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КЛАССИФИКАЦИЯ СИММЕТРИИ УРАВНЕНИЙ НЬЮТОНОВСКОЙ
НЕСЖИМАЕМОЙ ЖИДКОСТИ В ТУРБУЛЕНТНЫХ ПОГРАНИЧНЫХ
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Метод группы Ли применим как к линейным, так и к нелинейным уравнениям в частных
производных, что приводит к поиску новых решений для уравнений с частными про-
изводными. Метод группы симметрии Ли применяется для изучения уравнений потока
ньютоновской несжимаемой жидкости в турбулентных пограничных слоях. Дана груп-
па симметрии и ее оптимальная система, получены групповые инвариантные решения,
связанные с симметриями. Наконец, дана структура алгебры Ли, такая как разложение
Леви, радикальная подалгебра, разрешимость и простота симметрий.

Ключевые слова: механика жидкости, симметрия Ли, уравнение с частичным
разложением, напряжение сдвига, оптимальная система
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Introduction

In physics and fluid mechanics, a boundary layer is that layer of fluid in the
immediate vicinity of a bounding surface. In the Earth’s atmosphere, the planetary
boundary layer is the air layer near the ground affected by diurnal heat, moisture or
momentum transfer to or from the surface. On an aircraft wing the boundary layer
is the part of the flow close to the wing. The boundary layer effect occurs at the
field region in which all changes occur in the flow pattern. The boundary layer distorts
surrounding non-viscous flow. It is a phenomenon of viscous forces. This effect is related
to the Reynolds number (In fluid mechanics and heat transfer, the Reynold’s number is
a dimensionless number that gives a measure of the ratio of inertial forces to viscous
and, consequently, it quantifies the relative importance of these two types of forces
for given flow conditions). Laminar boundary layers come in various forms and can be
loosely classified according to their structure and the circumstances under which they
are created. The thin shear layer which develops on an oscillating body is an example
of a Stokes boundary layer, whilst the Blasius boundary layer refers to the well-known
similarity solution for the steady boundary layer attached to a flat plate held in an
oncoming unidirectional flow. When a fluid rotates, viscous forces may be balanced by
the Coriolis effect, rather than convective inertia, leading to the formation of an Ekman
layer. Thermal boundary layers also exist in heat transfer. Multiple types of boundary
layers can coexist near a surface simultaneously. The deduction of the boundary layer
equations was perhaps one of the most important advances in fluid dynamics. Using
an order of magnitude analysis, the well-known governing Navier−Stokes equations
of viscous fluid flow can be greatly simplified within the boundary layer. Notably,
the characteristic of the partial differential equations (PDE) becomes parabolic, rather
than the elliptical form of the full Navier−Stokes equations. This greatly simplifies the
solution of the equations. By making the boundary layer approximation, the flow is
divided into an inviscid portion (which is easy to solve by a number of methods) and
the boundary layer, which is governed by an easier to solve PDE [1].

Flow and heat transfer of an incompressible viscous fluid over a stretching sheet
appear in several manufacturing processes of industry such as the extrusion of polymers,
the cooling of metallic plates, the aerodynamic extrusion of plastic sheets, etc. In the
glass industry, blowing, floating or spinning of fibres are processes, which involve
the flow due to a stretching surface. Mahapatra and Gupta studied the steady two-
dimensional stagnation-point flow of an incompressible viscous fluid over a flat deformable
sheet when the sheet is stretched in its own plane with a velocity proportional to
the distance from the stagnation-point [7]. They concluded that, for a fluid of small
kinematic viscosity, a boundary layer is formed when the stretching velocity is less than
the free stream velocity and an inverted boundary layer is formed when the stretching
velocity exceeds the free stream velocity. Temperature distribution in the boundary layer
is determined when the surface is held at constant temperature giving the so called
surface heat flux. In their analysis, they used the finite-differences scheme along with
the Thomas algorithm to solve the resulting system of ordinary differential equations.

The treatment of turbulent boundary layers is far more difficult due to the time-
dependent variation of the flow properties. One of the most widely used techniques
in which turbulent flows are tackled is to apply Reynolds decomposition. Here the
instantaneous flow properties are decomposed into a mean and fluctuating component.
Applying this technique to the boundary layer equations gives the full turbulent boundary
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layer equations
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ū
∂ ū
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where ρ is the density, p is the pressure, ν is the kinematic viscosity of the fluid at a
point and ū and v̄ are average of the velocity components in Reynold decomposition. Here
u′ and v′ are the velocity fluctations such that; u = ū+ u′ and v = v̄+ v′. By using the
scale analysis(a powerful tool used in the mathematical sciences for the simplification of
equations with many terms), it can be shown that the system (1) reduce to the classical
form 
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∂x

+
∂ v̄
∂y

= 0,

ū
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The term u′v′ in the system (2) called Reynolds shear stress, a tensor that conventionally
written

Ri j ≡ ρu′iu
′
j. (3)

The divergence of this stress is the force density on the fluid due to the turbulent
fluctuations. Using Navier-Stokes equations for a fluid whose stress versus rate of
strain curve is linear and passes through the origin (Newtonian fluid) the tensor (3)
reduces to

Ri j ≡ µ
∂ ūi

∂x j
,

where µ is the fluid viscosity.
This paper is concerned with the symmetry of Newtonian incompressible fluid’s

equations flow in turbulent boundary layers of the form (2). Lie group theory is applied
to the equations of motion for determining symmetry reductions of partial differential
equations [2, 3, 4, 5, 10, 11]. The solution of the turbulent boundary layer equations
therefore necessitates the use of a turbulence model, which aims to express the Reynolds
shear stress in terms of known flow variables or derivatives. The lack of accuracy and
generality of such models is a major obstacle in the successful prediction of turbulent
flow properties in modern fluid dynamics.

Lie Symmetries of the Equations

A PDE with p−independent and q−dependent variables has a Lie point transformations

x̃i = xi + εξi(x,u)+O(ε2), ũα = uα + εϕα(x,u)+O(ε2),
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where ξi =
∂ x̃i
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on the total space of PDE (the space containing independent and dependent variables).
Furthermore, the characteristic of the vector field (4) is given by
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where ϕJ
α = DJQα +∑

p
i=1 ξiuα

J,i. (DJ is the total derivative operator describes in (3)).
Let us consider a one-parameter Lie group of infinitesimal transformations (x,y, ū, v̄, p̄)

given by

x̃ = x+ εξ1(x,y, ū, v̄, p̄)+O(ε2), ỹ = y+ εξ2(x,y, ū, v̄, p̄)+O(ε2),˜̄u = ū+ εη1(x,y, ū, v̄, p̄)+O(ε2), ˜̄v = v̄+ εη2(x,y, ū, v̄, p̄)+O(ε2),˜̄p = p̄+ εη3(x,y, ū, v̄, p̄)+O(ε2),

where ε is the group parameter. Then one requires that this transformations leaves
invariant the set of solutions of the system (2). This yields to the linear system of
equations for the infinitesimals ξ1(x,y, ū, v̄, p̄),
ξ2(x,y, ū, v̄, p̄), η1(x,y, ū, v̄, p̄),η2(x,y, ū, v̄, p̄) and η3(x,y, ū, v̄, p̄). The Lie algebra of infinitesimal
symmetries is the set of vector fields in the form of
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with the coefficients
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Using the invariance condition, i.e., applying the second prolongation v(2), to system
(2), and by solving the linear system
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(mod (2))

the following system of 17 determining equations yields:

ξ1y = 0, ξ1ū = 0, ξ1v̄ = 0, ξ1v̄ = 0,
ξ1xx = 0, ξ2x = 0, ξ2ū = 0, ξ2v̄ = 0,
ξ2 p̄ = 0, ξ2yy = 0, η1x = 0, η1y = 0,
η1ū = 0, η1v̄ = 0, η1 p̄ = 2ξ1x−4ξ2y, η2 = ū(ξ1x−2ξ2y),

η3 =−ξ2y.

The solution of the above system gives the following coefficients of the vector field v:

ξ1 =C1 +C4x, ξ2 =C2 +C5y, η1 =C4ū−2C5ū,
η2 =−C5v̄, η3 =C3 +2C4 p̄−4C5 p̄,

where Ci for i = 1, ...,5 are arbitrary constants, thus the Lie algebra G of the Newtonian
incompressible fluid’s equations flow in turbulent boundary layers is spanned by the five
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Таблица 1. Commutation relations of G

[ , ] v1 v2 v3 v4 v5
v1 0 0 0 v1 0
v2 0 0 0 0 v2
v3 0 0 0 2v3 −4v3
v4 −v1 0 −2v3 0 0
v5 0 −v2 4v3 0 0

vector fields

v1 =
∂

∂x
,

v2 =
∂

∂y
,

v3 =
∂

∂ p̄
,

v4 = x
∂

∂x
+ ū

∂

∂ ū
+2p̄

∂

∂ p̄
,

v5 = y
∂

∂y
−2ū

∂

∂ ū
− v̄

∂

∂ v̄
−4p̄

∂

∂ p̄
,

The commutation relations between these vector fields is given by the table (1), where
entry in row i and column j representing [vi,v j].

The one-parameter groups Gi generated by the base of G are given in the following
table.

G1 : (x+ ε,y, ū, v̄, p̄), G2 : (x,y+ ε, ū, v̄, p̄),
G3 : (x,y, ū, v̄, p̄+ ε), G4 : (xeε ,y, ūeε , v̄, p̄e2ε)
G5 : (x,yeε , ūe−2ε , v̄e−ε , p̄e−4ε)

Since each group Gi is a symmetry group and if ū = f (x,y), v̄ = g(x,y) and p̄ = h(x,y) are
solutions of the system (2), so are the functions

ū1 = f (x+ ε,y), v̄1 = g(x+ ε,y), p̄1 = h(x+ ε,y),
ū1 = f (x,y+ ε), v̄1 = g(x,y+ ε), p̄1 = h(x,y+ ε),
ū1 = f (x,y), v̄1 = g(x,y), p̄1 = h(x,y)+ ε,
ū1 = e−ε f (xeε ,y), v̄1 = g(xeε ,y), p̄1 = e−2εh(xeε ,y),
ū1 = e2ε f (x,yeε), v̄1 = eεg(x,yeε), p̄1 = e4εh(x,yeε).

where ε is a real number. Here we can find the general group of the symmetries by
considering a general linear combination c1v1 + · · ·+ c1v5 of the given vector fields.
In particular if g is the action of the symmetry group near the identity, it can be
represented in the form g= exp(εv5)◦· · ·◦exp(εv1). Consequently, if ū= f (x,y), v̄= g(x,y)
and p̄ = h(x,y) be a solution for system (2), so is

ū = eε f
(
(x+ ε)eε ,(y+ ε)eε

)
,

v̄ = g
(
(x+ ε)eε ,(y+ ε)eε

)
, (7)

p̄ = e2εh
(
(x+ ε)eε ,(y+ ε)eε

)
+ εe−ε ,

46



Symmetry classification of Newtonian incompressible fluid’s . . . ISSN 2079-6641

Optimal system of steady two-dimensional boundary-layer

stagnation-point flow equations

Let a system of differential equation ∆ admitting the symmetry Lie group G,be given.
Now G operates on the set of solutions S of ∆. Let s ·G be the orbit of s, and H be a
subgroup of G. Invariant H−solutions s ∈ S are characterized by equality s · S = {s}. If
h ∈ G is a transformation and s ∈ S,then h · (s ·H) = (h · s) · (hHh−1). Consequently,every
invariant H−solution s transforms into an invariant hHh−1−solution [4, 8, 9].

Therefore, different invariant solutions are found from similar subgroups of G. Thus,
classification of invariant H−solutions is reduced to the problem of classification of
subgroups of G,up to similarity. An optimal system of s−dimensional subgroups of G is
a list of conjugacy inequivalent s−dimensional subgroups of G with the property that
any other subgroup is conjugate to precisely one subgroup in the list. Similarly, a list of
s−dimensional subalgebras forms an optimal system if every s−dimensional subalgebra
of G is equivalent to a unique member of the list under some element of the adjoint
representation: H̃ = Ad(g) ·H .

Let H and H̃ be connected, s−dimensional Lie subgroups of the Lie group G with
corresponding Lie subalgebras H and H̃ of the Lie algebra G of G. Then H̃ = gHg−1 are
conjugate subgroups if and only H̃ = Ad(g) ·H are conjugate subalgebras (Proposition
3.7 of [9]). Thus,the problem of finding an optimal system of subgroups is equivalent to
that of finding an optimal system of subalgebras, and so we concentrate on it.

One-dimensional optimal system

For one-dimensional subalgebras, the classification problem is essentially the same
as the problem of classifying the orbits of the adjoint representation, since each one-
dimensional subalgebra is determined by a nonzero vector in Lie algebra symmetries
of steady two-dimensional boundary-layer stagnation-point flow equations and so to
"simplify"it as much as possible. The adjoint action is given by the Lie series

Ad(exp(εvi)v j) = v j− ε[vi,v j]+
ε2

2
[vi, [vi,v j]]−·· · , (8)

where [vi,v j] is the commutator for the Lie algebra, ε is a parameter, and i, j = 1, · · · ,5.
Let Fε

i : G → G defined by v 7→ Ad(exp(εvi)v) is a linear map, for i = 1, · · · ,5. The
matrices Mε

i of Fε
i , i = 1, · · · ,5, with respect to basis {v1, · · · ,v5} are

Mε
1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−ε 0 0 1 0
0 0 0 0 1

 , Mε
2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 −ε 0 0 1

 ,

Mε
3 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −2ε 1 0
0 0 4ε 0 1

 , Mε
4 =


eε 0 0 0 0
0 1 0 0 0
0 0 e2ε 1 0
0 0 0 1 0
0 0 0 0 1

 ,

Mε
5 =


1 0 0 0 0
0 eε 0 0 0
0 0 e−4ε 0 0
0 0 0 1 0
0 0 0 0 1



(9)
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by acting these matrices on a vector field v alternatively we can show that a one-
dimensional optimal system of G is given by

X1 = v3, X2 = α1v1 +α2v2,
X3 = α1v2 +α2v3, X4 = α1v1 +α2v2 +α3v3,

(10)

where αi’s are real constants.

Two-dimensional optimal system

Next step is to construct two-dimensional optimal system, i.e., classification of two-
dimensional subalgebras of G . The process is by selecting one of the vector fields in
(10), say, any vector field of (10). Let us consider X1 (or Xi, i = 2,3,4,5). Corresponding
to it, a vector field X = a1v1 + · · ·+a5v5, where ai’s are smooth functions of (x,y,u,v, p)
is chosen, so we must have

[X1,X ] = λX1 +µX , (11)

the equation (4) leads us to the system

Ci
jkα jak = λai +µαi (i = 1,2,3,4,5). (12)

The solutions of the system (5), give one of the two-dimensional generator and the
second generator is X1 or, Xi, i = 2,3,4,5 if selected. After the construction of all two-
dimensional subalgebras, for every vector fields of (10), they need to be simplified by
the action of (6) in the manner analogous to the way of one-dimensional optimal system.

Consequently the two-dimensional optimal system of G has three classes of G ’s
members combinations such as

v1,v2, v1,v3, v2,v3, v3,v4,
v1,v4, v1,v5, v2,v4 v2,v5,

v3,v5, v4,v5, v1,∑
5
i=2 βivi,

β1v2 +β2v3,v1 +
5
2β3(v4 +v5),

β1v1 +β2v2,v3 +β3(v4 +v5).

Three-dimensional optimal system

This system can be developed by the method of expansion of two-dimensional optimal
system. For this take any two-dimensional subalgebras of (7), let us consider the first
two vector fields of (7), and call them Y1 and Y2, thus, we have a subalgebra with basis
{Y1,Y2}, find a vector field Y = a1v1 + · · ·+ a5v5, where ai’s are smooth functions of
(x,y, ū, v̄, p̄), such the triple {Y1,Y2,Y} generates a basis of a three-dimensional algebra.
For that it is necessary an sufficient that the vector field Y satisfies the equations

[Y1,Y ] = λ1Y +µ1Y1 +ν1Y2,

[Y2,Y ] = λ2Y +µ2Y1 +ν2Y2, (13)

and following from (13), we obtain the system

Ci
jkβ

j
r ak = λ1ai +µ1β

i
r +ν1β

i
s, α = 1,2,3,4,5 (14)

Ci
jkβ

j
s ak = λ2ai +µ2β

i
r +ν2β

i
s, α = 1,2,3,4,5.
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The solutions of system (14) is linearly independent of {Y1,Y2} and give a three-
dimensional subalgebra. This process is used for the another two couple vector fields of
(7).

Consequently the three-dimensional optimal system of G is given by

v1,v2,v3, v1,v2,v4, v1,v2,v5, v1,v3,v4, v1,v3,v5,
v1,v4,v5, v2,v3,v4, v2,v3,v5, v2,v4,v5, v3,v4,v5.

(15)

Four-dimensional optimal system

Four-dimensional optimal system can be developed by the method of expansion of
three-dimensional optimal system analogous to three-dimensional. First step is selecting
a three-dimensional subalgebra of (15), and call them Z1,Z2 and Z3, then find a vector
field Z = a1v1 + · · ·+ a5v5, where ai’s are smooth functions of (x,y, ū, v̄, p̄), such the
foursome {Z1,Z2,Z3,Z} generates a basis of a four-dimensional algebra. It is necessary
an sufficient that the vector field Z satisfies the equations

[Z1,Z] = λ1Z +µ1Z1 +ν1Z2 + γ1Z3,

[Z1,Z] = λ2Z +µ2Z1 +ν2Z2 + γ2Z3, (16)

[Z1,Z] = λ3Z +µ3Z1 +ν3Z2 + γ3Z3,

following from (16), we obtain the system

Ci
jkak = λ1ai +µ1 +ν1 + γ1, α = 1,2,3,4,5,

Ci
jkak = λ2ai +µ2 +ν2 + γ2, α = 1,2,3,4,5, (17)

Ci
jkak = λ3ai +µ3 +ν3 + γ3, α = 1,2,3,4,5.

The solutions of system (17) is linearly independent of {Z1,Z2,Z3} and give a four-
dimensional subalgebra. This process is used for the another triple vector fields of (15).
All previous calculations lead to the table 2 and 3 for the optimal system of G .

Lie Algebra Structure

G has a no any non-trivial Levi decomposition in the form of G = R nG1, because
G has no any non-trivial radical, i.e., if R be the radical of G , then G = R.

If we want to integration an involuting distribution, the process decomposes into two
steps:

• integration of the evolutive distribution with symmetry Lie algebra G /R, and

• integration on integral manifolds with symmetry algebra R.

First, applying this procedure to the radical R we decompose the integration problem
into two parts: the integration of the distribution with semisimple algebra G /R, then
the integration of the restriction of distribution to the integral manifold with the solvable
symmetry algebra R.

The last step can be performed by quadratures. Moreover, every semisimple Lie
algebra G /R is a direct sum of simple ones which are ideal in G /R. Thus, the Lie-
Bianchi theorem reduces the integration problem to involutive distributions equipped
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Таблица 2. Optimal system of subalgebras

dimension 1 2
〈v3〉 〈v1,v2〉

subalgebras 〈α1v1 +α2v2〉 〈v1,v3〉
〈α1v2 +α2v3〉 〈v2,v3〉

〈α1v1 +α2v2 +α3v3〉 〈v2,v4〉
〈v3,v4〉
〈v1,v4〉
〈v1,v5〉
〈v2,v5〉
〈v3,v5〉
〈v4,v5〉
〈v1,∑

5
i=2 βivi〉

〈β1v1 +β2v2,v3 +β3(v4 +v5)〉
〈β1v2 +β2v3,v1 +

5
2β3(v4 +v5)〉

Таблица 3. Optimal system of subalgebras

dimension 3 4 5
〈v1,v2,v3〉 〈v1,v2,v3,v4〉 〈v1,v2,v3,v4,v5〉

subalgebras 〈v1,v2,v4〉 〈v1,v2,v3,v5〉
〈v1,v2,v5〉 〈v1,v2,v4,v5〉
〈v1,v3,v4〉 〈v1,v3,v4,v5〉
〈v1,v3,v5〉 〈v2,v3,v4,v5〉
〈v1,v4,v5〉
〈v2,v3,v4〉
〈v2,v3,v5〉
〈v2,v4,v5〉
〈v3,v4,v5〉
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with simple algebras of symmetries. Thus, integrating of system (2), become so much
easy.

The Lie algebra G is solvable and non-semisimple. It is solvable because if G (1) =
〈vi, [vi,v j]〉= [G ,G ], we have G (1)= [G ,G ] = 〈v1, · · · ,v5〉, and G (2)= [G (1),G (1)] = 〈v1,v2,2v3〉,
so, we have a chain of ideals G (1) ⊃ G (2) ⊃ {0}, and it is non-semisimple because its
killing form 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 5 −8
0 0 0 −8 17

 ,

is degenerate.
According to the table of the commutators, G has two abelian 2 and 3-dimensional

subalgebras spanned by 〈v1,v2,v3〉 and 〈v4,v5〉 respectively such that the first one is an
ideal in G , so, we can decompose G in the to semidirect sum of G = R3 nR2.

Conclusion

In this article group classification of Newtonian incompressible fluid’s equations flow
in turbulent boundary layers and the algebraic structure of the symmetry group was
analyzed. Classification of r-dimensional subalgebra is determined by constructing r-
dimensional optimal system. The optimal system of system of differential equations is
usefull for reducing a system of differential equations. The method described in [4]
widely, but it is suggested to use a computational software for calculations such as
Maple or Mathematica.
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