with the null arc length parameter s and structure
function f(s). If the null curvature function κ(s) of r(s) is constant, the structure function f(s) of r(s)
satisfies

[(log fs)s]2 − 2(log fs)ss = 2κ(s) = c = constant, (31)

and can be written as
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1. when −a2 = c < 0, f(s) = 2
a

tan as2 ;

2. when c = 0, f(s) = − a
s

;

3. when a2 = c > 0, f(s) = 2
a

tanh as2 .

Proof. Solving the equation (31) we can get the conclusion ([10]).

Theorem 4.3. Let r(s) : I → E3
1 be a null curve with the null arc length parameter s, null curvature

function κ(s) and null Frenet frame {x(s), α(s), y(s)}. If there exists some constant vector 0 6= C0 ∈ E3
1

such that 〈α(s), C0〉 is constant, r(s) is called a slop null helix and can be written as the curves given in
Theorem 4.1 or the following

(i) r(s) = C1s
2 + C2s

(2+
√

1+2a) + C3s
(2−
√

1+2a), for 2a > −1;
(ii) r(s) = C1s

2 + C2s
2 log s+ C3s

2 log2 s, for 2a = −1;
(iii) r(s) = C1s

2 + C2s
2 sin[(

√
−1− 2a) log s] + C3s

2 cos[(
√
−1− 2a) log s], for 2a < −1;

where C1, C2, C3 ∈ E3
1.

Remark 4.1. In [9], situation like case (iii) is inadvertently missed out.

Proof. From (8) and 〈α(s), C0〉 = constant, by a calculation we know that the null curvature function
κ(s) is constant or satisfies

2
(
κ ′

κ

)′
−
(
κ ′

κ

)2
= 0, (32)

that is
2κκ ′′ − 3(κ ′)2 = 0.

The solution of (32) is
κ(s) = a(s+ b)−2, (33)

where a and b are integral constants. By a parameter transformation we may put b = 0. From (10) we get

s3...x (s)− 2asẋ(s) + 2ax(s) = 0. (34)

The solutions of the Euler equation (34) are

(i) x(s) = B1s+B2s
(1+
√

1+2a) +B3s
(1−
√

1+2a), for 2a > −1;
(ii) x(s) = B1s+B2s log s+B3s log2 s, for 2a = −1;
(iii) x(s) = B1s+B2s sin[(

√
−1− 2a) log s] +B3s cos[(

√
−1− 2a) log s], for 2a < −1;

where B1, B2, B3 ∈ E3
1. With ṙ(s) = x(s) we get the conclusion of this theorem.

Corollary 4.4. Let r(s) : I→ E3
1 be a null curve in E3

1 with null arc length parameter s and structure
function f(s). If the curve r(s) is a slop null helix, the structure function f(s) of r(s) satisfies

[(log fs)s]2 − 2(log fs)ss = 2κ(s) = 2as−2 (35)

and can be written as (by an appropriate parameter transformation)

Case 1 f(s) = sc or f(s) = s−c, for c 6= 0, ±1 and 2a = c2 − 1;

Case 2 f(s) = c

log s or f(s) = log s
c

, for c 6= 0 and 2a = −1;

Case 3 f(s) = 2
c

tan
( c

2 log s
)
or f(s) = −2

c
tan−1

( c
2 log s

)
, for c 6= 0 and 2a = −c2 − 1.

Proof. Solving the equation (35) we can get the conclusion ([10]).

Remark 4.2. In [10], situation like case (3) is inadvertently missed out.
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Proposition 4.1. Let r(s) : I→ E3
1 be a null curve with the null arc length parameter s, null curvature

function κ(s) and null Frenet frame {x(s), α(s), y(s)}. If there exists some constant vector 0 6= C0 ∈ E3
1

such that 〈x(s), C0〉 or 〈y(s), C0〉 is constant, κ(s) is constant and r(s) can be written as the curves given
in Theorem 4.1.

Proof. From (8) and 〈x(s), C0〉 = constant or 〈y(s), C0〉 = constant, we can easily get that κ ′(s) ≡ 0.

Theorem 4.5. Let r(s) : I → E3
1 be a null curve with the null arc length parameter s, null curvature

function κ(s) and null Frenet frame {x(s), α(s), y(s)}. If the position vector field r(s) of the curve satisfies

r(s) = a1(s)x(s) + a3(s)y(s), (36)

for some functions a1(s) and a3(s), the curve r(s) is called a rectifying null curve. The null curvature
function κ(s) of the rectifying null curve satisfies

κ(s) = as+ b, (37)

where a 6= 0 and b are constants. And the curve r(s) can be written as

r(s) = C1

∫
u2(s)ds+ C2

∫
u(s)v(s)ds+ C3

∫
v2(s)ds, (38)

where C1, C2, C3 ∈ E3
1 and when a > 0u(s) =

√
sJ 1

3

(√
2a
3 s

3
2

)
,

v(s) =
√
sY 1

3

(√
2a
3 s

3
2

)
;

(39)

when a < 0 u(s) = Re
(√

sZ 1
3

(
i
√
−2a
3 s

3
2

))
,

v(s) = Im
(√

sZ 1
3

(
i
√
−2a
3 s

3
2

))
;

(40)

where Zν(s) is the cylinder function, Jν(s) is the Bessel function of the first kind, Yν(s) is the Bessel
function of the second kind.

Proof. From (36) we have
x = a′1x+ a1α+ a′3y − a3κα,a′1 = 1,

a1 = a3κ,
a′3 = 0.

Therefore, the null curvature function κ(s) can be written as (37) for some constants a and b. From (10),
when κ(s) = as (by a parameter transformation we can put b=0), the curve r(s) satisfies

....
r (s)− 2asr̈(s)− aṙ(s) = 0. (41)

For the solutions u(s) and v(s) of the Airy-type equation ([15], 2.1.2-1.2, p213)

2g′′(s) = asg(s), (42)

by a direct calculation we know that u(s)v(s) is the solution of the equation

f ′′′(s)− 2asf ′(s)− af(s) = 0. (43)

The fundamental solutions of (42) are

g(s) = b1u(s) + b2v(s) =
√
sZ 1

3

(√
2a
3 s

3
2

)
, (44)
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for a > 0;

g(s) = b1u(s) + b2v(s) = b1Re
(√

sZ 1
3

(
i

√
−2a
3 s

3
2

))
+ b2Im

(√
sZ 1

3

(
i

√
−2a
3 s

3
2

))
, (45)

for a < 0; where b1 and b2 are constants. Where Zν(s) is the cylinder function

Zν = b1Jν + b2Yν , (46)

and Jν(s) is the Bessel function of the first kind

Jν(s) =
∞∑
k=0

(−1)k
(
s
2
)ν+2k

k!Γ (ν + k + 1) ; (47)

Yν(s) is the Bessel function of the second kind

Yν(s) = Jν(s) cos νπ − J−ν(s)
sin νπ . (48)

Then the solutions of (43) can be written as

f(s) = b1u
2(s) + b2u(s)v(s) + b3v

2(s), (49)

where b1, b2 and b3 are constants.

Corollary 4.6. The structure function f(s) of the null curve r(s) in Theorem 4.5 satisfies

[(log fs)s]2 − 2(log fs)ss = 2κ(s) = 2(as+ b) (50)

and can be written as (by an appropriate parameter transformation)
f(s) =

∫
e
∫
ξ(s)dsds,

ξ(s) = −2 d
ds (ln u(s)) ,

(51)

or 
f(s) =

∫
e
∫
ξ(s)dsds,

ξ(s) = −2 d
ds (ln v(s)) .

(52)

Remark 4.3. The Airy equation is given by

g′′(ξ) = ξg(ξ). (53)

Putting

ξ =
(a

2

)− 3
2
(a

2s
)

the equation (42) changes to the Airy equation (53). The solutions of the Airy equation (53) can be
written as

g(ξ) = a1Ai(ξ) + a2Bi(ξ), (54)
where Ai(ξ) and Bi(ξ) are the Airy functions of the first and second kind, respectively. The Airy functions
can be represented by

Ai(ξ) = 1
π

∫ ∞
0

cos
(

1
3 t

3 + ξt

)
dt, (55)

Bi(ξ) = 1
π

∫ ∞
0

[
exp

(
−1

3 t
3 + ξt

)
+ sin

(
1
3 t

3 + ξt

)]
dt. (56)

(cf. [15], 2.1.2-1.2, p213)
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Theorem 4.7. Let r(s) : I→ E3
1 be a null curve with the null arc length parameter s. If the null curvature

function κ(s) of r(s) satisfies
κ(s) = 2a(s2 + bs+ c)−2, (57)

where a, b, c are constants and abc 6= 0, then the structure function f(s) of r(s) can be written as one of
the followings.

1. When the null curvature function κ(s) can be written as 2a(s2 + p2)−2, p2 − a > 0, ap 6= 0, we have

f(s) =
∫ [

exp
(∫

ξ(s)ds
)]

ds,

ξ(s) = −2
(

d log η(s)
ds

)
,

η(s) =
√
s2 + p2ϕ(θ),

ϕ(θ) = c1 cos
√
p2 − aθ + c2 sin

√
p2 − aθ,

θ(s) = 1
p

arctan s
p
.

(58)

2. When the null curvature function κ(s) can be written as 2a(s2 + p2)−2, p2 − a < 0, ap 6= 0, we have

f(s) =
∫ [

exp
(∫

ξ(s)ds
)]

ds,

ξ(s) = −2
(

d log η(s)
ds

)
,

η(s) =
√
s2 + p2ϕ(θ),

ϕ(θ) = c1 cosh
√
a− p2θ + c2 sinh

√
a− p2θ,

θ(s) = 1
p

arctan s
p
.

(59)

3. When the null curvature function κ(s) can be written as 2a(s2 + p2)−2, p2 = a, ap 6= 0, we have

f(s) =
∫ [

exp
(∫

ξ(s)ds
)]

ds,

ξ(s) = −2
(

d log η(s)
ds

)
,

η(s) =
√
s2 + p2

(
c1

1
p

arctan s
p

+ c2

)
.

(60)

4. When the null curvature function κ(s) can be written as 2a(s2 − p2)−2, p2 + a >, ap 6= 0, we have

f(s) =
∫ [

exp
(∫

ξ(s)ds
)]

ds,

ξ(s) = −2
(

d log η(s)
ds

)
,

η(s) = c1 | s− p |
1+k

2 | s+ p | 1−k
2 +c2 | s− p |

1−k
2 | s+ p | 1+k

2

=
√
| s2 − p2 |

(
c1 cosh kθ

2 + sinh kθ
2
)
,

θ(s) = log |s−p||s+p| ,

k2 = a
p2 + 1.

(61)

5. When the null curvature function κ(s) can be written as 2a(s2 − p2)−2, p2 + a < 0, ap 6= 0, we have

f(s) =
∫ [

exp
(∫

ξ(s)ds
)]

ds,

ξ(s) = −2
(

d log η(s)
ds

)
,

η(s) = (s+ p)ϕ(θ) =
√
| s2 − p2 |

(
c1 cos kθ2 + c2 sin kθ

2
)
,

θ(s) = log |s−p||s+p| ,

−k2 = a
p2 + 1.

(62)
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6. When the null curvature function κ(s) can be written as 2a(s2 − p2)−2, p2 = −a, ap 6= 0, we have

f(s) =
∫ [

exp
(∫

ξ(s)ds
)]

ds,

ξ(s) = −2
(

d log η(s)
ds

)
,

η(s) = (| s2 − p2 |) 1
2

(
c1

1
p

log | s− p |
| s+ p |

+ c2

)
.

(63)

7. When the null curvature function κ(s) can be written as 2as−1, a 6= 0, we have
f(s) =

∫ [
exp

(∫
ξ(s)ds

)]
ds,

ξ(s) = −2
(

d log η(s)
ds

)
,

η(s) =
√
s
[
c1ReZ1

(
2i
√
as

1
2

)
+ c2ImZ1

(
2i
√
as

1
2

)]
.

(64)

Where c1, c2 are constant and Zν(s) is the cylinder function.

Remark 4.4. The case 7 in Theorem 4.7 is the same as Theorem 4.5.

Proof. When the null curvature function κ(s) of the null curve r(s) is 2a(s2 + bs + c)−2, we solve the
equation (27) according to the conditions b2 − 4c < 0, b2 − 4c > 0 and b2 − 4c = 0 as the following.

(a) When b2 − 4c < 0, the null curvature function κ(s) of the null curve x(s) can be written as
2a[(s+ b

2 )2 + p2]−2, p2 = c− b2

4 . By a parameter transformation s+ s0 → s, the equation (30) becomes

(s2 + p2)2η′′ − aη = 0. (65)

Putting

η(s) =
√
s2 + p2ϕ(θ),

θ =
∫ ds
s2 + p2 = 1

p
arctan s

p
,

by a direct calculation we have
d2ϕ

dθ2 + (p2 − a)ϕ = 0.

Case 1. When p2 = c− b2

4 > a, we have ϕ(θ) = c1 cos θ + c2 sin θ. Therefore we get the conclusion (58)
of Theorem 4.7.

Case 2. When p2 = c− b2

4 < a, we have ϕ(θ) = c1 cosh θ+ c2 sinh θ. Therefore we get the conclusion (59)
of Theorem 4.7.

Case 3. When p2 = c− b2

4 = a, we have ϕ(θ) = c1θ+ c2. Therefore we get the conclusion (60) of Theorem
4.7.

(b) When b2 − 4c > 0, the null curvature function κ(s) of the null curve x(s) can be written as
2a[(s+ b

2 )2 − p2]−2, p2 = b2

4 − c. By a parameter transformation s+ s0 → s, the equation (30) becomes

(s2 − p2)2η′′ − aη = 0. (66)
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Putting

η(s) = (s+ p)ϕ(θ),

θ = 2p
∫ ds
s2 − p2 = log s− p

s+ p
,

by a direct calculation we have

4p2
(

d2ϕ

dθ2 −
dϕ
dθ

)
− aϕ = 0.

Case 4. When p2 = b2

4 − c > −a, we have

ϕ(θ) = c1 exp
(
p+

√
p2 + a

2p

)
θ + c2 exp

(
p−

√
p2 + a

2p

)
θ.

Therefore we get the conclusion (61) of Theorem 4.7.

Case 5. When p2 = b2

4 − c < −a, we have

ϕ(θ) =
(

exp 1
2θ
)[

c1 cos
(√
−p2 − a

2p

)
θ + c2 sin

(√
−p2 − a

2p

)
θ

]
.

Therefore we get the conclusion (62) of Theorem 4.7.

Case 6. When p2 = b2

4 − c = −a, the equation (66) becomes

(s2 − p2)2η′′ + p2η = 0. (67)

When s2 − p2 > 0, putting

η(s) =
√
s2 − p2ϕ(θ), (or (s+ p)ϕ(θ))

θ = 2
∫ ds
s2 − p2 = 1

p
log s− p

s+ p
,

by a direct calculation we have

d2ϕ

dθ2 = 0 (or 4
(

d2ϕ

dθ2 −
dϕ
dθ

)
+ ϕ = 0).

Then
ϕ(θ) = c1θ + c2 (or e

1
2 θ(c1θ + c2)).

When s2 − p2 < 0, putting

η(s) =
√
p2 − s2ϕ(θ), (or (s+ p)ϕ(θ))

θ = 2
∫ ds
p2 − s2 = 1

p
log p+ s

p− s
,

by a direct calculation we have

d2ϕ

dθ2 = 0 (or 4
(

d2ϕ

dθ2 + dϕ
dθ

)
+ ϕ = 0).

Then
ϕ(θ) = c1θ + c2 (or e−

1
2 θ(c1θ + c2)).
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Therefore we get the conclusion (63) of Theorem 4.7.

(c) When b2 − 4c = 0, the null curvature function κ(s) of the null curve x(s) can be written as
2a(s+ b

2 )−1. By a parameter transformation s+ s0 → s, the equation (30) becomes

sη′′ − aη = 0. (68)

Case 7. The solutions of (68) can be given by the cylinder function as the following

η(s) =
√
s
[
c1ReZ1

(
2i
√
as

1
2

)
+ c2ImZ1

(
2i
√
as

1
2

)]
.

Therefore we get the conclusion (64) of Theorem 4.7.

Theorem 4.8. Let r(s) : I → E3
1 be a null curve with the null arc length parameter s and the null

curvature function κ(s) = 2a(s2 + bs+ c)−2. Then the tangent indicatrix x(s) = ṙ(s), as a spacelike curve
in E3

1, is a rectifying curve.

Proof. For the Frenet frame {α(s), β(s), γ(s)} of a non planar spacelike curve x(s) in Minkowski 3-space,
we have the Frenet formulas 

ẋ(s) = α(s),
α̇(s) = κ̃(s)β(s),
β̇(s) = −εκ̃(s)α(s) + τ̃(s)γ(s),
γ̇(s) = τ̃(s)β(s),

(69)

where

〈α(s), α(s)〉 = 1,
〈β(s), β(s)〉 = ε = ±1,
〈γ(s), γ(s)〉 = −ε,

and κ̃(s) ≥ 0. We know that κ̃(s) and τ̃(s) are the Frenet curvature function and torsion function of x(s)
in Minkowski 3-space E3

1. From (8) and (69) we have

ẋ = α, α̇ = κ̃β = κx− y.

Then

κ̃ =
√
−2εκ, εκ < 0, (70)

β = κx− y√
−2εκ

, (71)

and

τ̃ γ = κ′

2
√
−2εκ

x− εκ′(−2εκ)− 3
2 y

= κ′

2
√
−2εκ

(
x+ 1

κ
y

)
.

If we take

γ =
√
−εκ

2

(
x+ 1

κ
y

)
, (72)

we get

τ̃ = −ε2

(
κ′

κ

)
. (73)

 12 New Horizons in Mathematical Physics, Vol. 1, No. 1, June 2017

NHMP Copyright © 2017 Isaac Scientific Publishing



Therefore, the Frenet curvature function κ̃(s), torsion function τ̃(s) of the tangent indicatrix x(s) = ṙ(s)
and the null curvature function κ(s) of the null curve r(s) in Minkowski 3-space E3

1 satisfy

κ̃(s) =
√
−2εκ, εκ < 0, (74)

τ̃(s) = −ε2(log κ)′ = −ε2

(
κ′

κ

)
= −ε

(
κ̃′

κ̃

)
. (75)

When κ(s) = 2a(s2 + bs+ c)−2, by a direct calculation we have

τ̃(s)
κ̃(s) = a1s+ a2,

where a1 6= 0 and a2 are constants. The curve x(s) is a rectifying curve ([2], [8]).
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