DOI: 10.18454/2079-6641-2017-17-1-33-43

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

УДК 517.938

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСПРОСТРАНЕНИЯ НЕРВНОГО ИМПУЛЬСА С УЧЕТОМ ЭРЕДИТАРНОСТИ *

О. Д. Липко

Камчатский государственный университет имени Витуса Беринга, 683032, г. Петропавловск-Камчатский, ул. Пограничная, 4

E-mail: lipko__95@list.ru

В работе предложена математическая модель распространения нервного импульса Фитц Хью-Нагумо, которая учитывает эффект эредитарности. Эта эредитарная модель описывается интегро-дифференциальным уравнением со степенным ядром – функцией памяти. Алгоритм численного решения этой модели, реализован в компьютерной программе в среде символьной математики Maple. С помощью этой программы были построены расчетные кривые - осциллограммы, а также фазовые траектории в зависимости от различных значений управляющих параметров.

Kлючевые слова: эредитарность, модель Φ итцXью-Нагумо, конечно-разностная схема.

(С) Липко О. Д., 2017

MATHEMATICAL MODELING

MSC 34A08

MATHEMATICAL MODEL OF PROPAGATION OF NERVE IMPULSES WITH REGARD HEREDITARITY

O. D. Lipko

Vitus Bering Kamchatka State University, 683032, Petropavlovsk-Kamchatsky, Pogranichnaya st., 4, Russia

E-mail: lipko__95@list.ru

A mathematical model of the propagation of the nervous pulse of FitzHugh-Nagumo is proposed, which takes into account the effect of heredity. This hereditary model is described by an integro-differential equation with a power kernel - a function of memory. The algorithm for the numerical solution of this model is implemented in a computer program in the environment of symbolic mathematics Maple. With the help of this program, calculated curves - oscillograms, and also phase trajectories were constructed depending on various values of control parameters.

Keywords: hereditarity Model FitzHugh-Nagumo, finite-difference scheme.

© Lipko O. D., 2017

^{*}Работа выполнена по госзаданию, НИР "Применение дробного исчисления в теории колебательных процессов"№АААА-А17-117031050058-9

Введение

Развитие теории эредитарных динамических систем началось с работы итальянского математика Вито Вольтерра [1], там же он ввел термин эредитарность для описания эффекта последействия, или памяти, и впервые исследовал эредитарный осциллятор. Математическое описание эредитарного осциллятора представляло собой интегро-дифференциальное уравнение с ядром, которое называется функцией памяти. В дальнейшем исследования эредитарных динамических систем были связаны с выбором функции памяти. В силу, того что различные среды могут обладать фрактальными свойствами, то функцию памяти целесообразно выбрать степенной. Тогда интегро-дифференциальные уравнения можно переписать как дифференциальные уравнения дробных порядков, теория которых достаточно хорошо разработана [2]. В литературе такие уравнения называют фрактальными, они описывают процессы с частичной потерей памяти. Фрактальные динамические системы наиболее полно исследовались в монографиях [3, 4].

В работе обобщена динамическая система ФитцХью-Нагумо, которая была предложена Р. ФитцХью [5] и Дж. Нагумо [6] для описания распространения нервного импульса в мембране. Обобщенная математическая модель содержит уравнение с производными дробных порядков в смысле Герасимова-Капуто и решается с помощью конечно-разностной схемы. Основные результаты работы отражены в статье автора [7]. В настоящей работе также, с помощью компьютерных экспериментов, были исследованы вопросы устойчивости и сходимости конечно-разностной схемы, реализующей численное решение предложенной модели.

Постановка задачи и метод решения

Классическая нелинейная динамическая система ФитцXью-Нагумо (ΦXH) согласно работам [5], [6] имеет вид:

$$\begin{cases} \dot{x}(t) = c \cdot (y(t) - x(t) - \frac{x^3(t)}{3} + z), \\ \dot{y}(t) = -\frac{(x(t) - a + by(t))}{c}, \end{cases}$$
(1)

где $a,b,\ c$ - константы, удовлетворяющие условиям $1-2b/3 < a < 1,\ 0 < b < 1,\ b < c^2,\ x(t)$ - мембранный потенциал, z - интенсивность раздражителя, в первом приближении константа, которая также может иметь вид прямоугольного импульса или дельта-функции, $t \in [0,T]$ - время процесса, T>0 - время моделирования.

Динамическая система (1) может быть записана в виде одного уравнения:

$$\ddot{x}(t) + c\dot{x}(t)(x^2(t) + p) + qx^3(t) - a - bz = 0,$$
(2)

где $p=b/c^2-1,\ q=1-b,\ g=b/3.$ Для уравнения (2) ставятся начальные условия $(\eta, \varphi-const)$:

$$x(0) = \eta, \dot{x}(0) = \varphi. \tag{3}$$

Задача (2), (3) является задачей Коши, решение которой исследуется в работе [5].

В настоящей работе мы рассмотрим обобщение задачи Коши (2) и (3), введем в него эредитарность с помощью следующего интегро-дифференциального уравнения:

$$\int_{0}^{t} K_{1}(t-\tau)\ddot{x}(\tau)d\tau - c(x^{2}(t)+p)\int_{0}^{t} K_{2}(t-\tau)\dot{x}(\tau)d\tau + qx(t) + gx^{3}(t) - a - bz = 0,$$
 (4)

где $K_1(t- au)$ и $K_1(t- au)$ - функции памяти, характеризующие эредитарность.

Замечание. Заметим, что если функции памяти представляют собой дельта-функцию, то тогда в системе отсутствует эредитарность, а если функции памяти представляют собой функции Хэвисайда, то тогда система обладает полной памятью.

Интерес представляет третий вариант: если функции памяти являются степенными функциями, например,

$$K_1(t-\tau) = \frac{(t-\tau)^{1-\alpha}}{\Gamma(2-\alpha)}, \quad K_2(t-\tau) = \frac{(t-\tau)^{-\beta}}{\Gamma(1-\beta)}, 1 < \alpha < 2, 0 < \beta < 1,$$
 (5)

где $\Gamma(t)$ - гамма-функция Эйлера, тогда говорят, что система обладает частичной "потерей памяти"[2].

В дальнейшем будем исследовать эредитарные процессы с частичной "потерей памяти". Подставим функции памяти (5) в интегро-дифференциальное уравнение (4). В результате получим:

$$\frac{1}{\Gamma(2-\alpha)} \int_{0}^{t} \frac{\ddot{x}(\tau)d\tau}{(t-\tau)^{\alpha-1}} - \frac{c(x^{2}(t)+p)}{\Gamma(1-\beta)} \int_{0}^{t} \frac{\dot{x}(\tau)d\tau}{(t-\tau)^{\beta}} + qx(t) + gx^{3}(t) - a - bz = 0.$$
 (6)

Мы получили интегро-дифференциальное уравнение специального вида. Функции памяти (5) в интегро-дифференциальном уравнении (6) могут быть отличны от степенных функций, что приводит к другим интегро-дифференциальным уравнениям. Если обратиться к определению производной дробного порядка по Герасимова-Капуто, то мы приходим к уравнению:

$$\partial_{0t}^{\alpha} x(\tau) - c(x^{2}(t) + p) \partial_{0t}^{\beta} x(\tau) + qx(t) + gx^{3}(t) - a - bz = 0, \tag{7}$$

где дробные дифференциальные операторы равны:

$$\partial_{0t}^{lpha} x(au) = rac{1}{\Gamma(2-lpha)} \int\limits_0^t rac{\ddot{x}(au)d au}{(t- au)^{lpha-1}}, \quad \partial_{0t}^{eta} x(au) = rac{1}{\Gamma(1-eta)} \int\limits_0^t rac{\dot{x}(au)d au}{(t- au)^{eta}},$$

определенные в смысле Герасимова-Капуто с дробными порядками $1 < \alpha < 2, 0 < \beta < 1$.

Можно отметить, что в предельном случае уравнение (7) переходит в классическое уравнение Φ XH (2), поэтому можно считать, что уравнение (2) является частным случаем уравнения (7). Отметим, что уравнение (7) содержит кубическую нелинейность, характерную для осциллятора Дуффинга [8], а также Ван дер Поля [9].

Интегро-дифференциальное уравнение Φ XH (7) будем называть дробным, или фрактальным уравнением, а процесс, которые оно описывает, будем называть фрактальным, или эредитарным.

Задача Коши (7) и (3) в общем виде не имеет точного решения в силу того, что модельное уравнение является нелинейным, поэтому надо использовать численные методы для ее решения. В качестве численного метода возьмем метод конечноразностных схем, так как его легко можно реализовать в любой компьютерной среде.

Будем рассматривать равномерную сетку. Для этого разобьем временной интервал [0,T] на N равных частей. В результате получим равномерную сетку $t_j=j\tau$, где шаг $\tau=T/N,\ j=0,\cdots,N-1$. Значения искомой функции $x(t_j)=x_j$, будем называть ее сеточной функцией. Аппроксимация дробных операторов уравнения (7) осуществляется следующим образом $[3,\ 10]$:

$$\begin{split} \partial_{0t}^{\alpha} x(\tau) &\approx \frac{\tau^{-\alpha}}{\Gamma(3-\alpha)} \cdot \sum_{j=0}^{k-1} a_j \cdot (x_{k-j+1} - 2x_{k-j} + x_{k-j-1}), \quad a_j = (j+1)^{2-\alpha} - j^{2-\alpha}, \\ \partial_{0t}^{\beta} x(\tau) &\approx \frac{\tau^{-\beta}}{\Gamma(2-\beta)} \cdot \sum_{j=0}^{k-1} b_j \cdot (x_{k-j+1} - x_{k-j}), \quad b_j = (j+1)^{1-\beta} - j^{1-\beta}. \end{split}$$

Подставим эти аппроксимации в модельное уравнение (7). Приходим к следующей конечно-разностной схеме:

$$\begin{cases} x_{1} = \varphi + \tau \eta, & k = 0, \\ x_{2} = \frac{1}{A + Bc(x_{1}^{2} + p)} ((2A + Bc(x_{1}^{2} + p) - q) \cdot x_{1} - x_{1}^{3}g - Ax_{0} + a + bz), & k = 1, \\ x_{k+1} = \frac{1}{A + Bc(x_{k}^{2} + p)} ((2A + Bc(x_{k}^{2} + p) - q) \cdot x_{k} - x_{k}^{3}g - Ax_{k-1} + a + bz - \\ -Bc(x_{k}^{2} + p) \cdot \sum_{j=1}^{k-1} (b_{j}(x_{k+1} - x_{k})) - A \cdot \sum_{j=1}^{k-1} (a_{j}(x_{k+1} - 2x_{k} + x_{k-1})), \\ A = \frac{\tau^{-\alpha}}{\Gamma(3 - \alpha)}, & B = \frac{\tau^{-\beta}}{\Gamma(2 - \beta)}, & k = 2, \dots, n - 1. \end{cases}$$

$$(8)$$

Замечание. Заметим, что, как правило, нелинейные динамические системы обладают жесткостью при больших значениях управляющих параметров, что приводит к необходимости уменьшить шаг дискретизации в конечно-разностной схеме. В нашем случае, в силу ограниченности параметров a,b,c, жесткость отсутствует, поэтому в уменьшении шага нет необходимости.

Результаты моделирования и их обсуждение

Конечно-разностная схема (8) была реализована в компьютерной программе, в среде символьной математики Maple. Рассмотрим применение конечно-разностной схемы (8) численного решения задачи Коши (2) и (3). Значения параметров a,b,c были взяты из работы [5]. Сначала рассмотрим случай, когда изменяются значения дробных параметров α и β , а потом и значения параметра z. Также мы будем исследовать конечно-разностную схему (8) с помощью метода двойного пересчета на ее сходимость и покажем устойчивость по начальным данным и правой части.

Пример 1. Значения управляющих параметров в задаче Коши (2) и (3): $t \in [0,T], T=100, N=2000, \tau=0.05, a=0.7, b=0.8, z=-0.4, c=3, x(0)=0.2, \dot{x}(0)=0.1$ Результаты моделирования приведены на рис.1.

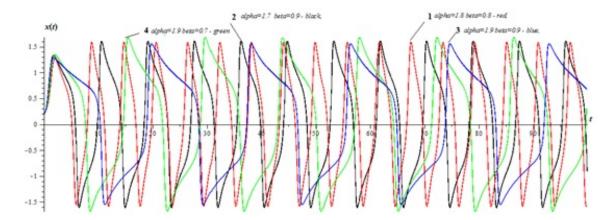


Рис. 1. Осциллограммы, полученные по конечно-разностной схеме (8) при значениях параметров α и β : кривая 1 - $\alpha=1.8, \beta=0.8$, кривая 2 - $\alpha=1.7, \beta=0.9$, кривая 3 - $\alpha=1.9, \beta=0.9$, кривая 4 - $\alpha=1.9, \beta=0.7$

На рис. 1 приведены осциллограммы, полученные по схеме (8) при различных значениях α и β . Осциллограмма под номером 3 по форме похожа на осциллограмму из работы [5]. При уменьшении значений α и β , изменяется форма осциллограмм (смещение периодичности колебаний), однако амплитуда колебаний остается неизменной, что на фазовой плоскости соответствуют предельным циклам (рис.2).

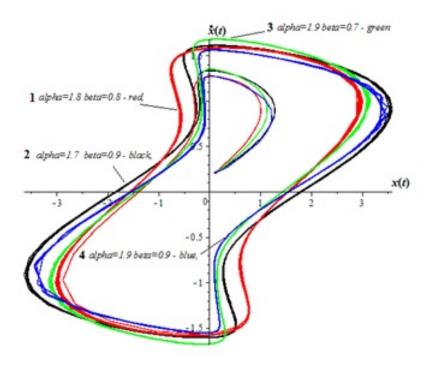


Рис. 2. Фазовые траектории

Исследуем конечно-разностную схему (8) на сходимость с помощью метода двойного пересчета (правила Рунге) при различных значениях параметров α и β . В силу того, аппроксимация уравнения (7) имеет первый порядок, то для вычисления абсолютной ошибки ε мы можем воспользоваться следующей формулой:

$$\varepsilon = \max(|x_i - x_{2i}|), i = 1, \dots, N,$$

где x_i – численное решение, полученное по схеме (8) на шаге τ , x_{2i} –численное решение, полученное по схеме (8) на шаге $\tau/2$.

Для оценки расчетной точности можем использовать соотношение:

$$p = \ln(|\varepsilon|) / \ln(\tau/2)$$
.

Результаты приведены в табл. 1.

Таблица 1

Исследование схемы (8) при различных значениях $lpha$ и eta								
α = 1,8 и β = 0,8								
N	τ	Абсолютная ошибка Порядок точности р						
10	1/10	0.0456	1.0307					
20	1/20	0.0262	0.9868					
40	1/40	0.0141	0.9724					
80	1/80	0.0073	0.9688					
160	1/160	0.0037	0.9691					
320	1/320	0.0019	0.9707					
lpha= 1.7 и $eta=$ 0.9								
N	τ	Абсолютная ошибка	Порядок точности р					
10	1/10	0.0591	0.9443					
20	1/20	0.0324	0.9301					
40	1/40	0.0171	0.9286					
80	1/80	0.0088	0.9319					
160	1/160	0.0045	0.9364					
320	1/320	0.0023	0.9397					
	α = 1.9 и β = 0.9							
N	τ	Абсолютная ошибка	Порядок точности р					
10	1/10	0.0436	1.0457					
20	1/20	0.0249	1.0003					
40	1/40	0.0134	0.9847					
80	1/80	0.0069	0.9799					
160	1/160	0.0035	0.9790					
320	1/320	0.0018	0.9805					
	lpha= 1.9 и $eta=$ 0.7							
N	τ	Абсолютная ошибка	Порядок точности р					
10	1/10	0.0346	1.1221					
20	1/20	0.0202	1.0575					
40	1/40	0.0108	1.0313					
80	1/80	0.0056	1.0196					
160	1/160	0.0028	1.0138					
320	1/320	0.0014	1.0119					

Из табл.1 можно сделать вывод о том, что при уменьшении шага τ , абсолютная ошибка ε уменьшается, а расчетный порядок точности близок к единицы. Такая экспериментальная сходимость не гарантирует сходимости к истинной функции решения задачи Коши (2) и (3). Поэтому необходимо доказывать теорему сходимости.

Пример 2. Рассмотрим другой случай: зафиксируем значения α и β , и будем изменять значения z при значениях параметров: $t \in [0,T], T=100, N=2000, \tau=0.05, a=0.7, b=0.8, z=-0.4, c=3, x(0)=0.2, \dot{x}(0)=0.1, \alpha=1.8, \beta=0.8$ и различных значениях z. На (рис. 3) приведены осциллограммы для этого случая.

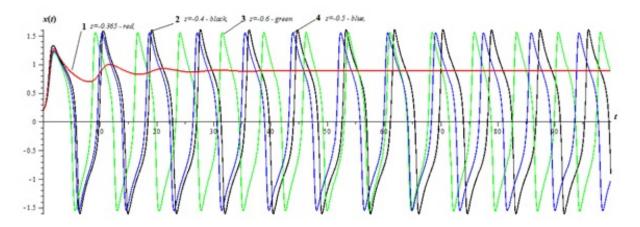


Рис. 3. Осциллограммы, полученные по конечно-разностной схеме (8): кривая 1-z=-0.365, кривая 2-z=-0.4, кривая 3-z=-0.6, кривая 4-z=-0.5

В случае z=-0.365 (кривая 1) мы видим, что колебания затухают, а фазовая траектория (рис. 4) имеет вид закручивающейся спирали. При уменьшении значений параметра z, происходит смещение осциллограмм, но с постоянной амплитудой, что обеспечивает выход фазовых траекторий на предельный цикл (рис. 4).

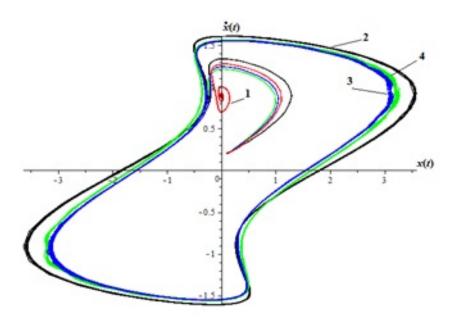


Рис. 4. Фазовые траектории: кривая 1 - z=-0.365, кривая 2 - z=-0.4, ' кривая 3 - z=-0.6, кривая 4 -z=-0.5

Проведем исследования сходимости конечно-разностной схемы (8) в зависимости от значения параметра z. Для этого воспользуемся методикой из предыдущего примера. Результаты приведены а табл. 2.

Tаблица 2 Исследование схемы (8) при различных значениях z

z = -0.365							
N	τ	Абсолютная ошибка	Порядок точности				
10	1/10	0.0482	1.0117				
20	1/20	0.0278	0.9710				
40	1/40	0.0149	0.9588				
80	1/80	0.0077	0.9570				
160	1/160	0.0039	0.9587				
320	1/320	0.0020	0.9615				
z = -0.4							
N	τ	Абсолютная ошибка	Порядок точности				
10	1/10	0.0456	1.0307				
20	1/20	0.0262	0.9868				
40	1/40	0.0141	0.9724				
80	1/80	0.0073	0.9688				
160	1/160	0.0037	0.9691				
320	1/320	0.0019	0.9707				
	z = -0.5						
N	τ	Абсолютная ошибка	Порядок точности				
10	1/10	0.03775	1.0938				
20	1/20	0.02163	1.0391				
40	1/40	0.0116	1.0170				
80	1/80	0.0060	1.0074				
160	1/160	0.0030	1.0031				
320	1/320	0.0015	1.0009				
z = -0.6							
N	τ	Абсолютная ошибка	Порядок точности				
10	1/10	0.0295	1.1759				
20	1/20	0.0168	1.1067				
40	1/40	0.0090	1.0742				
80	1/80	0.0046	1.0567				
160	1/160	0.0023	1.0462				
320	1/320	0.0012	1.0393				

Аналогично, как и в предыдущем примере, мы видим, что при уменьшении шага au абсолютная ошибка уменьшается $oldsymbol{arepsilon}$, а расчетный порядок точности стремиться к единице.

Рассмотрим на примере устойчивость конечно-разностной схемы по начальным данным и правой части при следующих значениях управлющих параметров: $T=1, N=683, c=3, a_0=0.7, z=-0.4, b_0=0.8, \alpha=1.8, \beta=0.8, x(0)=\dot{x}(0)=0.2$. Для этого сначала добавим малую величину $\varepsilon=10^{-5}$ в начальное условие x(0), а потом в правую часть уравнения (7). Устойчивость по начальным данным или по правой части будет определяться малым изменением решения задачи Коши (2) и (3) на порядок величины ε . В противном случае, решение задачи Коши (2) и (3) будет неустойчивым. Результаты исследования приведены в табл. 3.

Таблица 3 Устойчивость по начальным данным и правой части для схемы (8)

$x(0)+\varepsilon$						
τ	ϵ_0	ε	δ			
1/500	0.0000100193	0.0000100000	0.0000000193			
1/530	0.0000100380	0.0000100000	0.000000380			
1/600	0.0000100543	0.0000100000	0.000000543			
1/685	0.0000100608	0.0000100000	0.0000000608			
1/720	0.0000101316	0.0000100000	0.0000001316			
$f + \varepsilon$						
τ	ϵ_0	ϵ	δ			
1/500	0.0000144736	0.0000100000	0.0000044736			
1/530	0.0000128115	0.0000100000	0.0000028115			
1/600	0.0000122548	0.0000100000	0.0000022548			
1/685	0.0000102220	0.0000100000	0.0000002220			
1/720	0.0000101831	0.0000100000	0.0000001831			

Из табл. 3 мы видим, что для этого примера, имеет место устойчивость по начальным данным и правой части, так как разность δ между возмущенным и невозмущенным решениями имеет порядок величины ε . Конечно, для наиболее полной картины, необходимо доказать теорему об устойчивости конечно-разностной схемы (8). Однако мы в работе показали, что явную-конечно разностную схему можно применять (8) для решения задачи Коши (2) и (3).

Заключение

В работе был предложен и исследован эредитарный нелинейный осциллятор ФитцХью-Нагумо. С помощью теории конечно-разностных схем получено численное решение задачи Коши, построены осциллограммы и фазовые траектории. Показано, что параметры α и β приводят к смещению колебаний осциллятора, но при этом сохраняется постоянство амплитуды, а также изменяется форма фазовых траекторий, которые выходят на предельный цикл. При изменении параметра z колебания могут быть затухающими, а фазовая траектория для соответствующей точки покоя будет являться устойчивым фокусом.

Введение дополнительных управляющих параметров α и β , чтобы более гибко моделировать колебательный режим, дает дополнительную параметризацию сигнала. Дальнейший интерес в исследовании эредитарного осциллятора ФитцХью-Нагумо может заключаться в исследовании на устойчивость точек покоя по аналогии с работой [9], а также дальнейшее обобщение, связанное с введением функций и [11]. Другое направление исследований связано с качественными свойствами конечноразностной схемы (8) - устойчивостью и сходимостью [10].

Автор выражает благодарность научному руководителю, к.ф.-м.н., Р.И. Паровику за ценные советы и замечания по содержанию данной научной статьи.

Список литературы

[1] Volterra V., "Sur les 'equations int'egro-diff'erentielles et leurs applications", *Acta Mathematica*, **35**:1 (1912), 295–356.

- [2] Учайкин В. В., *Метод дробных производных*, Артишок, Ульяновск, 2008, 512 с. [Uchajkin V. V., Metod drobnyh proizvodnyh, Artishok, Ul'janovsk, 2008, 512].
- [3] Паровик Р. И., Математическое моделирование линейных эредитарных осцилляторов, КамГУ им. Витуса Беринга, Петропавловск-Камчатский, 2015, 178 с. [Parovik R. I., Matematicheskoe modelirovanie linejnyh jereditarnyh oscilljatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2015, 178].
- [4] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing and Springer-Verlag Berlin Heidelberg, 2011, 218 c.
- [5] FitzHugh R., "Impulses and physiological states in theoretical models of nerve membrane", *Biophysical Journal*, **1** (1961), 446–446.
- [6] Nagumo J., Arimoto S., Yoshizawa S., "An active pulse transmission line simulating nerve axon", *Proc. IRE*, **50** (1962), 2061–2070.
- [7] Липко О. Д., "Эредитарное модельное уравнение ФитцХью-Нагумо", Международный студенческий научный вестник, 2017, № 2, 43-43. [Lipko O. D., "Jereditarnoe model'noe uravnenie FitcH'ju-Nagumo", Mezhdunarodnyj studencheskij nauchnyj vestnik, 2017, №2, 43-43 https://www.eduherald.ru/ru/article/view?id=16890 (дата обращения: 22.04.2017)].
- [8] Паровик Р. И., "Математическое моделирование нелокальной колебательной системы Дуффинга с фрактальным трением", Вестик КРАУНЦ. Физико-математические науки, 2015, № 1(10), 18–24. [Parovik R.I. Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction. Bulletin KRASEC. Physical and Mathematical Sciences. 2015. vol. 10. no 1. C. 16-21.].
- [9] Паровик Р. И., "Об исследовании устойчивости эредитарного осциллятора Ван дер Поля", Φ ундаментальные исследования, 2016, № 3(2), 283–287. [Parovik R. I., "Ob issledovanii ustojchivosti jereditarnogo oscilljatora Van der Polja", Fundamental'nye issledovanija, 2016, №3(2), 283–287].
- [10] Parovik R. I., "Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable order fractional derivatives", *Archives of Control Sciences*, **26**:3 (2016), 429–435.
- [11] Паровик Р. И., "Конечно-разностные схемы для фрактального осциллятора с переменными дробными порядками", *Вестник КРАУНЦ. Физико-математические науки*, 2015, № 2(11), 88–85. [Parovik R.I. Finite-difference schemes for fractal oscillator with a variable fractional order. Bulletin KRASEC. Physical and Mathematical Sciences. 2015. vol. 11. no 2. C. 85-92].

Список литературы (ГОСТ)

- [1] Volterra V. Sur les 'equations int'egro-diff'erentielles et leurs applications // Acta Mathematica. 1912. vol. 35. issue 1. pp. 295–356.
- [2] Учайкин В. В. Метод дробных производных. Ульяновск: Артишок, 2008. 512 с.
- [3] Паровик Р. И. Математическое моделирование линейных эредитарных осцилляторов. Петропавловск-Камчатский. КамГУ им. Витуса Беринга. 2015. 178 с.
- [4] Petras I. Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Beijing and Springer-Verlag Berlin Heidelberg. Springer, 2011. 218 p.
- [5] FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophysical Journal. 1961. vol. 1. pp. 446–446.
- [6] Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc. IRE. 1962. vol. 50. pp. 2061–2070.

- [7] Липко О. Д. Эредитарное модельное уравнение ФитцХью-Нагумо // Международный студенческий научный вестник. 2017. № 2. С. 43-43. url: https://www.eduherald.ru/ru/article/view?id=16890 (дата обращения: 22.04.2017)
- [8] Паровик Р. И. Математическое моделирование нелокальной колебательной системы Дуффинга с фрактальным трением // Вестник КРАУНЦ. Физико-математические науки. 2015. №1(10). С.18–24.
- [9] Паровик Р. И. Об исследовании устойчивости эредитарного осциллятора Ван дер Поля // Фундаментальные исследования. 2016. № 3(2). С. 283–287.
- [10] Parovik R. I. Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable order fractional derivatives. Archives of Control Sciences. 2016. vol. 26. issue 3. pp. 429–435.
- [11] Паровик Р. И. Конечно-разностные схемы для фрактального осциллятора с переменными дробными порядками // Вестник КРАУНЦ. Физико-математические науки. 2015. №2(11). С. 88–85.

Для цитирования: Липко О. Д. Математическая модель распространения нервного импульса с учетом эредитарности // Вестник КРАУНЦ. Физ.-мат. науки. 2017. № 1(17). С. 33-43. DOI: 10.18454/2079-6641-2017-17-1-33-43

For citation: Lipko O. D. Mathematical model of propagation of nerve impulses with regard hereditarity, *Vestnik KRAUNC. Fiz.-mat. nauki.* 2017, **17**: 1, 33-43. DOI: 10.18454/2079-6641-2017-17-1-33-43

Поступила в редакцию / Original article submitted: 22.03.2017