Proteomic Responses of the Cyanobacterium Nostoc Muscorum under Salt and Osmotic Stresses

D. Gupta¹, K. Bhardwaj², R. Gothalwal¹, S. Bhargava^{2*}

¹Department of Biotechnology and Bioinformatics Centre, Barkatullah University, Bhopal 462026 M.P. ²Division of Microbiology, Department of Botany, Government Motilal Science College, Bhopal 462008 M.P. Email: santoshbhargava@hotmail.com

Abstract. In this paper, we examined the effect of salt stress (NaCl) and osmotic stress (sucrose) on proteomic level in the diazotrophic cyanobacterium *Nostoc muscorum*. The aim of this study is to compare proteins appeared in control vs. salt treated, control vs. sucrose treated and salt treated vs. sucrose treated cultures. In the salt treated cultures about 37 proteins were expressed differentially out of these only 5 proteins have shown fold regulation of 1.5 or more. About 141 proteins were found to express independently in control and about 554 proteins were express independently in salt treated culture. When we compared proteins in control and sucrose treated cells, it was reported that about 37 protein spots were express differentially, out of these only 7 proteins have fold regulation 1.5 or more. The independently expressed proteins appeared on gel are 141 and 186 respectively. Similarly, when we compared proteins appeared in salt and sucrose treated cells, it was reported that about 54 proteins were express differentially, out of these 10 proteins have fold regulation 1.5 or more. About 537 protein spots were independently present in salt treated cells and about 186 proteins were independently present in salt treated cells. In addition, the differentially expressed proteins and their identification with their functional group have also been discussed.

Key words: Nostoc muscorum, osmotic stress, proteomic, salt stress

1 Introduction

Cyanobacteria are Gram negative eubacteria, their evolutionary history dated back to 2.7 billion years ago [1]. The origin of cyanobacteria and the evolution of oxygenic photosynthesis have been considered as the most important event in the evolution of aerobic atmosphere. Cyanobacteria are known to be found in almost all the ecological niches with diverse environmental conditions. The native cyanobacterial species present in such habitats confronted with cation toxicity and water loss. The microorganisms, including cyanobacteria that grow and multiply in such stressful habitats have ability to change their morphological and physiological parameters to cope up with such stressful conditions [2]. The ionic component of the stress factor is usually overcome by the efflux mechanism driven by Na⁺/H⁺ antiporter activity or by the Mrp system [3,4,2]. On the other hand the osmotic component of the stress factor is overcome by the synthesis/accumulation of low molecular weight organic compounds collectively known as compatible solutes [5,6].

The nature and the biosynthesis of compatible solutes depend upon the habitat in which cyanobacteria grow. The fresh water cyanobacterial strains are known to synthesized sucrose, trehalose and proline as an osmotic balancer [7,2,8]. Glucosyl-glycerol is a major compatible solute synthesized by moderately halotolerant strains [9,10]. On the other hand hyper saline strains produce glycine-betaine or glutamate-betaine as compatible solutes [11,12].

The modern molecular biology techniques such as genomics and proteomics have provided valuable databases for the better understanding of many physiological and biochemical processes including cyanobacterial adaptation to salt and osmotic stresses. It is known that during such stresses cellular proteins either denatured or inactivated followed by altering other metabolic activities. During such stresses molecular chaperones play a vital role in maintaining cellular homeostasis [13,14,15,16]. The initial signal of environmental changes perceived by cell surface and ultimately transferred this signal to the cells. In the cyanobacterium *Anabaena* sp PCC 7120 it has been reported that about 18 cell surface associated proteins were over-expressed under stress conditions. These over-expressed proteins have

involved in nucleic acid binding, protein synthesis, proteolytic activity, electron transfer and other proteins [17].

Salinity and osmotic stresses triggered distinct protein synthesis in the Anabaena species [18]. In this strain synthesis of several proteins was repressed by salinity stress. Similarly, some proteins were induced only under salinity stress. However, there are certain proteins which were induced by both salinity and osmotic stresses. In addition, salinity and osmotic stress have been known to induce some independently expressed proteins. In cyanobacteria, gene expression under salt and osmotic stresses, has been studied by Kanesaki, *et al.* [19]. Their findings indicate that about 28 genes were expressed only under salt stress condition, while those of 11 genes were expressed only in response to osmotic stress. In addition, 34 genes are expressed both under salinity and osmotic stresses. The products of some of these genes are hypothetical proteins whose functions have not been characterized so far.

In this study protein profile of the cyanobacterium *Nostoc muscorum* under salinity (NaCl) and osmotic (sucrose) stress was compared in terms of commonly and differentially expressed proteins (control vs. treated and salt vs. sucrose).

2 Materials and Methods

2.1 Organism and Growth Conditions

The cyanobacterium is *Nostoc muscorum*, used in the present study is fresh water, filamentous and diazotrophic cyanobacteria that is capable of oxygenic photosynthesis. This species was grown in modified Chu No. 10 medium [20] for routine as well as for experimental purposes. The cultures were routinely grown in 250 ml Erlenmeyer's flask containing 100 ml of liquid medium and incubated in a culture room set at a temperature of $24\pm 1^{\circ}$ C and illuminated for 16 hrs per day with cool daylight fluorescent tubes (intensity approximately 10 - 50W/m²). The culture medium was maintained at pH 7.5 with the help of 10mM HEPES-NaOH.

The survival studies revealed that NaCl, at the concentration of 100mM was found lethal to the cyanobacterium N. muscorum. The osmotic stress was generated by the sucrose. Sucrose at the concentration of 250mM was found lethal to the N. muscorum. The diazotrophically grown cultures were exposed to the lethal doses of NaCl and sucrose for 12 hrs and then inoculated into fresh diazotrophic growth medium for further use.

2.2 Total Protein Extraction

Exponentially grown cultures of the cyanobacterium were harvested by centrifugation (Remi C-24BL, India) and the cell suspension was washed thrice with culture medium. The cell pellets thus obtained were weighted and then mixed in five times their volume of extraction buffer (B1). Then the mixture was grind with mortar pestle in liquid nitrogen three times followed by Sonication (Sonic Vibra-cell, USA) 10 times (70% intensity) for 20s each with an ice bath, with 40s cooling breaks. The homogenate was centrifuged for 45 min at 16000 g at 4°C [21]. The supernatant thus obtained designated as total soluble protein fractions. The precipitation of protein was carried out with the help of standard curve (BSA).

2.3 TCA Precipitation

The TCA precipitated protein was free of various non-protein contaminants which can interfere with isoelectric focusing and electrophoresis, such as lipids and salts. Extracted impure protein was precipitated by a mixture of TCA and chilled acetone in the ratio of 1:1:8 (impure protein: TCA: Acetone) for more than 2 hours. Precipitated proteins were washed thrice, first wash with 70% chilled acetone containing 0.07% DTT and the rest of the two wash with 70% chilled acetone only [22].

2.4 2-Dimensional Gel Electrophoresis (2DE)

Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) (O'Farrell, 1975) is the method in which protein molecules are separated according to the charge (pI) by isoelectric focusing (IEF) in the first dimension and according to the size (Mw) by SDS-PAGE in the second dimension. 2-DE has a unique capacity for the resolution of complex mixtures of proteins, permitting the simultaneous analysis of hundreds or even thousands of gene products.

The protein sample was solubilized in appropriate amount of rehydration buffer and rehydration of immobilized pH gradient dry strip gel, IEF, equilibrium of IPG strip for proper protein transfer and SDS-PAGE were performed as described previously by Gupta et al [23].

2.5 Image Scanning and Image Acquisition

Gel imaging was performed on an Image Scanner III (GE Healthcare Bio-Sciences Ltd, India) and the image was saved in .tif (dot tif) and .mel (dot mel) format. Image acquisition was done using Image Master 2D Platinum 7 (IMP7, GE Healthcare, Freiburg, Germany) software. Protein spots of the gel were further analyzed using images of 2DE followed by calculation by Image Master 2D Platinum version 7.0 (GE Healthcare) software. The theoretical pI and molecular weight of overall functional annotation of the data were received by Expasy (http://web.expasy.org/compute_pi/Mw).

On the basis of their function these proteins are grouped into nine classes viz. (i) hypothetical, (ii) cellular processes, (iii) amino acid biosynthesis, (iv) photosynthesis and respiration, (v) energy metabolism, (vi) biosynthesis of cofactors, prosthetic groups, and carriers, (vii) cell envelope, (viii) central intermediary metabolism, (ix) fatty acid, phospholipid and sterol metabolism (http://www.kazusa.or.jp/cyano/ Anabaena /index.html).

3 Results and Discussion

In this study proteomics of the cyanobacterium N. muscorum under salt and osmotic stresses have been analyzed. This analysis has paved the way to compare protein spots in terms of differentially expressed and independently expresses proteins. The protein spots and multiple protein spots that showed fold regulation 1.5 or more [24] were further categorized into various functional groups and their role in salt and osmotic stresses. The 2-DE images showed that most of the protein spots were detected in a pH range of 4-7 and their molecular mass lies in the range of 10-90kDa.

3.1 2D Analysis of Proteins under Salt Stress

The protein spots appearing in control as well as in its salt treated cells were compared, as shown in table-1 about 37 proteins were expressed differentially. Out of these only 5 protein spots have showed fold regulation of 1.5 or more. The differentially expressed proteins and their identifications on the basis of their functional group are summarized in table-2. The spots which are marked by sign + in the Fig. 1 (G & H) are independently present in control (141 spots) and salt treated cells (554 spots). Out of these protein spots, some proteins were found to occur in two or more spots. These multiple spots have similar molecular masses, but different pI values. The variation in pI value reflects post translation modification in the concerned protein molecule. On the contrary, some multiple spots of the same protein showed difference in their molecular masses. The various functional categories of differentially expressed proteins are discussed below:

Figure 1. G and H Protein composition of total soluble protein fractionation from *N. muscorum* cells were grown under control (G,) and salt condition (H, 100mM NaCl); proteins were separated using 2D-PAGE and stained with Coomassie brilliant blue (CBB). Spot No: 0-36 (37 spots) are present in both control (G) and also in salt (H), but are differentially expressed. Other spots: marking by (+) are independently present in both.

3.1.1 Biosynthesis of Cofactors, Prosthetic Groups, and Carriers

Protein spot differentially expressed under this category was identified as 2-succinyl-5-enolpyruvyl-6hydroxy-3-cyclohexene-1-carboxylate synthase. This protein synthesized from 2-oxoglutrate and isochorismate in menaquinone biosynthesis (menD). In prokaryotes, menaquinone is an important component of the electron transport system [25]. As reported previously various genes involved in menaquinone biosynthesis help in maintaining balance between the two photosystems to work in a coordinate manner [26,27].

3.1.2 Cellular Processes

In cyanobacteria the function of the two component regulatory systems which consists of sensors and transducers of various abiotic stresses depends upon the degree of super-coiling of the genomic DNA [28]. This mechanism regulates transcription of stress induced genes for successful acclimatization of cells under stress conditions. In this study, differentially expressed protein Hsp70 identified as chaperones protein DnaK3. The role of molecular chaperones in maintaining protein conformational homeostasis is the key factor to the stress adaptability of cyanobacteria [29]. DNaK3 is a thylakoid membrane located protein and may be involved in protein folding in thylakoid [30]. Similar protein has also been induced under salt and osmotic stress in the unicellular cyanobacterium *Synechocystis* sp PCC 6803 [31], and also in the filamentous cyanobacteria *Anabaena* sp PCC 7120 [32].

3.1.3 Energy Metabolism

In Synechocystis sp PCC 6803, the operation of photorespiration has been reported by Bauwe, et al, [33]. They reported the existence of glycolate metabolism and glycerate pathway in the examined cyanobacterium. Like unicellular cyanobacteria glycolate metabolism has also been reported in filamentous cyanobacteria i. e. Anabaena sp. under salt stress [34,35]. In the present analysis similar to the S-layer RTX-protein found to express differentially, this involved in glycolate pathway. The study of Srivastava et al. [35] has pointed out the role of a glycolate oxydase gene (all0170) in salt acclimation. Therefore, it is suggested that genes involved in the glycolate pathway up regulated during salt shock. In addition, some cell surface-associated proteins (S-layer) also assembled into macromolecule structures that play an important role in cell physiology [17].

3.1.4 Unknown and Hypothetical

Phycobillisomes are the major light harvesting complexes of cyanobacteria. They are associated with photosytem II and constitute up to 50% of the total cellular proteins. Phycobillisomes are multiprotein assemblies and under diazotrophic growth, various genes involved in phycobillisome proteins are over expressed [36]. In consistence with the above findings, it was found that orf *viz. alr0021* which is annotated as allophycocyanin alpha subunit was over expressed under salt stress.

Another hypothetical protein identified as endodeoxyribonuclease RuvC over expressed under salt stress. This protein involved in DNA replication, DNA repair and endonuclease binding protein. Similar

proteins were also reported to over express under heat shock stress in the cyanobacterium *Synechocystis* sp PCC 6803 [37]. In the filamentous cyanobacterium *Anabaena* sp. strain PCC7120, cell surface-associated proteins were also reported to involve in nucleic acid binding under stress conditions [17].

In addition to the above mentioned differentially expressed protein, there are a large number of proteins that were identified in the control as well as in salt treated cells, which were expressed independently. This observation suggested that salt stress caused over expression of certain genes and simultaneous repression of certain genes. This metabolic plasticity in terms of up regulation and down regulation of genes helps in surviving cells under the given stresses.

3.2 2D Analysis of Proteins under Sucrose Stress

The protein spots in control and its sucrose treated cells were compared, and it was reported that about 37 proteins were expressed differentially as shown in table-3. Out of these only 7 protein spots have fold regulation 1.5 or more. The differentially expressed proteins and their identifications with their functional group are summarized in table-4. The spots which are marked by sign + are independently present in control (141 spots) and sucrose treated cells (186 spots) Fig.2 (I and J). The various categories of differentially expressed proteins are given below:

Figure 2. I and J. Protein composition of total soluble protein fractionation from *N. muscorum*. Cells were grown under **control** (I,) and **sucrose condition** (J, 250mM sucrose); proteins were separated using 2D-PAGE and stained with Coomassie brilliant blue (CBB). Spot No: 0-36 (37 spots) are present in both control (I) and also in sucrose (J), but are differentially expressed. Other spots: marking by (+) are independently present in both.

3.2.1 Cell Envelope

In this group penicillin binding protein, which is involved in the synthesis of the peptidoglycan layer of the cell wall has been differentially expressed. Since the sucrose stress was given to diazotropically grown culture, therefore it is suggested that over expression of penicillin binding proteins is essential for the formation of the peptidoglycan layer. Similar role of penicillin binding protein has also been elucidated by Lazaro *et al.* [38] in the cyanobacterium *Anabaena* sp PCC 7120 under normal condition. The role of penicillin binding protein in heterocyst development and in the remodeling of peptidoglycan layer has also been reported in the cyanobacterium *Anabaena* sp PCC 7120 [39].

3.2.2 Energy Metabolism

Phototrophic organisms like cyanobacteria use carbohydrates as carbon source to buildup cellular material and provide reductants. The carbohydrate molecules synthesized during the photosynthesis are broken down through various respiratory pathways. In our analysis the enzyme 2, 3-bisphosphoglycerate has been found to express differentially. This enzyme catalyses the inter conversion of 2-phosphoglycerate and 3- phosphoglycerate. It is a major regulator of glycolysis and regulates the flux of

carbon through the Kelvin Benson Cycle and its export in to glycolysis [40]. Another protein in this group identified as phosphoenolpyruvate synthase (*all3147*) catalyzes the phosphorylation of pyruvate and phosphoenolpyruvate in the presence of ATP molecules. The role of phosphoenolpyruvate synthase as an alternative phosphoenolpyruvate degradation has been reported in *Synechococcus* sp PCC 7002 under light stress condition [41]. The expression of genes involved in energy metabolism under stress condition is the key factors involved in cyanobacterial adaptation to stress factors [42].

3.2.3 Central Intermediary Metabolism

The expression level of *alr0692* was higher in the nitrogen depletion condition. This ORF identified as a NifU like protein, it harbors NifU like domain partially over lapping a thioredoxine like domain. Thioredoxine catalyzing the reduction of intermolecular disulphide bonds by this means it plays a major role in the formation of Fe-S clusters [43]. The differentially expression of this protein may be related to the assembly of a functional uptake hydrogenase. The gene involved in assembly of hydrogenase should be regulated differentially depending on strains, environment and type of hydrogenase [44]. The differential expressions of this protein in the present investigation are inconsistent with the above hypothesis.

Another enzyme of this group i,e. inorganic pyrophosphatase catalyses the conversions of diphosphate to phosphate, induced differentially. Its role in metabolism is thought to be the removal of inorganic pyrophosphate, which is a byproduct of many anabolic reactions. It is also believed that pyrophosphate also plays an important role in the bioenergetics under various biotic and abiotic stresses [45,46,47].

3.2.4 Unknown & Hypothetical

Phototrophs like cyanobacteria might use gas vesicle to expose them into appropriate light intensity. These gas vesicles are basically protein bodies and in prokaryotes they evolutionary most conserved bodies. In the cyanobacterium *Anabaena sp.* five additional proteins were identified (Gbp-F, Gbp-G, Gbp-j, Gbp-l and Gbp-M). These proteins are involved in the initiations of vesicle formation. In cyanobacteria buoyancy is regulated either by the formation of gas vesicle or synthesis/breakdown of carbohydrate molecules [48]. Our findings regarding the over expression of various proteins are inconsistent with the above finding.

The ATP binding protein i. e. alr2300 has identified as conserved hypothetical proteins in the present study. The over expression of this protein (HetY) suppresses the heterocyst formation [49]. In the sucrose treated cells heterocyst differentiations delayed as compared to the control. This delay in heterocyst differentiation correlated with the expression of alr2300 gene.

In addition, to the above mentioned differentially expressed protein, there are a number of proteins that were identified in the control as well as sucrose treated cells, which were expressed independently. This observation suggested that sucrose stress caused over expression of certain genes and simultaneous repression of certain genes. This up regulation and down regulation of certain genes helps in surviving cells under the given stresses.

4 2D Analysis of Protein under Salt and Sucrose Stress

In the next series of analysis we compared salt treated and osmotic treated samples in terms of commonly expressed proteins (Table 5). The protein spots with fold regulation 1.5 or more and their identification with functional group are given in table 6. The spots which are marked by sign + are independently present in salt (537 spots) and sucrose treated cells (186 spots), Fig. 3 (K and L).

Figure 3. K and L Protein composition of total soluble protein fractionation from *N.muscorum*. Cells were grown under salt condition (K, 100mM NaCl) and sucrose condition (L, 250mM sucrose); proteins were separated using 2D-PAGE and stained with Coomassie brilliant blue (CBB). Spot No: 0-53 (54 spots) are present in both salt (K) and also in sucrose (L), but are differentially expressed. Other spots: marking by (+) are independently present in both.

4.1 Amino Acid Biosynthesis

In this category the only protein belongs to glutamate family i. e. arginine biosynthesis bifunctional protein ArgJ2 was found to express differentially. This protein involved in the cyclic version of arginine biosynthesis; the synthesis of N-acetylglutamate from glutamate and acetyl Co-A as the acetyl donor, and of ornithine by transacetylation between N(2)-acetyl ornithine and glutamate [50,51].

4.2 Biosynthesis of Cofactors, Prosthetic Groups, and Carriers

Biosynthesis of the PSI cofactor i. e. phylloquinone occurs in almost all photosynthetic organisms, including cyanobacteria. This cofactor is analogous to that of menaquinone a mobile electron carrier in many bacterial bioenergetic systems [25]. Any up shift or down shift in the environmental factor poses an additional energy burden in terms of cellular metabolism. Since the experimental organism exposed to salinity and osmotic stresses, therefore the over expression of MenD is justified. Similar role of *menD* operon in bacteria and in algae has also been reported [25,52].

4.3 Cellular Processes

The phenomenon of programmed cell death or apoptosis is very rare in prokaryotes. In cyanobacteria programmed cell death is associated with membrane integrity, leakage of proteases and DNA degradation. Studies on heamolysin produced by glucose tolerant strain of *Synechocystis* sp PCC 6803 suggested that heamolysin produced by this strain has no toxic activity [53]. In contrast, haemolysin obtained from wild type cells of *Synechocystis* sp PCC 6803 showed haemolytic activity against erythrocytes [54]. The haemolysin like protein was found to express differently in our study, however; we are unable to interpret the exact role of haemolysin production in this study.

The cyanobacterial heat shock response has already been studied both at the transcription level and expression level of specific genes and proteins [55]. The Hsp60/Hsp10 family also referred to as the GroE chaperone machinery in this study the experimental organism exhibit differential expression of two heat shock proteins encoded by Gro-EL1 and Gro-EL2 [56]. In addition, a 60kDa chaperonin 2 (Gro-EL2) was also found to express differentially in this study. It was also observed an increased in the expression level of protease (all2263). In photosynthetic organisms it has been reported that abiotic stresses not only over expressed proteins/enzyme involved in the main metabolic pathways, but also in the synthesis of Gro-EL1 and Gro-EL2 chaperonin and N-ATP dependent proteases [57,58]. The constitutive expression of these Hsps in the examined cyanobacterium suggests their role in stress tolerance.

4.4 Photosynthesis and Respiration

Cyanobacterial nitrogen fixation is an energy requiring process; it requires ATP and a reductant for efficient nitrogen fixation. The over expressions of NADH dehydrogenase under stress conditions produce more ATP and a reductant to support nitrogen fixation and other metabolic activities. The protein involved in energy metabolism (photosynthesis and respiration) e.g. NADPH quinone oxidoreductase and NADH-plastoquinone oxidoreductase was highly abundant in the present analysis. This suggested that more ATP and a reductant is available to the organism for nitrogen fixation. Similar finding has also been reported by many workers [35,36].

4.5 Unknown & Hypothetical

Arginvl-tRNA synthetase (ArgRS) is known to responsible for aminoacylating its cognate tRNA(s) with a unique amino acid in a two-step catalytic reaction. In the first step amino acid t-RNA ligases binds to the amino acid, ATP to activate the amino acid through the formation of N-aminoacyl-Adenylate. The second step involved the transfer of aminoacyl of the t-RNA.

Phycobillisomes are the major light harvesting complexes of cyanobacteria under nitrogen fixing condition and under salt stress conditions; major component of the phycobilisomes is strongly expressed [36,59]. The above findings are in agreement with our interpretations.

Phosphoglycerate kinase (PGK) is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1.3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP during carbohydrate metabolism. The differentially expression of this protein suggested that the interaction of metabolic protein associated with the survival of the organism under stress condition. Similar role of carbohydrate metabolism in stress has also been reported in *Anabaena* sp. [60].

The enzyme 1,4-dihydroxy-2-naphthoyl-CoA hydrolase is known to be involved in the formation of a nephthaquonone ring of phylloquinone. In higher plants the cleavage of this enzyme leads to formation of phylloquinone; the cognate thioestrase of the same enzyme has been recently characterized in the cyanobacterium *Synechocystis* sp [61]. In photoautotrophic organisms, including certain species of cyanobacteria phylloquinone is a vital redox cofactor required for electron transfer in PSI and the formation of protein disulphide bond [62,63,64]. In consistence with the above findings, in cyanobacterium *Synechocystis* sp. PCC 6803, salt stress enhances the expression of genes of ribosomal proteins (*rpl2, rpl3, rpl4* and *rpl23*), on the other hand hyperosmotic stress, enhances the expression of genes for the synthesis of lipids and lipoproteins (*fabG* and *rlpA*) and for other functions. The over expression of these genes clearly indicates that *Synechocystis* sp. PCC 6803 recognizes salt stress and hyperosmotic stress as different signals. To the best of our knowledge this is the first report from the *Nostoc muscorum* investing proteomic responses under salt and osmotic stress.

5 Conclusion

The over expression of commonly induced proteins under salt and osmotic stress suggested that some factors might perceive and transducer such signals of the specific pathways that control the expression of a number of genes. Therefore; the role of various differently expressed proteins is to overcome given stress for the normal functioning of the cell. This metabolic adaptability of the cyanobacteria could be useful in the production of biofertilizer for stressful ecosystems and isolation of commercially important bioactive compounds.

Acknowledgements. Authors are thankful to Indian Institute of Science Education and Research (IISER), Bhopal, for providing 2DGE facility. DG and RG are also thankful to Bioinformatics Centre, Barkatullah University, Bhopal for providing necessary facilities under BTIS NET (DBT Govt. of India, New Delhi).

References

- R. Buick, "The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient," Archaean lakes science, vol. 255 no. 5040 pp. 74-77, 1992.
- M. Hagemann, "Molecular biology of cyanobacterial salt acclimation," FEMS microbiology review, vol. 35 no. 1 pp. 87-123, 2011.
- K. Inaba, T. Kuroda, T. Shimamoto, T. Kayahara, M. Tsuda and T. Tsuchiya, "Lithium toxicity and Na+(Li+)/H+ antiporter in Escherichia coli," Biological and pharmaceutical bulletin, vol. 17 no. 3 pp. 395-398, 1994.
- 4. R. Waditee, T. Hibino, T. Nakamura, A. Incharoensakdi and T. Takabe, "Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water," Proceedings of the national academy of sciences of the USA, vol. 99 no. 6 pp. 4109-4114, 2002.
- E. A. Alia and I. A. Gahiza, "Accumulation of amino acids in Anabaena oryzae in response to sodium chloride salinity," Journal of applied science research, vol. 3 no. 3 pp. 263-266, 2007.
- L. N. Csonka, "Physiological and genetic responses of bacteria to osmotic stress," Microbiology review, vol. 53 no.1 pp. 121-147, 1989.
- M. Hagemann, A. Schoor and N. Erdmann, "NaCl acts as a direct modulator in the salt adaptive response: saltdependent activation of glucosylglycerol synthesis in vivo and in vitro," Journal of plant physiology, vol. 149 no. 6 pp. 746-752, 1996.
- A. K. Singh, D. Chakarvarthy, T. P. K. Singh and H. N. Singh, "Evidence for a role of L-proline as a salinity protectant in the cyanobacterium Nostoc muscorum," Plant cell and environment, vol. 19 no. 4 pp. 490-494, 1996.
- D. K. Hincha and M. Hagemann, "Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms," Biochemical journal, vol. 383 no. 2 pp. 277-283, 2004.
- 10.K. Marin, M. Stirnberg, M. Eisenhut, R. Kramer and M. Hagemann, "Osmotic stress in Synechocystis sp. PCC 6803: low tolerance towards nonionic osmotic stress results from lacking activation of glucosyl-glycerol accumulation," Microbiology, vol. 152 no. 7 pp. 2023-2030, 2006.
- 11.S. Klahn, C. Steglich, W. R. Hess and M. Hagemann, "Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments," Environmental microbiology, vol. 12 no. 1 pp. 83-94, 2010.
- 12.S. R. C. Warr, R. H. Reed and W. D. P. Stewart, "The compatibility of osmotica in cyanobacteria," Plant cell and environment, vol. 11 no. 2 pp. 137-142, 1988.
- 13.A. L. Horwich, W. A. Fenton, E. Chapman and G. W. Farr, "Two families of chaperonin: physiology and mechanism," Annual review of cell and developmental biology, vol. 23 no. pp. 115-145, 2007.
- 14.K. A. Krishna, G. V. Rao and K. R. Rao, "Chaperonin GroEL: structure and reaction cycle," Current protein and peptide science, vol. 8 no. 5 pp. 418-425, 2007.
- 15.S. Sharma, K. Chakraborty, B. K. Muller, N. Astola, Y. C. Tang, D. C. Lamb, M. Hayer-Hartl and F. U. Hartl, "Monitoring protein conformation along the pathway of chaperonin-assisted folding," Cell, vol. 133 no. 1 pp. 142-153, 2008.
- 16.Y. C. Tang, H. C. Chang, K. Chakraborty, F. U. Hartl and M. Hayer-Hartl, "Essential role of the chaperonin folding compartment in vivo," EMBO journal, vol. 27 no. 10 pp. 1458-1468, 2008.
- 17.H. Yoshimura, M. Ikeuchi and M. Ohomori, "Cell surface-associated proteins in the filamentous cyanobacterium Anabaena sp. strain PCC 7120," Microbes and environments, vol. 27 no. 4 pp. 538-543, 2012.
- 18.T. A. Fernandes, V. Iyer and S. K. Apte, "Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses." Applied and environmental microbiology, vol. 59 no. 3 pp. 899-904, 1993.
- 19.Y. Kanesaki, I. Suzuki, S. I. Allakhverdiev, K. Mikami and N. Murata, "Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803," Biochemical and biophysical research communication, vol. 290 no. 1 pp. 339-348, 2002.
- 20.C. Gerloff, G. P. Fitzerald and F. Skoog, "The isolation, purification, and culture of blue-green algae," American journal of botany, vol. 37 no. 3 pp. 216-218, 1950.
- 21.Ran, F. Huang, M. Ekman, J. Klint and B. Bergman, "Proteomic analysis of the photoauto- and diazotrophically grown cyanobacteria Nostoc sp. PCC 73102," Microbiology, vol. 153 no. pp. 608-618, 2007.

- 22.Méchin, C. Damerval and M. Zivy, "Total Protein Extraction with TCA-Acetone". In: Methods in Molecular Biology, Plant Proteomics: Methods and Protocols. vol. 335 no. pp. 335, 2007.
- 23.Gupta, R. Gothalwal and S. Bhargava, "Proteomic analysis of the cyanobacterium Synechococcus cedrorum IU 1191 under short term NaCl exposure," Current proteomics, vol. 12 no. 2 pp. 87-95, 2015.
- 24.F. Smith and M. S. Waterman, "Identification of common molecular subsequences," *Journal of molecular biology*, vol. 147, no. 1, pp. 195–197, 1981.
- 25.X. Y. Zhi, J. C. Yao, S. K. Tang and W. J. Li, "The futalosine pathway played an important role in menaquinone biosynthesis during early prokaryotic evolution," Genome biology and evolution, vol. 6 no. 1 pp. 149-160, 2014.
- 26.T. W. Johnson, S. Naithani, C. J. Stewart, B. Zybailov, J. A. Daniel, J. H. Golbeck and P. R. Chitnis, "The men D and menE homologs code for 2-succinyl-6-hydroxyl-2,4 cyclohexadiene-1-carboxylate synthase and Osuccinylbenzoic acid-CoA synthase in the phylloquinone biosynthetic pathway of Synechocystis sp. PCC 6803,". Biochimica et biophysica acta, vol. 1557 no. pp. 67-76, 2003.
- 27.J. Gross, W. K. Cho, L. Lezhneva, J. Falk, K. Krupinska, K. Shinozaki, M. Seki, R. G. Herrmann and J. Meurer, "A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes," Journal of biological chemistry, vol. 281 no.25 pp. 17189-17196, 2006.
- 28.J. S. Prakash, M. Sinetova, A. Zorina, E. Kupriyanova, I. Suzuki, N. Murata and D. A. Los, "DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis," Molecular bisystems, vol. 5 no. 12 pp. 1904-1912, 2009.
- 29.H. Rajaram, A. K. Chaurasia and S. K. Apte, "Cyanobacterial heat-shock response: role and regulation of molecular chaperones," Microbiology, vol. 160 no. 4 pp. 647-658, 2014.
- 30.H. Rupprecht, S. Gathmann, E. Fuhrmann and D. Schneider, "Three different DnaK proteins are functionally expressed in the cyanobacterium Synechocystis sp. PCC 6803," Microbiology, vol. 153 no. pp. 1828-1841, 2007.
- 31.D. A. Los, A. Zorina, M. Sinetova, S. Kryazhov, K. Mironov and V. V. Zinchenko, "Stress sensors and signal transducers in cyanobacteria," Sensors, vol. 10 no. 3 pp. 2386-2415, 2010.
- 32.P. K. Singh, S. Rai, S. Pandey, C. Agrawal, A. K. Shrivastava, S. Kumar and L. C. Rai, "Cadmium and UV-B induced changes in proteome and some biochemical attributes of Anabaena sp. PCC 7120," Phykos, vol. 42 no. 1 pp. 39-50, 2012.
- 33.H. Bauwe, M. Hagemann and A. R. Fernie, "Photorespiration: players, partners and origin," Trends in plant science, vol. 15 no. 6 pp. 330-336, 2010.
- 34.A. K. Srivastava, P. Bhargava and L. C. Rai, "Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum," World journal of microbiology and biotechnology, vol. 21 no. 6 pp. 1291-1298, 2005.
- 35.A. K. Srivastava, R. Alexova, Y. J. Jeon, G. S. Kohli and B. A. Neilan, "Assessment of salinity-induced photorespiratory glycolate metabolism in Anabaena sp. PCC 7120," Microbiology, vol.157 no. 3 pp. 911-917, 2011.
- 36.R. Wünschiers, R. Axelsson, M. Vellguth and P. Lindblad, "Experimental and bioinformatic approaches for analyzing and visualizing cyanobacterial nitrogen and hydrogen metabolism," Electronic journal of biotechnology, vol. 10 no. 4 pp. 549-562, 2007.
- 37.J. J. Hall, "Proteomic analysis of the heat shock and acclimation responses of Cyanobacteria" A thesis submitted to the University of Durham for the degree of Doctor of Philosophy, 2005.
- 38.S. Lázaro, F. Fernández-Piñas, E. Fernández-Valiente, A. Blanco-Rivero and F. Leganés, "pbpB, a gene coding for a putative penicillin-binding protein, is required for aerobic nitrogen fixation in the cyanobacterium Anabaena sp. strain PCC 7120," Journal of bacteriology, vol. 183 no. 2 pp. 628-636, 2001.
- 39.S. Berendt, J. Lehner, Y. V. Zhang, T. M. Rasse, K. Forchhammer and I. Maldener, "Cell wall amidase AmiC1 is required for cellular communication and heterocyst development in the cyanobacterium Anabaena PCC 7120 but not for filament integrity," Journal of bacteriology, vol. 194 no. 19 pp. 5218-5227, 2012.
- 40.J. Jablonsky, M. Hagemann, D. Schwarz and O. Wolkenhauer, "Phosphoglycerate mutases function as reverse regulated isoenzymes in Synechococcus elongatus PCC 7942," PLoS One, vol. 8 no. 3 pp. e58281, 2013.
- 41.M. Ludwig and D. A. Bryant, "Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress, and mixotrophic growth conditions," Frontiers in microbiology, vol. 3 no. pp. article 354, 2012.

- 42.A. M. Ruffing, "RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium," Biotechnology and biofuels, vol. 6 no. 1 pp. 113, 2013.
- 43.D. Johnson, D. R. Dean, A. D. Smith and M. K. Johnson, "Structure, Function and Formation of Biological Iron-Sulfur Clusters," Annual review of biochemistry, vol. 74 no. pp. 247-281, 2005.
- 44.A. Agervald, K. Stensjö, M. Holmqvist and P. Lindblad, "Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120," BMC Microbiology, vol. 8 no. pp. 69, 2008.
- 45.M. R. Gómez-García, M. Losada and A. Serrano, "Comparative biochemical and functional studies of family I soluble inorganic pyrophosphatases from photosynthetic bacteria," FEBS journal, vol. 274 no. 15 pp. 3948-3959, 2007.
- 46.J. R. Pérez-Castiñeira, R. Gómez-García, R. L. López-Marqués, M. Losada and A. Serrano, "Enzymatic systems of inorganic pyrophosphate bioenergetics in photosynthetic and heterotrophic protists: remnants or metabolic cornerstones? International microbiology, vol. 4 no. 3 pp. 135-142, 2001.
- 47.F. Serrano, J. M. Gonzáles-Donoso, P. Palmqvist, A. Guerra-Merchán, D. Linares and J. A. Pérez-Claros, "Estimating Pliocene sea-surface temperatures in the Mediterranean: An approach based on the modern analogs technique," Palaeogeography palaeoclimatology palaeoecology, vol. 243 no. 1-2 pp. 174-188, 2007.
- 48.K. F. Jarrell and M. J. McBride, "The surprisingly diverse ways that prokaryotes move," Nature reviews microbiology, vol. 6 no. 6 pp.466-476, 2008.
- 49.J. H. Yoon, K. H. Kang and Y. H. Park, "Psychrobacter jeotgalisp. nov., isolated from jeotgal, a traditional Korean fermented seafood," International journal of systematic and evolutionary microbiology, vol. 53 no. pp. 449-454, 2003.
- 50.F. Marc, P. Weigel, C. Legrain, Y. Almeras, M. Santrot and V. Sakanyanet, "Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms," European journal of biochemistry, vol. 267 no. 16 pp. 5217-5226, 2000.
- 51.F. Marc, P. Weigel, C. Legrain, N. Glansdorff and V. Sakanyan, "An invariant threonine is involved in selfcatalyzed cleavage of the precursor protein for ornithine acetyltransferase," Journal of biological chemistry, vol. 276 no. 27 pp. 25404-25410, 2001.
- 52.J. Gross, J. Meurer and D. Bhattacharya, "Evidence of a chimeric genome in the cyanobacterial ancestor of plastids," BMC Evolutionary biology, vol. 8 no. pp. 117, 2008.
- 53.T. Sakiyama, H. Ueno, H. Homma, O. Numata and T. Kuwabara, "Purification and characterization of a hemolysin-like protein, Sll1951, a nontoxic member of the RTX protein family from the Cyanobacterium Synechocystis sp. strain PCC 6803," Journal of bacteriology, vol. 188 no. 10 pp. 3535-3542, 2006.
- 54.W. W. Shuai, Z. Yuanyuan, R. U. Shaoguo and L. Yunzhang, "Studies on hemolysis of hemolysin produced by Synechocystis sp. PCC 6803," Journal of ocean university of China, vol. 10 no. 4 pp. 362-368, 2011.
- 55.D. A. Los, I. Suzuki, V. V. Zinchenko and N. Murata, "Stress responses in Synechocystis: regulated genes and regulatory systems" In: The Cyanobacteria: Molecular Biology, Genomics and Evolution (Herrero, A. and Flores, E., Eds.), Caister Academic Press, Norfolk. pp. 117-157, 2008.
- 56.S. Sato, M. Ikeuchi and H. Nakamoto, "Expression and function of a groEL paralog in the thermophilic cyanobacterium Thermosynechococcus elongatus under heat and cold stress," FEBS letters, vol. 582 no. 23-24 pp. 3389-3395, 2008.
- 57.A. K. Clarke, "ATP-dependent Clp proteases in photosynthetic organisms a cut above the rest"! Annals of botany, vol. 83 no. 6 pp. 593-599, 1999.
- 58.O. Castielli, B. De la Cerda, J. A. Navarro, M. Hervás and M. A. De la Rosa, "Proteomic analyses of the response of cyanobacteria to different stress conditions," FEBS letters, vol. 583 no. 11 pp. 1753-1758, 2009.
- 59.S. I. Allakhverdiev and N. Murata, "Salt stress inhibits photosystems II and I in cyanobacteria," Photosynthesis research, vol. 98 no. 1-3 pp. 529-539, 2008.
- 60.S. Pandey, R. Rai and L. C. Rai, "Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress," Journal of proteomics, vol. 75 no. 3 pp. 921-937, 2012.
- 61.J. R. Widhalm, A. L. Ducluzeau, N. E. Buller, C. G. Elowsky, L. J. Olsen and G. J. Basset, "Phylloquinone (vitamin K(1) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4dihydroxy-2-naphthoyl-coa," The plant journal, vol. 71 no. 2 pp. 205-215, 2012.

- 62.A. K. Singh, M. Bhattacharyya-Pakrasi and H. B. Pakrasi, "Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms," The journal of biological chemistry, vol. 283 no. 23 pp. 15762-15770, 2008.
- 63.J. Fort, Y. Cherel, A. M. A. Harding, C. Egevang, H. Steen, G. Kuntz, W. P. Porter and D. Grémillet, "The feeding ecology of little auks raises questions about winter zooplankton stocks in North Atlantic surface waters," Biology letters, vol. 23 no. 6(5) pp. 682-684, 2010.
- 64.M. Karamoko, S. Cline, K. Redding and P. P. Ruiz Namel, "Lumen Thiol Oxidoreductase1, a Disulfide Bond-Forming Catalyst, Is Required for the Assembly of Photosystem II in Arabidopsis," The plant cell, vol. 23 no. 12 pp. 4462-4475, 2011.

Appendix

Table 1. Spot details on commonly induced proteins under salt treated cells verses control cells of N. muscorum. NC=protein spots apparent on the gel of control cells of N. muscorum; NN=protein spots apparent on the gel of salt treated cells of N. muscorum

File Name	Spot ID	Match ID	Apparent pI	Apparent MW	%Vol	Fold Regulation	Protein Acc. No	Protein Identification	Theoretical Mw (Da)	Theoretical pI
			1	(kDa)		(T/C)				1
NN	8431	36	6.029	16	0.84788	1.19	Q8YQ24	Chorismate mutase	15706.02	6.91
NC	3279	36	6.133	16	0.71543					
NN	8432	35	5.836	16	1.54506	0.72	Q8YP58	Mannose-6-phosphate	15804.86	6.65
NC	3277	35	5.857	16	2.13274			isomerase		
NN	8424	34	4.763	16	0.81515	0.56	P58703	Cyanate hydratase	16398.99	4.97
NC	3276	34	5.091	16	1.46755			(Cyanase) (EC 4.2.1.104) (Cyanate hydrolase) (Cyanate lyase)		
NN	8408	33	4.856	16	0.66589	0.58	Q8YUT1	Gas vesicle protein GvpJ	16597.58	4.73
NC	3273	33	4.549	16	1.15037					
NN	8281	32	4.617	22	1.92456	1.28	P80562	Inorganic	18960.61	4.69
NC	3228	32	4.710	19	1.50248			pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase)		
NN	8289	31	4.867	21	1.83581	0.90	O52749	UPF0079 ATP-binding	17938.69	4.33
NC	3230	31	4.500	18	2.03955			protein alr2300		
NN	8362	30	4.945	17	0.71796	0.66	O52751	Crossover junction	17740.55	4.7
NC	3253	30	4.565	17	1.08462			endodeoxyribonuclease RuvC (EC 3.1.22.4) (Holliday junction nuclease RuvC) (Holliday junction resolvase RuvC)		
NN	8342	29	5.127	18	2.34606	2.45	P80555	Allophycocyanin subunit	17214.47	4.92
NC	3249	29	4.914	18	0.95666			alpha 1		
NN	8359	28	5.529	17	5.84423	1.04	P80557	Allophycocyanin subunit	17173.56	5.46
NC	3256	28	5.451	17	5.63804			beta		
NN	8358	27	4.628	17	7.99235	0.59	O52751	Crossover junction	17740.55	4.7

12

NC	3254	27	4.720	17	13.5579			endodeoxyribonuclease RuvC (EC 3.1.22.4) (Holliday junction nuclease RuvC)		
								(Holliday junction		
NN	8384	26	4 763	17	1 33462	0.52	P80556	Allophycocyanin subunit	17680.3	5.06
NC	3263	26	5.022	17	256327	0.02	1 00000	alpha-B	11000.0	0.00
NN	7850	25	4.436	84	0.06533	1.59	Q8YUA6	Chaperone protein	71181.38	4.6
NC	3116	25	4.460	70	0.041			dnaK3 (HSP70-3) (Heat		
								shock 70 kDa protein 3)		
								(Heat shock protein 70-		
								3)		
NN	7865	24	4.562	79	0.1323	0.78	Q8YW74	Chaperone protein	67907.54	4.84
NC	3120	24	4.617	68	0.16902			dnaK2 (HSP70-2) (Heat		
								shock 70 kDa protein 2)		
								(Heat shock protein 70-		
NN	7003	23	1 282	69	0 02226	2 / 3	08V772	2) 2-succinyl-5-enolpyruyyl-	65720-18	5.83
NC	3125	23	4.202	65	0.02220	2.40	Q01222	6-hvdroxy-3-cvclohexene-	00729.10	0.00
110	0120	20	4.002	00	0.00510			1-carboxylate synthase		
								(SEPHCHC synthase)		
								(EC 2.2.1.9)		
								(Menaquinone		
								biosynthesis protein		
								MenD)		
NN	7918	22	4.463	67	0.02731	0.06	Q8YM86	NAD(P)H-quinone	61013.04	5.72
NC	3128	22	4.564	62	0.44259			oxidoreductase chain 4-3 $(EC + C + C) (NAD(D))$		
								(EC 1.6.5) (NAD(P)H		
								D-3) (NDH-1 chain 4-3)		
NN	7922	21	4.721	66	0.17323	1.15	Q8YP23	Peptide chain release	61270.8	5.43
NC	3129	21	4.856	62	0.15004		•	factor 3 (RF-3)		
NN	7947	20	4.414	63	0.0671	0.53	Q8Z0E5	Penicillin-binding protein	60683.9	5.04
NC	3133	20	4.497	60	0.1261					
NN	7954	19	4.304	62	0.07786	4.21	Q8YR01	Alr3659 protein	61699.02	4.01
NC	3131	19	4.324	62	0.01849					
NN	7969	18	4.700	60	0.2005	1.16	Q8Z0E5	Penicillin-binding protein	60683.9	5.04
NC	3134	18	4.700	60	0.17293					
NN	8035	17	4.914	51	0.04325	0.19	Q8YPU6	NADH dehydrogenase	45675.2	4.95
NC	3163	17	4.983	46	0.23071					
NN	8042	16	4.139	50	0.05923	0.65	Q8Z064	Probable cytosol	51918.33	4.87
NC	3146	16	4.058	52	0.09061			aminopeptidase (EC		
								3.4.11.1) (Leucine		
								(EC 3 4 11 10) (Levev)		
								aminopeptidase)		
NN	8046	15	4.815	49	0.30447	0.65	Q8YRB0	Enolase (EC 4.2.1.11) (2-	45965.05	5.03
NC	3162	15	4.837	46	0.47115	-		phospho-D-glycerate		
								hydro-lyase) (2-		
								phosphoglycerate		
								dehydratase)	L	ļ
NN	8066	14	4.976	48	0.07466	0.12	Q8YP49	1-deoxy-D-xylulose 5-	43200.83	5.05

NC	3168	14	5.052	43	0.63857			phosphate		
								reductoisomerase (DXP		
								reductoisomerase) (EC		
								1.1.1.267) (1-		
								deoxyxylulose-5-		
								phosphate		
								reductoisomerase) (2-C-		
								methyl-D-erythritol 4-		
								phosphate synthase)		
NN	8205	13	4.924	31	0.03652	0.10	Q8YNC5	Peroxiredoxin	22630.61	4.87
NC	3217	13	4.944	23	0.37055					
NN	8267	12	5.701	25	0.03946	0.94	Q8YLJ6	50S ribosomal protein	19438.44	5.71
NC	3227	12	5.711	20	0.04217			L10		
NN	8309	11	5.982	19	0.01492	0.03	Q8YNU3	Alr4468 protein	18080.98	6.9
NC	3243	11	6.158	18	0.48412					
NN	8313	10	4.100	18	0.63671	1.08	O52749	UPF0079 ATP-binding	17938.69	4.33
NC	3241	10	4.100	18	0.58712			protein alr2300		
NN	8315	9	5.341	19	0.04354	0.07	Q8YYZ9	Alr0692 protein	17425.21	5.37
NC	3248	9	5.215	18	0.64891					
NN	8325	8	6.191	18	0.28307	1.16	Q8YWH5	Molybdopterin synthase	18097.81	7
NC	3247	8	6.442	18	0.24498			catalytic subunit (EC		
								2.8.1.12) (MPT synthase		
								subunit 2) (Molybdenum		
								cofactor biosynthesis		
								protein E)		
								(Molybdopterin-		
								converting factor large		
								subunit)		
								(Molybdopterin-		
								converting factor subunit		
NIN	0200	7	F 149	10	0 20200	0.94	O9VCE1	2) Dha mha malaonna ta	10099.07	4.95
NO	8328	7	0.143	18	0.39308	0.84	Q81SEI	rnosphoenolpyruvate	18033.87	4.80
NN	8256	6	4.090 5.263	10	5.08757	0.40	P80555	Allophycocyanin cubunit	17914 47	4.02
NC	3252	6	5.085	17	$12\ 2443$	0.43	1 00000	alpha 1	11214.41	4.52
NN	8360	5	5 800	17	3 38518	1.53	052751	Crossover junction	17740 55	47
NC	3260	5	5 800	17	2 21081			endodeoxvribonuclease		
110	0200	0	0.000	11	2.21001			RuvC (EC 3.1.22.4)		
								(Holliday junction		
								nuclease RuvC)		
								(Holliday junction		
								resolvase RuvC)		
NN	8365	4	6.029	17	0.11362	0.05	Q93SX1	Cytochrome b6-f	17535.91	7.85
NC	3257	4	6.117	17	2.14779			complex subunit 4 (17		
								kDa polypeptide)		
NN	8395	3	5.101	17	0.08298	1.24	O52753	Crossover junction	17740.55	4.7
NC	3262	3	4.614	17	0.06696			endodeoxyribonuclease		
								RuvC (EC 3.1.22.4)		
								(Holliday junction		
								nuclease RuvC)		
								(Holliday junction		
							ļ	resolvase RuvC)		
NN	8441	2	5.597	16	0.01524	0.02	Q8Z0K8	Alr0083 protein	15901.34	5.64

NC	3280	2	5.564	16	0.72198					
NN	8450	1	4.287	16	0.06125	0.03	Q8YUT1	Gas vesicle protein GvpJ	16597.58	4.73
NC	3274	1	4.690	16	2.06072					
NN	8452	0	5.737	16	0.14889	0.22	Q8Z0K8	Alr0083 protein	15901.34	5.64
NC	3281	0	5.678	16	0.67488					

Table 2. Showing identical protein with differential expression (>1.5 Fold Regulation) in the control and salt treated cells. The putative gene products are also given in the table.

S.N.	Functional Group	Protein Identification	Sub function	Gene	Match
				Name	ID
1	Biosynthesis of cofactors, prosthetic groups, and carriers	2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1- carboxylate synthase (SEPHCHC synthase) (EC 2.2.1.9) (Menaquinone biosynthesis protein MenD)	Menaquinone and ubiquinone	alr0312	23
2	Cellular processes	Chaperone protein dnaK3 (HSP70-3) (Heat shock 70 kDa protein 3) (Heat shock protein 70-3)	Chaperones	alr2446	25
3	Energy metabolism	similar to S-layer-RTX protein	Glycolate pathway	alr3659	19
	Unknown & Hypothetical	Allophycocyanin subunit alpha 1		alr0021	29
4		Crossover junction endodeoxyribonuclease RuvC (EC 3.1.22.4) (Holliday junction nuclease RuvC) (Holliday junction resolvase RuvC)		all2297	5

Table 3. Spot details on commonly induced proteins under sucrose treated cells verses control cells of N. muscorum. NC=protein spots apparent on the gel of control cells of N. muscorum; NS=protein spots apparent on the gel of sucrose treated cells of N. muscorum.

File	\mathbf{Spot}	Match	Apparent	Apparent	%Vol	Fold	Protein	Protein Identification	Theoretical	Theoretical
Name	ID	ID	\mathbf{pI}	MW		Regulation	Acc. No		Mw (Da)	$_{\rm pI}$
				(kDa)		Value				
						(t/c)				
NS	3770	36	4.414	17	9.6733	0.71	O52751	Crossover junction	17740.6	4.7
NC	3254	36	4.720	17	13.5579			endodeoxyribonuclease		
								RuvC (EC 3.1.22.4)		
								(Holliday junction		
								nuclease RuvC) (Holliday		
								junction resolvase RuvC)		
NS	3596	35	5.964	66	0.0245	0.27	Q8YZZ2	2-succinyl-5-enolpyruvyl-	65729.2	5.83
NC	3126	35	5.889	64	0.0898			6-hydroxy-3-cyclohexene-		
								1-carboxylate synthase		
								(SEPHCHC synthase)		
								(EC 2.2.1.9)		
								(Menaquinone		
								biosynthesis protein		
								MenD)		
NS	3603	34	4.470	64	0.4829	1.09	Q8YM86	NAD(P)H-quinone	61013	5.72
NC	3128	34	4.564	62	0.4426			oxidoreductase chain 4-3		
								(EC 1.6.5) (NAD(P)H		
								dehydrogenase I, subunit		
								D-3) (NDH-1, chain 4-3)		
NS	3612	33	4.700	60	0.8317	4.81	Q8Z0E5	Penicillin-binding protein	60683.9	5.04
NC	3134	33	4.700	60	0.1729					
NS	3614	32	4.941	61	0.1040	0.69	Q8YP23	Peptide chain release	61270.8	5.43

NC	3129	32	4.856	62	0.1500			factor 3 (RF-3)		
NS	3620	31	5.200	59	0.1628	1.46	Q8YQZ0	Urease subunit alpha (EC	61155.6	5.23
NC	3132	31	4.524	61	0.1116			3.5.1.5) (Urea		
								amidohydrolase subunit		
								alpha)		
NS	3623	30	4.907	56	0.7416	7.08	Q8YPL2	2,3-bisphosphoglycerate-	57677.3	4.99
NC	3135	30	4.973	57	0.1047			independent		
								phosphoglycerate mutase		
								(BPG-independent		
								PGAM)		
								(Phosphoglyceromutase)		
								(iPGM) (EC 5.4.2.1)		
NS	3636	29	5.867	53	0.0964	0.16	Q8YM64	Light-independent	52534.9	5.69
NC	3141	29	5.694	52	0.5954			protochlorophyllide		
								reductase subunit N		
								(DPOR subunit N) (LI-		
								POR subunit N) (EC		
								1.18)		
NS	3643	28	6.124	50	0.0326	0.44	Q8YLT5	Alr5211 protein	52011.7	8.78
NC	3149	28	6.036	52	0.0737					
NS	3655	27	4.890	45	0.1636	0.71	Q8YPU6	NADH dehydrogenase	45675.2	4.95
NC	3163	27	4.983	46	0.2307					
NS	3728	26	5.355	23	0.1012	0.63	Q8YVB5	Uracil	23364.1	5.08
NC	3220	26	5.085	23	0.1604			phosphoribosyltransferase		
								(EC 2.4.2.9) (UMP)		
								pyrophosphorylase)		
								(UPRTase)		
NS	3735	25	4.444	21	1.5199	1.01	P80562	Inorganic	18960.6	4.69
NC	3228	25	4.710	19	1.5025			pyrophosphatase (EC		
								3.6.1.1) (Pyrophosphate		
								phospho-hydrolase)		
NC	2726	94	1 = 10	01	9 4107	2.04	O OVEE 1	(PPase)	19022.0	1.95
NC	9790 9991	24	4.046	21 19	2.4107	5.94	QOISEI	rnosphoenoipyruvate	16055.9	4.60
NC	3231	24	4.944	18	1.1071	0 55	050540	UDD0070 ATD 1: 1:	17020 7	4.99
NG	3738	23	4.872	20	1.12/1	0.55	052749	UPF0079 ATP-binding	17938.7	4.33
NC	3230	23	4.500	18	2.0396		oanua	protein air2500	10001	
NS	3749	22	0.048	19	0.1077	0.22	Q8YNU3	Air4468 protein	18081	6.9
NC	3243	22	6.158	18	0.4841		0			
NS	3752	21	5.097	18	0.2333	0.50	Q8YSE1	Phosphoenolpyruvate	18033.9	4.85
NC	3246	21	4.898	18	0.4662			synthase		
NS	3753	20	4.422	18	10.2086	1.96	P80562	Inorganic	18960.6	4.69
NC	3244	20	4.653	18	5.2084			pyrophosphatase (EC		
								3.6.1.1) (Pyrophosphate		
								(DDara)		
NC	9755	10	4 100	10	0 6996	1 17	059740	(FFase)	17029.7	4.99
NG	3733	19	4.100	18	0.0880	1.17	052749	0PF0079 ATP-Dinding	17938.7	4.33
NC	3241	19	4.100	18	0.5871	0.17	00372720		17405.0	5.97
NS	3756	18	5.372	18	0.1126	0.17	Q8YYZ9	Alr0692 protein	17425.2	5.37
NC	3248	18	5.215	18	0.6489	1.12	0.07 77		1000	
NS	3757	17	6.109	18	0.3474	1.42	Q8YWH5	Molybdopterin synthase	18097.8	7
NC	3247	17	6.442	18	0.2450			catalytic subunit (EC		
								2.8.1.12 (MPT synthase		
								subunit 2) (Molybdenum		

N S S70 16 4 223 18 0.182 1.03 OS2710 (Molyhdopperin- converting factor subunit) protein alr.2000 17048.7 4.33 NS 3706 16 4.226 18 0.1118 OS2740 (DPfOO7) ATP-binding protein alr.2000 17048.7 4.33 NS 3706 16 5.262 17 7.0683 0.58 P80555 Molphycocyanin subunit 17214.5 4.92 NC 3226 14 5.405 17 1.224.9 P80557 Molphycocyanin subunit 17214.5 4.92 NC 3256 14 5.405 17 4.2938 0.76 P80557 Molphycocyanin subunit 1714.56 4.43 NC 3250 12 5.800 17 2.918 1.18 052710 Creation alr.2300 17740.6 4.7 NC 3250 12 5.800 17 2.108 1.18 052710 UPE0079 ATP-binding molecase RwC/ (BURday Filter allowith allowith allowith allow filter allowith allowith allowith allowith allowith allowith al									cofactor biosynthesis		
Image: No. 1999 Image: No.									protein E)		
Image: Solution of the second secon									(Molybdopterin-		
Image: No. 1000 Image: No.									converting factor large		
Image: second									subunit) (Molybdopterin-		
S 370 16 4.23 18 0.182 1.03 05274 UPF0079 ATP-binding proton alr2300 1738.7. 4.33 NC 3242 16 4.236 18 0.1118 052740 UPF0079 ATP-binding proton alr2300 1731.5.3 4.02 NS 3767 14 5.005 17 1.2443 alpha 1 1721.5.3 5.46 NC 3226 14 5.451 17 5.630 0.58 052740 UPF0079 ATP-binding protein alr2300 17038.7 4.33 NC 3226 13 4.225 17 0.6500 052740 UPF0079 ATP-binding protein alr2300 17038.7 4.33 NC 3200 13 4.225 17 0.6500 052740 UPf0079 ATP-binding protein alr2300 17740.6 4.7 NC 3207 13 5.860 17 2.188 18 0.5276 Cressorer junction neclease Ru/C (Hullidy junction resolvase Ru/C (PG 31.22.4) 1735.9 7.85 NS 3771 10									converting factor subunit		
Instruction	NS	3750	16	1 223	18	0 1892	1 63	052749	2) UPF0079 ATP-hinding	17038 7	1 33
NS 3756 15 5.22 17 7.083 0.58 P80557 Allophycocyanin subunit alpha 1 17214.5 4.92 NC 3252 15 5.085 17 12.2443 P80557 Allophycocyanin subunit 1717.6 5.46 NC 3256 14 5.41 17 5.6380 UPF0079 Allophycocyanin subunit 1717.6 4.33 NC 3250 12 2.5400 17 2.6184 1.15 offeeta 177.0 4.33 NC 3260 12 5.800 17 2.6184 1.16 offeeta 177.0 4.7 NC 3260 12 5.800 17 2.2108 uprotein alr2300 17.5 17.55.9 7.85 NC 3257 11 6.117 1.7 2.1478 polypeptide) 1730.7 4.33 NC 3258 10 4.037 17 0.3655 0.60 Q8YU80 14-dihydroxy-2 16864.4 5.8	NC	3242	16	4 236	18	0.1022	1.00	002145	protein alr2300	11550.1	1.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NS	3765	15	5.252	17	7.0583	0.58	P80555	Allophycocyanin subunit	17214.5	4.92
NS 3767 14 5.005 17 4.2938 0.76 P80557 Allophycocyanin subunit 1717.3.6 5.46 NC 3256 14 5.461 17 6.5380 0 557 OS2749 UPP0079 ATP-binding protein alr2300 1738.7 4.33 NC 3250 12 5.800 17 2.6184 1.18 OS2751 Crossover junction endocoxyribounclease RuvC (EC 4.12.2.4) (Holliday junction nuclease RuvC) (Holl	NC	3252	15	5.085	17	12.2443			alpha 1		-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NS	3767	14	5.605	17	4.2938	0.76	P80557	Allophycocyanin subunit	17173.6	5.46
NS 377 13 4.164 17 0.357 0.55 O52749 UPF0079 ATP-binding protein al:2300 1738.7 4.33 NC 3250 12 5.800 17 2.6184 1.8 0.52749 UPF0079 ATP-binding protein al:2300 1740.6 4.7 NC 3250 12 5.800 17 2.2108 1.8 0.52741 Crossover junction endodexyribonuclease RuvC (EC 3.1.22.4) (Holiday junction muclease RuvC) (Holiday junction resolvase RuvC) 1.740.6 4.7 NS 3773 11 5.967 17 0.6276 0.29 Q93SX1 Cytochrome bef chooples submit 4 (17 kDa polyneptide) 1.753.9 7.85 NC 3255 10 4.039 17 0.715 0 0.507 0 PP6079 ATP-binding protein al:2300 1738.7 4.33 NC 3255 9 5.849 17 0.715 0 0.507 0 PP6079 ATP-binding protein al:2300 1864.4 5.8 NC 3255 9 5.849 17 0.715 0.406 <td>NC</td> <td>3256</td> <td>14</td> <td>5.451</td> <td>17</td> <td>5.6380</td> <td></td> <td></td> <td>beta</td> <td></td> <td></td>	NC	3256	14	5.451	17	5.6380			beta		
NC 3259 13 4.225 17 0.6500 protein alp2300 [770.6] <td>NS</td> <td>3771</td> <td>13</td> <td>4.164</td> <td>17</td> <td>0.3574</td> <td>0.55</td> <td>O52749</td> <td>UPF0079 ATP-binding</td> <td>17938.7</td> <td>4.33</td>	NS	3771	13	4.164	17	0.3574	0.55	O52749	UPF0079 ATP-binding	17938.7	4.33
NS 3772 12 5.800 17 2.6184 1.18 O52751 Crossover junction endodecxyribonuclease RurC (DC 1.2.2.4) (Holliday junction nuclease RurC) (Holliday 1740.6 4.7 NS 3773 11 5.967 17 0.276 0.29 Q83X1 Cytochrome b61 complex polypetide) 17535.9 7.85 NC 3257 11 6.117 17 0.276 0.29 Q93X1 Cytochrome b61 complex polypetide) 17338.7 4.33 NC 3258 10 4.037 17 0.265 0.60 Q87U9 I/PF0079 ATP-binding potenti alr2300 16864.4 5.8 NC 3255 9 5.849 17 0.6163 0.60 Q8YU89 1.4-dihydroxy-2- naphthoyl-CoA hydrolase (EC 3.1.2.28) (DHNA- CoA thiosetrase) 16864.4 5.8 NC 3261 7 5.105 17 0.2633 0.60 Q8YU9 1.4-dihodoxyriboutclease (RurC (C 3.1.2.24) (H)HA- CoA thiosetrase) 1740.6 4.7 NC 3261 7 4.671 7.0 0.364 0 <td>NC</td> <td>3259</td> <td>13</td> <td>4.225</td> <td>17</td> <td>0.6500</td> <td></td> <td></td> <td>protein alr2300</td> <td></td> <td></td>	NC	3259	13	4.225	17	0.6500			protein alr2300		
NC 3260 12 5.800 17 2.2108 and edocyribounclease RuvC (BC 3.1.22.4) (Holiday junction nuclease RuvC) and edocyribounclease RuvC (Holiday junction resolvase RuvC) NS 3773 11 5.967 17 0.6276 0.29 Q38X1 Cytochrome bef complex polypeptide) 17535.9 7.85 NC 3257 11 6.117 17 1.4799 2.06 052749 UPF0079 ATP-binding polypeptide) 17938.7 4.33 NC 3255 9 5.858 17 0.3655 0.60 Q8YU89 1.4-dihydroxy-2- naphthoyl-CoA hydrolase (DHX-CoA hydrolase) 16864.4 5.8 NC 3255 9 5.849 17 0.6103 Polypeptide 1768.03 5.06 NC 3261 7 5.105 17 0.2424 0.80 O2772 Crosover junction endodeoxyribonuclease RuvC (EG 31.22.4) 1740.6 4.7 NC 3261 7 4.671 17 0.3047 Polypeptide Polypeptide 1740.6 4.7 NC	NS	3772	12	5.800	17	2.6184	1.18	O52751	Crossover junction	17740.6	4.7
Image: Normal System Image: Normal System Ruv C (EC 3.1.22.4) (Holliday junction resolvase Ruv C) Ruv C (Holliday junction resolvase Ruv C) NS 3773 11 5.967 17 0.6276 0.29 Q3SX1 Cytochrome b6-f complex submit 4 (17 kDa 7.85 NC 3257 11 6.117 17 0.719 2.06 052749 UPF0079 ATP-binding protein alr2300 17938.7 4.33 NC 3255 9 5.858 17 0.6103 0.6103 Q8YU89 1.4-dihydrox/2-2- naphthoylCoA hydrolase) (EC 3.1.2.28) (DHNA- CoA thioesterase) 16864.4 5.8 NC 3263 8 5.022 17 2.5633 102 P80556 Allophycocyanin subunit alpha-B 17808.3 5.06 NC 3263 8 5.022 17 0.2424 0.80 052752 Crossover junction endodexyrrhounclease RuvC (Holliday junction resolvase RuvC) 17740.6 4.7 NC 3261 7 4.67 1.308 17 0.3047 2.5 1.78 Q8YU2 Actory (Holliday junction resolvase RuvC)	NC	3260	12	5.800	17	2.2108			endodeoxyribonuclease		
NS 3773 11 5.967 17 0.6276 0.29 Q33SX1 Cytochrome b6-f complex subunit 4 (17 kDa polypeptide) 17535.9 7.85 NC 3257 11 6.117 17 2.1478 Q39SX1 Cytochrome b6-f complex subunit 4 (17 kDa polypeptide) 7.85 NS 3774 10 4.059 17 1.4799 2.06 O52749 UPF0079 ATP-binding protein ah2300 17938.7 4.33 NC 3258 10 4.037 17 0.7195 0.6103 Q8YU89 1.4-dihydroxy-2 naphthoyl-CoA hydrolase (DHNA-CoA hydrolase) (EC 3.1.2.28) (DHNA- CoA thioesterase) 16864.4 5.8 NC 3263 8 5.022 17 2.6633 Allophycocyanin subunit alpha-B 17680.3 5.06 NC 3261 7 4.671 17 0.2424 0.80 O52752 Crossover junction endodeoxyribonuclease RwC (IC 3.1.2.24) 1740.6 4.7 NC 3261 7 4.671 17 0.3047 Q8YU2 Potein Arceloase RwC (Idlida) junction resolvase RuC (Idlida) junction resolvase R									RuvC (EC 3.1.22.4)		
Image: Section of the sectio									(Holliday junction		
NS 3773 11 5.967 17 0.6276 0.29 Q93X1 Cytochrome be-f complex submit 4 (17 kDa polypeptide) 17535.9 7.85 NC 3257 11 6.117 17 2.1478 Q93X1 Cytochrome be-f complex submit 4 (17 kDa polypeptide) 1738.7 4.33 NC 3258 10 4.037 17 0.7165 Q8YU89 1,4-dihydroxy-2- naphthoyl-CoA hydrolase (DHNA-CoA hydrolase) 16864.4 5.8 NC 3255 9 5.849 17 0.6103 Q8YU89 1,4-dihydroxy-2- naphthoyl-CoA hydrolase) 1780.3 5.06 NC 3263 8 5.022 17 2.5633 Q8YU89 1,4-dihydroxy-2- naphthoyl-CoA hydrolase) 1780.3 5.06 NC 3261 7 4.671 17 0.2424 0.80 Q8YU21 Crossover junction alpha-B 1774.6 4.7 NC 3261 7 4.671 17 0.2424 0.80 Q8YU22 Crossover junction alpha-B 1774.6 4.7 NC									nuclease RuvC) (Holliday		
NS 3773 11 6.967 17 0.6276 0.29 $Q3SX1$ Cytochrome bel complex 1735.9 7.85 NC 3257 11 6.117 17 2.1478 $ubmit 4$ $(17 kDa polypeptide)$ 1735.9 7.85 NC 3258 10 4.037 17 0.7195 $UPF0079$ ATP-binding protein $alr3300$ 17338.7 4.33 NC 3255 9 5.858 17 0.6103 $Q8YU8$ 1.4 -dihydroxy-2 16864.4 5.8 NC 3255 9 5.849 17 0.6103 $Q8YU8$ 1.4 -dihydroxy-2 16864.4 5.8 NC 3255 9 5.849 17 2.6173 1.02 $P8056$ $Allophycocyanin submit 17680.3 5.06 NC 3261 7 4.671 17 0.2424 0.80 52752 Crossover junction endocoxyribouclease RuvC) (Holiday junction nuclease RuvC) (Holiday junction resolvase RuvC) 1748.6 4.7$				F 0.05			0.00	0.000774	junction resolvase RuvC)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NS	3773	11	5.967	17	0.6276	0.29	Q93SX1	Cytochrome b6-f complex	17535.9	7.85
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NC	3257	11	6.117	17	2.1478			subunit 4 (17 kDa polypeptide)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NS	3774	10	4 059	17	1 4700	2.06	052749	UPF0070 ATP-binding	17038 7	1 33
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NC	3258	10	4.035	17	0 7195	2.00	002143	protein alr2300	11550.1	4.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NS	3775	9	5 858	17	0.3655	0.60	08VII89	1 4-dihydroxy-2-	16864 4	5.8
No 250 5 5.45 11 6.5105 11 6.5105 11	NC	3255	9	5 849	17	0.6103	0.00	Q01005	naphthoyl-CoA hydrolase	10004.4	0.0
Image: Normal System Image: No		0200	0	0.010	11	0.0100			(DHNA-CoA hydrolase)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									(EC 3.1.2.28) (DHNA-		
NS 3777 8 4.576 17 2.6173 1.02 P80556 Allophycocyanin subunit alpha-B 17680.3 5.06 NS 3779 7 5.105 17 0.2424 0.80 Crossover junction endodeoxyribonuclease RuvC (EC 3.1.22.4) (Holliday junction nuclease RuvC) (Holliday junction resolvase RuvC) 1740.6 4.7 NS 3781 6 4.422 17 0.6460 0.49 Q8YUT2 Protein GvpK 16947.7 4.65 NC 3266 4.458 17 1.3085 Protein GvpK 16947.7 4.65 NS 3783 5 5.476 17 0.6460 0.49 Q8YUT2 Protein GvpK 16947.7 4.65 NS 3783 5 5.476 17 0.1593 1.78 Q8YU70 Alro692 protein 17122.6 5.37 NC 3268 5 5.997 17 0.166 0.62 Q8Z017 Small heat shock protein 17122.6 5.5 NC 3271 4 5.434									CoA thioesterase)		
NC 3263 8 5.022 17 2.5633 alpha-B Image: Construction of the construct	NS	3777	8	4.576	17	2.6173	1.02	P80556	Allophycocyanin subunit	17680.3	5.06
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NC	3263	8	5.022	17	2.5633			alpha-B		
NC 3261 7 4.671 17 0.3047	NS	3779	7	5.105	17	0.2424	0.80	O52752	Crossover junction	17740.6	4.7
NS 3781 6 4.422 17 0.6460 0.49 Q8YUT2 Protein GvpK 16947.7 4.65 NC 3266 6 4.658 17 1.3085 Protein GvpK 16947.7 4.65 NC 3266 5 5.476 17 0.1593 1.78 Q8YYZ9 Alro692 protein 17425.2 5.37 NC 3268 5 5.296 17 0.1660 0.62 Q8Z017 Small heat shock protein 17122.6 5.5 NC 3271 4 5.434 16 0.1874 Q8YRG9 Alr3479 protein 16687 5.26 NC 3271 4 5.436 16 0.3697 0.44 Q8YRG9 Alr3479 protein 16687 5.26 NC 3272 3 5.158 16 0.8422 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3274 2 4.690 16 2.0607 2 Q8YUT1 Gas vesicle protein GvpJ	NC	3261	7	4.671	17	0.3047			endodeoxyribonuclease		
NS 3781 6 4.422 17 0.6460 0.49 Q8YUT2 Protein GvpK 16947.7 4.65 NC 3266 6 4.658 17 1.3085 Protein GvpK 16947.7 4.65 NS 3783 5 5.476 17 0.1593 1.78 Q8YYZ9 Alro692 protein 17425.2 5.37 NC 3268 5 5.296 17 0.1660 0.62 Q8YU79 Alro692 protein 17122.6 5.5 NC 3271 4 5.434 16 0.1874 Protein 16687 5.26 NC 3271 4 5.438 16 0.3697 0.44 Q8YRG9 Alr3479 protein 16687 5.26 NC 3272 3 5.158 16 0.8422 Protein Protein GvpJ 16597.6 4.73 NS 3794 2 4.365 16 0.1921 0.17 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3273 1 4.821 16 0.1921 0.17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>RuvC (EC 3.1.22.4)</td> <td></td> <td></td>									RuvC (EC 3.1.22.4)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									(Holliday junction		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									iunction recoluce Rur()		
NS 3764 6 4.422 11 0.405 0.43 Q01012 1100000000000000000000000000000000000	NS	3781	6	4 499	17	0.6460	0.49	O8VUT2	Protein CypK	16947 7	4 65
NS 3783 5 5.476 17 0.1593 1.78 Q8YYZ9 Alro692 protein 17425.2 5.37 NC 3268 5 5.296 17 0.0893 1.78 Q8YYZ9 Alro692 protein 17425.2 5.37 NC 3268 5 5.296 17 0.0893 1.78 Q8Z017 Small heat shock protein 17122.6 5.5 NC 3271 4 5.434 16 0.1874 2 Q8YRG9 Alr3479 protein 16687 5.26 NS 3793 3 5.588 16 0.8422 2 2 4.365 16 1.1991 0.58 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3274 2 4.690 16 2.0607 2 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3273 1 4.821 16 0.1921 0.17 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3273 1 4.549 16 1.1504 2 2 </td <td>NC</td> <td>3266</td> <td>6</td> <td>4.422</td> <td>17</td> <td>1 3085</td> <td>0.45</td> <td>Q01012</td> <td>i iotem Gvpix</td> <td>10341.1</td> <td>4.00</td>	NC	3266	6	4.422	17	1 3085	0.45	Q01012	i iotem Gvpix	10341.1	4.00
NS 3793 3 5.588 16 0.3697 0.44 Q8YRG9 Alr3479 protein 16687 5.26 NC 3271 4 5.434 16 0.3697 0.44 Q8YRG9 Alr3479 protein 16687 5.26 NC 3272 3 5.158 16 0.3697 0.44 Q8YRG9 Alr3479 protein 16687 5.26 NS 3794 2 4.365 16 0.1921 0.58 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NS 3795 1 4.821 16 0.1921 0.17 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NS 3805 0 4.407 16 0.3505 3.33 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73	NS	3783	5	5 476	17	0 1593	1 78	O8YYZ9	Alr0692 protein	17425.2	5 37
NS 3784 4 5.597 17 0.1166 0.62 Q8Z017 Small heat shock protein 17122.6 5.5 NC 3271 4 5.434 16 0.1874 Q8Z017 Small heat shock protein 17122.6 5.5 NS 3793 3 5.588 16 0.3697 0.44 Q8YRG9 Alr3479 protein 16687 5.26 NC 3272 3 5.158 16 0.8422 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3274 2 4.690 16 2.0607 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NS 3795 1 4.821 16 0.1921 0.17 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3273 1 4.549 16 1.1504 4.33 4.407 16 0.3505 3.33 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NS 3805 0 4.407 16 0.3505 3.33 Q8YUT1 Gas vesicle protein GvpJ	NC	3268	5	5 296	17	0.0893	1110	Q01120	rinousz protein	11 120.2	0.01
NC 3271 4 5.434 16 0.1874 A	NS	3784	4	5.597	17	0.1166	0.62	Q8Z017	Small heat shock protein	17122.6	5.5
NS 3793 3 5.588 16 0.3697 0.44 Q8YRG9 Alr3479 protein 16687 5.26 NC 3272 3 5.158 16 0.8422 0 Alr3479 protein 16687 5.26 NS 3794 2 4.365 16 1.1991 0.58 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3274 2 4.690 16 2.0607 0 0 0 0 0 NS 3795 1 4.821 16 0.1921 0.17 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3273 1 4.549 16 1.1504 0 0 4.93 0 4.73 NS 3805 0 4.407 16 0.3505 3.33 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73	NC	3271	4	5.434	16	0.1874		~	1		
NC 3272 3 5.158 16 0.8422 NS 3794 2 4.365 16 1.1991 0.58 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3274 2 4.690 16 2.0607 0.17 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NS 3795 1 4.821 16 0.1921 0.17 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3273 1 4.549 16 1.1504 0.17 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NS 3805 0 4.407 16 0.3505 3.33 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73	NS	3793	3	5.588	16	0.3697	0.44	Q8YRG9	Alr3479 protein	16687	5.26
NS 3794 2 4.365 16 1.1991 0.58 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3274 2 4.690 16 2.0607 2 2 2 3.690 16 2.0607 2 4.73 2 4.690 16 2.0607 2 2 4.73 2 4.690 16 2.0607 2 2 3 2 4.821 16 0.1921 0.17 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3273 1 4.549 16 1.1504 2 2 2 2 4.697.6 4.73 NS 3805 0 4.407 16 0.3505 3.33 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73	NC	3272	3	5.158	16	0.8422					
NC 3274 2 4.690 16 2.0607 Image: Constraint of the state of th	NS	3794	2	4.365	16	1.1991	0.58	Q8YUT1	Gas vesicle protein GvpJ	16597.6	4.73
NS 3795 1 4.821 16 0.1921 0.17 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73 NC 3273 1 4.549 16 1.1504 200 200 4.000 4.73 4.73 NS 3805 0 4.407 16 0.3505 3.33 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73	NC	3274	2	4.690	16	2.0607					
NC 3273 1 4.549 16 1.1504 NS 3805 0 4.407 16 0.3505 3.33 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73	NS	3795	1	4.821	16	0.1921	0.17	Q8YUT1	Gas vesicle protein GvpJ	16597.6	4.73
NS 3805 0 4.407 16 0.3505 3.33 Q8YUT1 Gas vesicle protein GvpJ 16597.6 4.73	NC	3273	1	4.549	16	1.1504			- *		
	NS	3805	0	4.407	16	0.3505	3.33	Q8YUT1	Gas vesicle protein GvpJ	16597.6	4.73

_								
NC	3285	0	4.778	16	0.1053			

Table 4.	Showing identical	protein with	differential	$\operatorname{expression}$	(>1.5	Fold 1	Regulation)	in the	$\operatorname{control}$	and a	sucrose
treated ce	lls. The putative ge	ene products a	are also give	en in the tal	ole.						

S.N.	Functional	Protein Identification	Sub function	Gene	Match
	Group			Name	ID
1	Cell envelope	Penicillin-binding protein	Murein sacculus and peptidoglycan	alr0153	33
2	Energy metabolism	2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPG-independent PGAM) (Phosphoglyceromutase) (iPGM) (EC 5.4.2.1)	Glycolysis	all4182	30
		Phosphoenolpyruvate synthase	Pyruvate and acetyl- CoA metabolism	alr3147	24
	Central	similar to NifU protein	Nitrogen fixation	alr0692	5
3	intermediary metabolism	Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase)	Phosphorus compounds	all3570	20
4	Unknown &	Gas vesicle protein GvpJ		all2250	0
4	Hypothetical	UPF0079 ATP-binding protein alr2300		alr2300	16, 10

Table 5. Spot details on commonly induced proteins under salt and sucrose treated cells of N. muscorum. NS=protein spots apparent on the gel of sucrose treated cells of N. muscorum; NN=protein spots apparent on the gel of salt treated cells of N. muscorum

File	\mathbf{Spot}	Match	Apparent	Apparent	%Vol	Fold	Protein	Protein Identfication	Theoretical	Theoretical
Name	ID	ID	pI	MW		Regulation	Acc. No		Mw (Da)	pI
				(kDa)		(T/C)				
NN	7877	53	6.08	77	0.045	1.83	Q8YZZ2	2-succinyl-5-enolpyruvyl-	65729.2	5.83
NS	3596	53	5.96	66	0.024			6-hydroxy-3-cyclohexene-		
								1-carboxylate synthase		
								(SEPHCHC synthase)		
								(EC 2.2.1.9)		
								(Menaquinone		
								biosynthesis protein		
								MenD)		
NN	7881	52	5.32	76	0.133	2.24	Q8YQU9	ArgininetRNA ligase	65814.9	5.3
NS	3597	52	5.40	65	0.059			(EC 6.1.1.19) (Arginyl-		
								tRNA synthetase)		
								(ArgRS)		
NN	7916	51	5.14	67	0.058	0.81	Q8YXJ6	L-aspartate oxidase	63173	6.17
NS	3604	51	5.27	64	0.072			(LASPO) (EC 1.4.3.16)		
								(Quinolinate synthase B)		
NN	7969	50	4.70	60	0.200	0.24	Q8YSY8	All2941 protein	62501	9.2
NS	3612	50	4.70	60	0.832					
NN	7972	49	5.17	61	0.041	0.19	P48575	2-isopropylmalate	57761.5	5.38
NS	3621	49	5.29	58	0.216			synthase $(EC 2.3.3.13)$		
								(Alpha-IPM synthase)		
								(Alpha-isopropylmalate		
								synthase)		
NN	7973	48	6.48	61	0.025	0.77	Q8YXT4	NADH dehydrogenase	49725.4	6.13
NS	3643	48	6.12	50	0.033					
NN	7977	47	4.07	60	0.036	0.40				

NS	3610	47	4.14	62	0.089					
NN	7978	46	4.49	58	0.591	5.02	Q8YVS8	60 kDa chaperonin 2	58969.6	4.93
NS	3618	46	4.46	59	0.118			(GroEL protein 2)		
								(Protein Cpn60 2)		
NN	7979	45	4.59	59	0.144	0.28	Q8Z0C1	Putative diflavin	62572.6	6.1
NS	3611	45	4.49	61	0.508			flavoprotein A 5		
NN	7984	44	5.30	59	0.157	4.55	Q8YMQ0	NAD(P)H-quinone	55464.6	5.6
NS	3627	44	5.42	55	0.034			oxidoreductase subunit 2		
								(EC 1.6.5) (NAD(P)H		
								dehydrogenase subunit		
								2) (NADH-plastoquinone		
								2) (NDH-1, subunit 2)		
NN	7988	43	5.09	58	0.012	0.07	O8VZB2	L-2 4-diaminobutvrate	58500.6	5.01
NS	3620	43	5.09	50 59	0.012 0.163	0.01	Q012112	decarboxylase	00000.0	0.01
NN	7994	49	4 90	55	0.100	0.59	O8VZX6	Anthranilate synthetase	56214-2	5.16
NS	3623	12 19	4.01	56	0.400	0.05	Q01210	alpha-subunit	00214.2	0.10
NN	8000	41	4.91	55	0.142	0.52	O8VWF0	UDP-N-acetylmuramovl-	53473.8	5.17
NS	3634	41	4. <i>33</i>	53	0.141 0.270	0.52	Q01 W10	L-alanyl-D-glutamate	00410.0	0.17
110	0004	11	0.00	00	0.210			2,6-diaminopimelate		
								ligase		
NN	8016	40	4.81	53	0.119	0.25	Q8Z064	Probable cytosol	51918.3	4.87
NS	3639	40	4.79	51	0.468			aminopeptidase (EC		
								3.4.11.1) (Leucine		
								aminopeptidase) (LAP)		
								(EC 3.4.11.10) (Leucyl		
								aminopeptidase)		
NN	8026	39	4.45	51	0.056	0.17	Q8YQX9	Trigger factor (TF) (EC	52381.9	4.43
NS	3640	39	4.44	52	0.342		0 - 1 1 1 - 1	5.2.1.8) (PPIase)		
NN	8035	38	4.91	51	0.043	0.03	Q8YN91	tRNA modification	49783	4.9
NS	3637	38	4.92	50	1.662			GIPase MnmE (EC		
NN	8042	27	4.14	50	0.050	0.30	OSVOXO	Trigger factor (TE) (EC	52281.0	1 12
NS	3638	37 27	4.14	50	0.059	0.53	QOIQA9	5 2 1 8) (PPIase)	52561.9	4.40
NN	8045	36	4.20	32 48	1 180	10 77	O8VLT0	Alr5216 protein	48421.9	4 58
NS	3647	36	4 71	40	0.110	10.11	Q01110	riio210 protein	10121.0	1.00
NN	8077	35	6.22	47	0.015	0.80	O8YOU4	Precorrin-6v-dependent	43288 1	6 33
NS	3658	35	6.01	43	0.019	0.00	401401	methyltransferase	10200.1	0.00
NN	8084	34	4.17	45	0.073	0.87		UNKNOWN		
NS	3659	34	4.22	42	0.084					
NN	8094	33	5.18	44	0.135	2.27	Q8YPR1	Phosphoglycerate kinase	42441.5	5.15
NS	3663	33	5.29	41	0.059		- C	(EC 2.7.2.3)		
NN	8126	32	4.93	41	0.109	0.24	P58571	Magnesium-chelatase	41245.2	5.03
NS	3666	32	4.94	40	0.454			subunit ChlI (EC		
					-			6.6.1.1) (Mg-		
								protoporphyrin IX		
								chelatase)		
NN	8127	31	5.07	41	0.023	0.39	P70801	Glucanase	37896.1	5.13
NS	3672	31	5.05	38	0.060					
NN	8135	30	5.68	39	0.021	0.21	Q8YQG6	Cyclic pyranopterin	36878.3	6.25
NS	3679	30	5.70	36	0.098			monophosphate synthase		
								(EC 4.1.99.18)		

								(Molybdenum cofactor		
								biosynthesis protein A)		
NN	8139	29	5.31	39	0.048	0.18	Q8YUM5	Ketol-acid	36010.9	5.4
NS	3680	29	5.36	36	0.273			reductoisomerase (EC		
								1.1.1.86) (Acetohydroxy-		
								acid isomeroreductase)		
								(Alpha-keto-beta-		
								hydroxylacyl		
NINI	01.40	20	0.50	80	0.000	1.04	O ON THE 1	reductoisomerase)	200200 5	0
NN	8149	28	6.58	38	0.086	1.64	Q8YUSI	Protease HtpX homolog	30638.5	9
NS	3699	28	6.17	30	0.052		0.07.000.0	(EC 3.4.24)		
NN	8189	27	6.11	33	0.020	0.44	Q8YS90	Mg-protoporphyrin IX	25344.8	6.23
NS	3712	27	6.02	25	0.045		0.01/70.00	metnyl transferase	20201 0	x
NN	8208	26	5.67	30	0.071	0.70	Q8YT99	Glucose-I-P	29391.6	5.69
NS	3704	26	5.69	28	0.101		0	cytidylyltransferase		
NN	8232	25	4.33	28	0.061	0.40	Q8YLN8	Riboflavin synthase	23518.8	4.75
NS	3719	25	4.32	23	0.153		0	alpha chain		
NN	8310	24	4.75	19	0.244	0.10	Q8YUQ7	Alr2278 protein	21191.7	4.63
NS	3736	24	4.55	21	2.411	0.00				
NN	8313	23	4.10	18	0.637	0.92	P07120	C-phycocyanin subunit	18255.6	5
NS	3755	23	4.10	18	0.689		0	beta		
NN	8314	22	5.02	19	0.040	0.04	Q8YNA6	Glutathione S-	20774.1	4.89
NS	3738	22	4.87	20	1.127	0.40	CONDUC	transferase	10001	
NN	8329	21	5.86	18	0.060	0.40	Q8YNU3	Alr4468 protein	18081	6.9
NS	3763	21	5.87	17	0.149		0.0.0001		100.10 -	4.00
NN	8330	20	4.37	18	0.052	0.24	Q00881	Biotin carboxyl carrier	19048.7	4.63
NS	3750	20	4.29	18	0.212			protein of acetyl-CoA		
NN	8330	10	6.40	18	0.036	0.34	O8VMF4	Mothylated DNA	10730.8	7 79
NS	3740	10	6.05	10	0.050	0.04	Q01 MID4	protein-cysteine	13750.0	1.12
110	5145	15	0.00	19	0.100			methyltransferase (EC		
								2.1.1.63) (6-O-		
								methylguanine-DNA		
								methyltransferase) (O-6-		
								methylguanine-DNA-		
								alkyltransferase)		
NN	8341	18	4.56	18	1.556	0.15	P80562	Inorganic	18960.6	4.69
NS	3753	18	4.42	18	10.209			pyrophosphatase (EC		
								3.6.1.1) (Pyrophosphate		
								phospho-hydrolase)		
NN	0249	17	5 19	10	0.946	10.06	D07190	(PPase)	19955 6	F
NO	0042	17	0.10 5 10	10	2.340	10.00	F07120	C-phycocyanin subunit	16200.0	9
ND	3732	16	0.10	18	0.233	0.00	OOVNUP		10001	C 0
NN	8345	10	0.74 C 11	18	0.028	0.08	Q8YNU3	Alr4468 protein	18081	6.9
NN	3737	10	0.11	18	0.347	0.00	ONDED		10559.9	F 20
NO	8350	15	0.32 5.97	10	0.325	2.89	Q81PF9	hifunctional protain	18003.3	0.39
115	3750	19	0.37	19	0.113			ArgJ		
NN	8352	14	4.33	17	0.063	0.35	O52749	UPF0079 ATP-binding	17938.7	4.33
NS	3759	14	4.22	18	0.182			protein alr2300		
NN	8356	13	5.26	17	5.988	0.85	Q8YYZ9	Alr0692 protein	17425.2	5.37
NS	3765	13	5.25	17	7.058					

NN	8360	12	5.80	17	3.385	1.29	P35796	Phycoerythrocyanin	17454.5	6.27
NS	3772	12	5.80	17	2.618			alpha chain		
NN	8363	11	5.94	17	0.422	1.16	Q93SX1	Cytochrome b6-f	17535.9	7.85
NS	3775	11	5.86	17	0.365			complex subunit 4 (17		
								kDa polypeptide)		
NN	8373	10	4.20	17	0.328	0.92				
NS	3771	10	4.16	17	0.357					
NN	8380	9	4.08	17	0.094	0.11	O52749	UPF0079 ATP-binding	17938.7	4.33
NS	3768	9	4.26	17	0.882			protein alr2300		
NN	8393	8	6.39	17	0.010	0.02	Q93SX1	Cytochrome b6-f	17535.9	7.85
NS	3773	8	5.97	17	0.628			complex subunit 4 (17)		
								kDa polypeptide)		
NN	8396	7	4.49	17	0.118	0.01	Q8YUT2	Protein GvpK	16947.7	4.65
NS	3770	7	4.41	17	9.673					
NN	8399	6	4.08	17	0.014	0.07	O52749	UPF0079 ATP-binding	17938.7	4.33
NS	3780	6	4.27	17	0.206			protein alr2300		
NN	8403	5	5.50	17	0.185	0.04	Q8YQF0	2-C-methyl-D-erythritol	17873.6	5.56
NS	3767	5	5.61	17	4.294			2,4-cyclodiphosphate		
								synthase (MECDP-		
								synthase) (MECPP-		
								synthase) (MECPS) (EC		
NINI	0.410		4.80	17	0.070	0.10	050540	4.6.1.12)	15000 5	1.00
NN	8410	4	4.38	17	0.078	0.12	O52749	UPF0079 ATP-binding	17938.7	4.33
NS	3781	4	4.42	17	0.646		COMUSO		10004.4	F 0
NN	8432	3	5.84	16	1.545	9.55	Q8YU89	1,4-dihydroxy-2-	16864.4	5.8
NS	3785	3	5.81	17	0.162			naphthoyl-CoA		
								hydrolase (DHNA-COA		
								(DHNA-CoA		
								(Dintif Con thioesterase)		
NN	8438	2	6 73	16	0 151	1 25	087033	Diacylglycerol kinase	16338 5	6 81
NS	3801	2	6.14	16	0.120	1.20	402000	2 may 1819 coror minube	10000.0	0.01
NN	8449	-	5.85	16	0.150	0.30	Q8YYW0	Urease accessory protein	16559.1	5.86
NS	3791	1	5.82	16	0.501	*		UreE		*
NN	8450	0	4.29	16	0.061	0.22	Q8YUT2	Gas vesicle protein Gvp.I	16597.6	4.73
NS	3788	0	4 40	16	0.276			cas residie protein dyps	1000110	
- 110/	0100	~	1.10	±0	5.210	1				

Table 6. Showing identical protein with differential expression (>1.5 Fold Regulation) in the salt treated and sucrose treated cells. The putative gene products are also given in the table.

S.N.	Functional Group	Protein Identification	Sub function	ORF'S	Match
					ID
1		Arginine biosynthesis bifunctional protein ArgJ 2 [Cleaved into:	Glutamate family	alr4235	15
		Arginine biosynthesis bifunctional protein ArgJ alpha chain;	/ Nitrogen		
	Amino acid biosynthesis	Arginine biosynthesis bifunctional protein ArgJ beta chain]	assimilation		
		[Includes: Glutamate N-acetyltransferase (EC 2.3.1.35) (Ornithine			
		acetyltransferase) (OATase) (Ornithine transacetylase); Amino-			
		acid acetyltransferase (EC $2.3.1.1$) (N-acetylglutamate synthase)			
		(AGSase)]			
	Biosynthesis of	2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate	Menaquinone and	alr0312	53
2	cofactors, prosthetic	synthase (SEPHCHC synthase) (EC 2.2.1.9) (Menaquinone	ubiquinone		
	groups, and carriers	biosynthesis protein MenD)			

		probable hemolysin	Cell killing	alr5216	36
3	Cellular processes	Protease HtpX homolog (EC 3.4.24)heat shock protein X	Chaperones	all2263	28
3 4 5		60 kDa chaperonin 2 (GroEL protein 2) (Protein Cpn60 2)	Chaperones	alr1896	46
4	Photosynthesis and respiration	NAD(P)H-quinone oxidoreductase subunit 2 (EC 1.6.5) (NAD(P)H dehydrogenase subunit 2) (NADH-plastoquinone oxidoreductase subunit 2) (NDH-1, subunit 2)	NADH dehydrogenase	all4883	44
		ArgininetRNA ligase (EC 6.1.1.19) (Arginyl-tRNA synthetase) (ArgRS)		all3717	52
-	Unknown &	C-phycocyanin subunit beta		alr0528	17
5	Hypothetical	Phosphoglycerate kinase (EC 2.7.2.3)		all4131	33
		1,4-dihydroxy-2-naphthoyl-CoA hydrolase (DHNA-CoA hydrolase) (EC 3.1.2.28) (DHNA-CoA thioesterase)		alr2465	3