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Introduction

During the last decay many geophysicists study intensively the fractality of environm-
ent structures and its effect on different geophysical processes. A cloud also refers to
such natural phenomena where the question on electric charge formation and separation
is a topical one. Many researches are devoted to the investigation of the regularities of
electric charge separation in clouds. The main results are summarized in classical papers
[1]-[9] where many explanations are presented not taking into account environment
fractality. The results of the study in this area show that one of the important prerequisites
for electric charge separation in clouds are the ice phase (ice crystals, small hail and
hailstones) and supercooled water droplets [10].

It is known that clouds with intensive convective currents have fractal structure and
a cloud is a fractal environment [11]. Thus, we may state that the processes occurring
in such an environment are well described by the apparatus of fractional calculus.
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Problem definition and solution

From Frenckel’s theory [13] in the paper [12], average charge qr which is generated
by one cloud droplet with radius r was obtained for cloud droplets in slightly ionized air
environment in the form

qr = 4πε0nζ a, (1)

where ε0 is the electric constant; a is the bubble radius; ζ is the electrokinetic potential;
n is the number of bubbles with radius a formed in a cloud droplet with radius r.
Thus, relying upon the Frenckel’s theory, the droplet total charge may be written in the
following form:

q(x, t) = 4πε0ζ R(x, t) , (2)

where R(x, t) is the droplet radius.
The law of droplet charge change may have the form:

∂q(x, t)
∂ t

= 4πε0ζ
R(x, t)

∂ t
. (3)

In equation (3) the value j (x, t) =
∂q(x, t)

∂ t
is the charge flux which depends on the

velocity of droplet radius change
R(x, t)

∂ t
coinciding with the diffusive flux by the droplet

surface if they grow due to the diffusion from the surrounding environment [14].
Since the process takes place in a fractal environment, than instead of the model

(3) we consider the law of droplet charge change taking into account the fractality. But
before the consideration of the law of droplet charge change, it is necessary to consider
the droplet size change taking into account the fractality as long as charge change on
the whole occurs due to the drop size change.

It is known [15] that flux equation is expressed by the formula

q(x, t) =−kDα
axu(x, t) , 0 < α < 1, (4)

where k is «diffusion» coefficient; u(x, t) is the concentration (temperature and so on),
Dα

ax is the integrodifferentiating operator in the sense of Riemann-Liouville of fraction
order α with the initial point a which is determined as follows [16]:

Dα
axu(ξ , t) =

1
Γ(1−α)

∂

∂x

x∫
a

u(ξ , t)dξ

(x−ξ )α .

The substitution of ∂/∂ t by Dα
ax in differential equations includes implicitly the

additional factors of physical system interaction. Thus, we may state that equation (4)
describes a fractal process [15].

Taking into account the relations j (x, t) =
∂q(x, t)

∂ t
from (3) and (4) we obtain:

j (x, t) =− k
4πε0ζ

Dα
0tR(x, t) . (5)

Denoting by λ = − k
4πε0ζ

and substituting the flux value j (x, t), formula (5) с учетом

(3) has the form:
∂R(x, t)

∂ t
−λDα

0tR(x, t) = 0. (6)
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Formula is the partial differential equation of the first order. We add the starting and
edge values to equation (6) [11]:

R(x,0) = r1 (x) ,x ∈ [0,L] , (7)

lim
x→0

Dα−1
0x R(x, t) = r2 (t) , t ∈ [0,T ] , (8)

Solution of the problems (6)-(8) has the following form [17]:

R(x, t) =
x∫

0

r1 (s)
x− s

e1,0
1,α

(
−λ t

(x− s)α

)
ds+λ

t∫
0

r2 (η)

x
e1,0

1,α

(
−λ (t−η)

xα

)
dη . (9)

where eν ,δ
α,β (z) =

∞

∑
n=0

zn

Γ(αn+ν)Γ(δ −βn)
is the Wright-type function.

Substituting (9) into formula (2), we obtain the expression for droplet charge taking
into account the environment fractality.

q(x, t) = 4πε0ζ

 x∫
0

r1 (s)
x− s

e1,0
1,α

(
−λ t

(x− s)α

)
ds+λ

t∫
0

r2 (η)

x
e1,0

1,α

(
−λ (t−η)

xα

)
dη

 . (10)

Considering(10) charged particle flux has the form:

j (x, t) = 4πε0ζ
∂

∂ t

 x∫
0

r1 (s)
x− s

e1,0
1,α

(
−λ t

(x− s)α

)
ds+λ

t∫
0

r2 (η)

x
e1,0

1,α

(
−λ (t−η)

xα

)
dη

 . (11)

Applying the following rule:

I′ (t) =

x2(t)∫
x1(t)

∂

∂ t
f (x, t)dx+ f (x2 (t) , t)x′2 (t)− f (x1 (t) , t)x′1 (t) ,

to 11), we obtain

j (x, t) = 4πε0ζ

 x∫
0

r1 (s)
x− s

∂

∂ t
e1,0

1,α

(
−λ t

(x− s)α

)
ds+λ

∂

∂ t

t∫
0

r2 (η)

x
e1,0

1,α

(
−λ (t−η)

xα

)
dη

=

(12)

= 4πε0ζ

x∫
0

r1 (s)
x− s

∂

∂ t
e1,0

1,α

(
−λ t

(x− s)α

)
ds+λ

r2 (t)
x

e1,0
1,α (0)+

+λ

t∫
0

r2 (η)

x
∂

∂ t
e1,0

1,α

(
−λ (t−η)

xα

)
dη .

Сonsidering properties [17]:

e1,0
1,α (0) = 1, Dv

0tz
δ−1eµ,δ

α,β (λ zα) = zδ−v−1eµ−v,δ
α,β (λ zα)
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Result in the final form:

j (x, t) = 4πε0ζ

λ r2 (t)
x

+

x∫
0

r1 (s)
(x− s) t

e0,0
1,α

(
−λ t

(x− s)α

)
ds

+ (13)

+4πε0ζ λ

t∫
0

r2 (η)

xt
e0,0

1,α

(
−λ (t−η)

xα

)
dη .

Expression (13) is the law of cloud droplet charge change considering the environment
fractality by the Wright-type function.

In the paper [11], an equation of (4) type with Caputo fractional derivative operator
was obtained:

q(x, t) = γ∂
α
0t u(x,τ) , 0 < α < 1, (14)

where γ > 0, ∂ α
0t u(x,τ) =Dα−1

0t
du(x,τ)

dτ
is the regularized fractional derivative of the order

α from function u(x,τ) with initial and end points 0 and τ (Caputo derivative). Taking
into account formula (14) and the law of droplet size change, formula (3) is written in
the form:

∂
α
0t R(t)− kR(t) = 0, (15)

where k =
1
γ
. Formula (15) is an ordinary differential equation of fractional order. Add

an initial condition to equation (15):

R(x,0) = R0. (16)

Since f (x) = 0 , the solution of problem (16) for equation (15) has in general view
the following form:

R(t) = R0Eα,1 (ktα) , (17)

where Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
is the Mittag-Leffler-type function [17]. Substituting (17)

into the corresponding formulas for the charge and charged droplet flux, we obtain

q(t) = 4πε0ζ R0Eα,1 (ktα) , j (t) = 4πε0ζ R0tα−1Eα,α (ktα) . (18)

Formula (18) is the law of droplet charge change in Frenkel’s generalized theory in
cloud environment by means of Mittag-Leffler function.

Conclusions

Considering the clouds which are known to have different structure and have different
classification in origin and morphological features to which the data on their fractal
structure may be added, formation of a more general view of cloud physics state is
possible in the future. The paper suggests the mathematical model for the droplet charge
change in fractal cloud environment generalizing Frenkel’s theory. The solution of this
model was obtained taking into account Write- and Mittag-Leffler-type functions.
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