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Abstract 

The aim of this study is to estimate and map soil moisture distribution using C-band Synthetic Aperture Radar 
(SAR) data. Sentinel-1A is a new generation C-band SAR satellite, and in this study Sentinel-1A data acquired 
on 24 April 2016 were used to retrieve soil moisture map. An agricultural region in Bergama, a district of İzmir 
city, was chosen as the study area. In-situ soil moisture measurements were carried out in 20 test fields 
simultaneously with SAR data acquisition. The effects of soil moisture and local incidence angle on 
backscattering coefficient were analyzed, and then a multiple regression analysis was performed to generate an 
empirical model. The proposed model was evaluated using statistical metrics namely coefficient of 
determination (R2) and Root Mean Square Error (RMSE), and the results were 0.84 and 2.46 %, respectively. 
The obtained results showed that Sentinel-1A SAR data presented satisfying outcomes to estimate and map soil 
moisture content. 
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Introduction 

Soil moisture is an important variable for many 
environmental phenomena including 
meteorological, agricultural and hydrological 
applications (Ahmad, Zhang, and Nichols, 
2011; Lakshmi, 2013; Verhoest et al., 2008). 
Furthermore, soil moisture content can be 
considered as an indicator of natural disasters 
such as flooding, droughts and for 
environmental changes, such as dust storms and 
erosions (Ahmad et al., 2011; Canada Center 
for Remote Sensing, 1976). Soil moisture has a 
dynamic structure and thus, monitoring spatial 
and temporal variations in soil moisture is of 
great importance for ecological balance. 
Considering classical methods, measuring 
accurate in situ soil moisture is sometimes 
expensive and mostly time-consuming. In 
addition, it requires repetitive measurements to 
determine temporal changes. 

Estimation of soil moisture from space is one of 
the most important topics in remote sensing 
society. There are many studies on estimating 
soil moisture using both passive (Heilman, 

Kanemasu, Bagley, and Rasmussen, 1977; 
Sadeghi, Babaeian, Tuller, and Jones, 2017; 
Shih and Jordan, 1992) and active remote 
sensing satellites. Because of the remarkable 
penetrating capabilities of radar signal into the 
surface, active microwave remote sensing 
systems have been recently preferred in soil 
moisture studies. Synthetic Aperture Radar 
(SAR) sensor is the most common active 
microwave remote sensing system for Earth 
observation. Many studies have been presented 
to retrieve soil moisture content from X-band 
(Aubert et al., 2011; Baghdadi et al., 2011; 
Baghdadi, Aubert, and Zribi, 2012; Kseneman, 
Gleich, and Potočnik, 2012; Zribi et al., 2012), 
C-band (Jacome et al., 2013; Şeker et al., 2013; 
Lievens and Verhoest, 2012; Moran et al., 
2012; Srivastava, Patel, Sharma, and 
Navalgund, 2009; Kurucu et al., 2009) and L-
band (Balenzano et al., 2013; Paloscia, 
Pettinato, and Santi, 2012; Şekertekin, 2018) 
SAR data. 

Considering bare soil, the backscattered SAR 
signal is affected strongly from soil moisture 
and surface roughness (Ulaby, Moore, and 
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Fung, 1986; Zribi et al., 2007). Many models 
have been developed to understand the 
interaction between SAR signal and the surface. 
For bare soils, different theoretical and 
empirical approaches have been developed 
(Dubois, van Zyl, and Engman, 1995; Oh, 
Sarabandi, and Ulaby, 1992; Zribi and 
Dechambre, 2003), and many approaches 
assumed that there is a linear behavior between 
surface soil moisture and SAR backscattering 
coefficient (sigma-nought: σ0) (Esetlili and 
Kurucu, 2016; Gao, Zribi, Escorihuela, and 
Baghdadi, 2017; Şanlı et al., 2016; Zribi, 
Baghdadi, Holah, and Fafin, 2005). The aim of 
this study is to map soil moisture distribution 
using the data of new generation C-band SAR 
satellite Sentinel-1A. 

Study Area and Material 

An agricultural region in Bakırçay river basin 
in Bergama was chosen as the study area 
(Figure 1). Bergama is one of the districts of 

İzmir province in Turkey. The study area is 
located on the northern side of Izmir city, and it 
is an important agricultural production center in 
İzmir. There are different kinds of agricultural 
products in the region including cotton, okra, 
corn, grape, tobacco and olive. 

In the study area, twenty test fields were 
determined for in-situ soil moisture 
measurements, and there was no vegetation 
cover in the test fields. In addition, the surface 
roughness, which is another important variable 
affecting backscattering coefficient, was 
ignored because it was not so high for the test 
sites. The field work was conducted two days 
before the SAR data acquisition. Since there 
was no irrigation and rain in the area, it was 
appropriate to use these measurements to 
analyze the relationship between surface soil 
moisture and backscattering coefficient. Soil 
moisture measurements were carried out using 
metal soil moisture tins with 5 cm height as 
seen in Figure 2. 

Fig 1. Bergama study area, including a general overview (right) and RGB image of Sentinel-2 
satellite acquired on 18 April 2016 (left). 
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Fig 2. The metal tins used to obtain soil 
samples for moisture content. 

Sentinel-1A satellite data were utilized as 
material to map soil moisture distribution. 
Sentinel-1 is the European Radar Observatory 
representing the first new space component of 
the Global Monitoring for Environment and 
Security (GMES) satellite family that was 
designed and developed by European Space 
Agency (ESA) and funded by the EC 
(European Commission). Sentinel-1 is 
composed of a constellation of two satellites, 
namely Sentinel-1A and Sentinel-1B. The 
mission provides an independent operational 
capability for continuous radar mapping of the 
Earth with enhanced revisit frequency, 
coverage, timeliness and reliability for 
operational services and applications requiring 
long time series (Copernicus, 2018). Sentinel-1 
satellite provides C-band images in both 
singular and dual polarization within 12 days of 
repeat cycle. The data is free of  charge  for  all 
users  which  makes  it  more  attractive  for 
new challenging applications and opportunities 
(Nagler, Rott, Hetzenecker, Wuite, and Potin, 
2015). 

Table 1. The specifications of Sentinel-1A data 
used in the study. 

Specifications Sentinel-1A data 
Acquisition time 24 April 2016 
Acquisition orbit Descending 
Imaging Mode IW 
Imaging frequency C-band (5.4 GHz) 
Polarization VV-VH 
Data product Level-1 SLC 
Resolution mode 10 m 

It  can  acquire  images  in  three  acquisition 
modes  as  Stripmap  (SM),  Interferometric 
Wide  Swath  (IW),  Extra  Wide  Swath (EW) 
and Wave (WV) with different processing 
levels. In this study, Level-1 Single Look 
Complex (SLC) product of Sentinel-1A was 
utilized. Sentinel-1A image was acquired on 24 

April 2016, with the acquisition mode of IW 
mode. The specifications of the data are given 
in Table 1 

Methodology 

In this section, the method, used for soil 
moisture determination, was introduced. Then, 
image processing steps and analyzing methods 
were presented. 

Soil Moisture Determination 

Current methods of determining soil moisture 
are generally considered in two groups, namely 
direct and indirect methods. In direct methods, 
the soil moisture is calculated regarding the 
difference between the weights of the soil 
sample before and after drying. In indirect 
methods, measurements of other variables 
affecting the content of soil moisture are 
determined by a sensor and soil moisture 
content can be calculated using these variables 
(Evett and Parkin, 2005). Direct method is 
unique and it is called as gravimetric method. 
All other methods are indirect methods due to 
the dependency of a device to estimate soil 
moisture. 

In this study, the soil samples were collected 
from 20 test fields having no vegetation cover. 
Gravimetric analysis of the soil samples 
provides accurate soil moisture data (B. E. 
Myhre and S. F. Shih, 1990). Thus, gravimetric 
soil moisture determination method was applied 
(Schmugge, Jackson, and McKim, 1980). In the 
gravimetric method, the soil samples collected 
from the field are firstly weighed, and then they 
are placed in the oven and dried at 105 ° C for 
24 hours. Following the drying process, the 
samples are weighed again to obtain dry 
weights, and soil moisture is estimated using 
the equation (1). 

Soil Moisture = 
M1-M2

M2-M0
×100 (Eq. 1) 

Where M1 is weight of wet soil with tare, M2 is 
weight of dry soil with tare, and M0 is weight 
of the tare. 

Şekertekin et al.,  / IJEGEO 5(2): 178-188 (2018) 



181

Sentinel-1A Image Processing 

Sentinel-1A image was acquired in descending 
orbit direction and IW mode as Level-1 SLC 
product which contains phase and amplitude 
information. In order to use SLC product in 
environmental studies, it is required to convert 
SLC product to Ground Range Detected (GRD) 
product. For this conversion, ESA announced 
some steps to be performed with open source 

tools of Sentinel Application Platform (SNAP) 
software. The steps include radiometric 
calibration, thermal noise removal, TOPSAR 
deburst and merge, multi-look, topographic 
correction using SRTM 1Sec HGT data. While 
applying topographic correction, local incidence 
angle map was also generated by using SRTM 
data. In addition, the final resolution of Sentinel-
1A GRD image was 10 m. 
. 

Fig 2. The workflow scheme of the methodology. 

The workflow of the methodology is presented 
in Figure 3. After generating Sentinel-1A GRD 
data from SLC product, the image was 
subsetted so as to specifically illustrate the 
study area. Then, the shape files were created 
for each test site, and mean σ0 (dB) and local 
incidence angle values of each test site were 
extracted using the shape files. Afterwards, the 
linear regression analysis was conducted to 
generate an empirical model 

Empirical models present information about the 
effects of variables such as soil moisture, local 
incidence angle, surface roughness and 
dielectric constant on backscattering coefficient 
by the help of regression analysis. The simplest 
empirical model is given in equation (2). Soil 
moisture content can be obtained by inverting 
this model. 

σ0=a·ms+b (Eq. 2) 

Where a and b are coefficients, and ms refers to 
surface soil moisture. Many researchers 
established empirical relationships to estimate 
soil moisture, and these models revealed that 
there is a fundamental relation between soil 
moisture and backscattering coefficient 
(Sekertekin, Marangoz, Abdikan, and Esetlili, 
2016; Weimann, Von Schonermark, Schumann, 
Jorn, and Gunther, 1998; Zribi et al., 2005).  

In this study, an empirical model, which was 
based on the influence of soil moisture and 
local incidence angle on backscattering 
coefficient, was developed. We considered 
backscattering coefficient and local incidence 
angle as a function of soil moisture as seen in 
equation (3) and (4). 

ms = f(σTR
0 , θi) (Eq. 3)

ms = a + b·σTR
0  + c·θi (Eq. 4)

Şekertekin et al.,  / IJEGEO 5(2): 178-188 (2018) 
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Where σTR
0  is backscattering coefficient (TR: 

Transmitted-Received), θi is the local incidence 
angle. In this multiple regression analysis, ms is 
considered as dependent variable, whereas σTR

0  
and θi are independent variables. 

Validation of Soil Moisture 

In order to evaluate the proposed model, 
statistical metrics namely coefficient of 
determination (R2) and Root Mean Square Error 
(RMSE) were utilized. The equations of these 
two statistical metrics are presented in Equation 
(5) and (6). 

R2 =
∑ Min-situ-Min-situ MModel-MModel

∑ Min-situ-Min-situ
2 ∑ MModel-MModel

2

2

(Eq. 5) 

RMSE= 
∑ Min-situ-MModel

2

n
 (Eq. 6) 

Where Min-situ and MModel are in-situ soil 
moisture and estimated soil moisture from 
model, respectively, and Min-situ and MModel are
mean in-situ soil moisture and mean estimated 
soil moisture from model, respectively. n 
represents the count of test fields. 

Results 

Backscatter image in VV polarization is 
generated using the steps aforementioned above 
and illustrated in Figure 4. In this section, the 
influences of ms and θi on σ0 were investigated. 
The relationship between σ0 and ms, and θi 
were presented in Figure 5 and Figure 6, 
respectively, using linear regression analysis. 
All polarizations of Sentinel-1A data (VV, VH) 
were analyzed in order to determine which 
polarization is more sensitive to soil moisture 
content. 

As it was presented in Figure 5, VV 
polarization was more sensitive to soil moisture 
content and the coefficient of determination 
(R2) values for VV and VH polarizations were 
determined as 0.74 and 0.40, respectively. 
Considering the relation between σ0 and θi, it 

was observed from Figure 6 that local incidence 
angle did not have high correlation with 
backscattering coefficient. 

In this study, a multiple regression analysis was 
carried out to estimate and map soil moisture 
content. Therefore, ms was considered as 
dependent variable, and σVV

0  and θi were chosen 
as independent variables. While 13 test sites 
were utilized in order to generate model, 7 test 
sites were used for the accuracy assessment. As 
a result of multiple regression analysis, 
mathematical model for soil moisture 
estimation from σVV

0  and θi was generated as 
seen in equation (7). The accuracy assessment 
was conducted using 7 test sites, and the 
statistical metrics, namely R2 and RMSE, were 
determined as 0.84 and 2.46%, respectively 
(Figure 7). As it was clear from Figure 7, 
backscattering coefficient and local incidence 
angle could help determining soil moisture 
estimation. 

ms = 57.949 + 1.447·σVV
0  – 0.521·θi (Eq. 7) 

In order to map soil moisture distribution, the 
proposed model was implemented to the images 
using band math operation in SNAP software 
developed by ESA. Soil moisture map was 
illustrated in Figure 8, and the soil moisture 
content of the study area ranged between 0 and 
35 %. In soil moisture map, vegetated areas and 
water body were masked using Normalized 
Difference Vegetation Index (NDVI) image 
generated from Sentinel-2 optical data acquired 
on 18 April 2016. 

Conclusions 

In this study, an empirical model was 
developed to map soil moisture content using 
C-band SAR Satellite Sentinel-1A data. In 
order to develop model, multiple regression 
analysis was conducted, and soil moisture was 
considered as a dependent variable whereas 
backscattering coefficient and local incidence 
angle were chosen as independent variables. 
Validation results showed that the proposed 
empirical model estimated soil moisture content 
with RMSE 2.46 %, which was very close to 
in-situ moisture content.  

Şekertekin et al.,  / IJEGEO 5(2): 178-188 (2018) 
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Fig 4. σ0 image of the study area in VV polarization. 

Fig 5. The linear regression analysis between σ0 and ms for all polarizations. 

Şekertekin et al.,  / IJEGEO 5(2): 178-188 (2018) 
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Fig 6. The linear regression analysis between σ0 and θi for all polarizations. 

Fig 7. The accuracy assessment results of the proposed model. 

Şekertekin et al.,  / IJEGEO 5(2): 178-188 (2018) 
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Fig 8. The soil moisture map of the study area. 

Additionally, the correlations of local incidence 
angle and soil moisture with backscattering 
coefficient were analyzed, and it was observed 
that soil moisture was highly correlated with 
backscattering coefficient while local incidence 
angle was not. 

Soil moisture is an important factor for many 
disciplines, and it is hard to determine soil 
moisture on a large scale. Remote sensing is an 
effective science to detect and monitor Earth 
resources, and estimation of soil moisture 
distribution has been one of the most 
outstanding topics in Remote Sensing Society. 

The obtained results of this study revealed that 
new generation C-band SAR Satellite Sentinel-
1A presented satisfying results to estimate and 
map soil moisture content. 
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