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Abstract 

It was aimed to characterize spatial variations of air pollutants in Marmara region, Turkey for determining 
contribution to air pollution status in this study. We used spatial data analysis for measured sulfur dioxide 
(SO2) and particulate matter (PM10) concentrations recorded in Marmara, which is the most industrialized 
region of Turkey. GIS technique was used for monitoring air pollution and spatial analyses of these pollutants 
measured with the period during between October 1, 2013 and March 31, 2014 known as winter (heating) 
season obtained from 61 air quality monitoring stations located in this region. Spatial distribution maps for 
these pollutants were generated to determine emission patterns for the study area with the aid of geostatistical 
techniques. Additionally standard and spatial regression models were employed on the measured emissions to 
reveal possible factors of air quality in the region using standard ordinary least squares (OLS) and spatially 
autoregressive (SAR) regression models. The two regression models revealed that all the four explanatory 
meteorological variables (i.e. temperature, wind speed, humidity and atmospheric pressure) used to depict the 
pollution levels in relation to air quality. After the definition of the final model parameters, the model was fit to 
the entire data set and the residuals were examined for the presence of spatial autocorrelation with Moran’s I. 
Compared to the OLS technique, SAR is found to be more appropriate when dependent variables exhibit spatial 
autocorrelation resulting in a valid model. 

Keywords: Air Pollution, Geostatistical Analysis, OLS, SAR, Spatial Analysis 

Introduction 

Air pollution has emerged as a major health, 
environmental, economic and social problem 
all over the world. Aside from its adverse 
effects on the health of all living organisms, 
urban air pollution has profound regional and 
global impacts (Jacob and Winner, 2009; 
Alcamo et al., 2002; Brunekreef and Holgate, 
2002; Jenkin and Clemitshaw, 2000; Güven et 
al., 2000; Kinney, 2008; Lee et al., 2007; 
Vautard and Hauglustaine, 2007; Lepeule et 
al., 2012). Concern on air pollution in the 
rapidly growing urban regions is receiving 
increasing emphasis all over the world, 
especially pollution by gaseous and particulate 
trace metals (Begüm et al., 2004; Salam et al., 
2003). The sources of air pollution are 
classified as natural and anthropogenic. 

Anthropogenic primary pollutants such as 
carbon monoxide (CO), particulate matter 
(PM), nitrogen oxides (NO, NO2, NOx) and 
lead are harmful to health as well as 
environment. Sulfur dioxide (SO2) and 
nitrogen oxides get transformed as sulfuric 
acid and nitric acid in the atmosphere due to 
chemical reactions and may fall as acid rain. 
During the past few decades, the atmosphere 
has been subjected to a large amount of 
contaminants via anthropogenic pollutants 
produced by both stationary (power plants, 
industrial and residential heating) and diffuse 
sources (road and marine traffic) (Azimi et al. 
2005; Burak et al., 2004; 2009; Demir, 2018, 
Kural et al., 2018). Coal burning is the main 
man-made source of sulfur dioxide. Particulate 
matter consists of both organic and inorganic 
substances, mainly from dust, fly ash, soot, 
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smoke, aerosols, fumes, mists and condensing 
vapors. Ozone is a colorless, pungent, highly 
reactive gas and is the principal component of 
smog, which is caused primarily by automobile 
emissions, heavily in urban areas (Yerramilli et 
al., 2011). In the literature there are many 
studies in which air pollution has been 
examined and analyzed with geospatial 
methods (Elbir, 2004; Fedra and Haurie, 1999; 
Lin and Lin, 2002; David et al., 1997; Briggs 
et al., 2003; Chen et al., 2015; Hee-Jae and 
Myung-Jin, 2014; Xiao et al., 2014; Rohde and 
Muller, 2015; Matejicek, 2005; Song, 2008). In 
order to improve the air quality, geographical 
information system (GIS) based decision 
support systems have also been developed for 
urban areas (Guerrero et al., 2008; Lim et al., 
2005; Puliafito et al., 2003; Schmidt and 
Schafer, 1998; Jensen et al., 2001). Air quality 
modeling and quality mapping by GIS, 
preparation of emission inventory and scenario 
analysis for air pollution reduction are the main 
components of this spatio-temporal urban air 
quality management system.  

Air quality in Turkey is generally a big 
concern, measurements show that all over the 
country increased pollution levels have 
becoming a threat to human health. Monitoring 
air pollution is the key issue for deciding 
policy measures and technological 
interventions to reduce air pollution levels. So 
typical pollutants have been monitored 
routinely at most official air-quality stations. 
Air pollution in Marmara region is also one of 
the important problems of daily life due to 
rapid population growth, intensive 
immigration, industrial facilities, utilization of 
old combustion technologies in industry, usage 
of poor quality fuels and traffic emissions. 
Scientific researches have thus been increased 
for air quality management and air pollution 
assessment related to the study region (i.e. 
Marmara region) (Pekey and Özaslan, 2012; 
Tayanç, 2000; Tayanç and Berçin, 2007; 
Akyürek et al., 2013; Gümrükçüoğlu and 
Soylu, 2011; Karaca, 2012a). 

In this study it was aimed to characterize spatial 
variations of air pollutants such as SO2 and 
PM10 for determining pollution status in 
Marmara region. No systematic air pollution 
monitoring study with GIS approach was 

reported in the region so far. PM10 and SO2 air 
pollution values that have recorded as hourly 
averages were used as dataset in this study 
between the dates October 1, 2013 and March 
31, 2014 which is referred to as the winter 
(heating) season in Air Quality Evaluation and 
Management Regulation (AQEMR). Marmara 
Region was chosen to be the area of study and 
daily averages from the hourly average data are 
obtained from the 61 air quality monitoring 
stations available in the region. Spatial analyses 
for the pollutant parameters have been carried 
out within GIS environment and pollution 
distribution maps created with the aid of 
kriging method which is one of the 
geostatistical techniques. In order to examine 
the contribution of different meteorological 
parameters on the levels of air pollution 
regression models were employed. The 
observed SO2 concentrations are regressed 
using humidity, temperature, atmospheric 
pressure and wind speed variables. In the first 
instance of regression modeling, we apply 
ordinary least-squares (OLS) regression model. 
Since the estimation results obtained from the 
OLS model may have led to biased parameter 
estimation, the spatiality of the factors studied 
should be taken into account. In order to avoid 
model error and to improve the fitting 
precision, spatially autoregressive modeling 
(SAR) was applied. SAR modeling is, in fact, a 
general extension to OLS regression models 
and solves the issue of spatial autocorrelation in 
model residuals. The two regression model 
results of the observed SO2 concentrations were 
quantitatively analyzed. 

Materials and Methods 

Today, the urbanization is one of the most 
important factors affecting the air quality 
profile of Turkey. Significant efforts in recent 
years, such as the fuel shift from coal to natural 
gas, have aimed at reducing the air pollution 
levels in Turkey. Most of the metropolitan 
cities have built natural gas pipeline systems 
for use in residential heating and in industries. 
Significant improvements in the air quality 
have thus been observed in some cities, and the 
air pollution profile of Turkey has begun to 
change. However, some regions of Turkey still 
suffer from air pollution, as in the Marmara 
region. Low-quality fuel usage, dominating 
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meteorological factors, land use characteristics 
and industrial sources influence local and 
regional air quality parameters in the region 
(Deniz and Durmusoglu, 2008; Karaca, 
2012b). 

Study region is the Marmara Region situated 
between 260 and 310 Eastern longitudes and 
380 and 420 Northern latitudes with a 
population of 23,202,727 people. In 2012 - 
2013, 779,434 people have been immigrated 
to, and 654.171 people have been immigrated 
from the Marmara Region which shelters the 
provinces equipped with intense industrial 
facilities (Bursa, İstanbul, Kocaeli, Tekirdağ) 
within its body, and has a population in 
proportion to the intensity thereof 
(http://www.tuik.gov.tr). Due to the improving 
industrialization and rapid growth of the 
regional population, increased pollution levels 
have becoming a threat to human health in the 
region. Monitoring air pollutants in the region 
are gaining more importance due to harmful 
effects. For this reason pollution levels should 
be monitored in the region attentively. It is 
thus required to observe and monitor the major 
pollutant parameters, such as PM10 and SO2, 
since these pollutants are emitted from the 
industrial facilities and originated from the 
solid fuels generally used for the residential 
heating purposes. 

National Air Quality Monitoring Network of 
Turkey has been established, introducing air 
quality monitoring stations in 81 provinces 
within the body of the Ministry of Environment 
and Urban Planning in 2005-2007, in order to 
monitor air quality and take required measures 

in a timely manner. There are 125 air quality 
monitoring stations, three of them are mobile in 
Turkey as of the year 2014. SO2, PM10, nitrogen 
oxides, CO and O3 parameters are measured in a 
fully automatically manner in all of the air 
quality monitoring stations established. Some 
of the stations are also capable of measuring 
some meteorological data additionally. 
Measurement data accumulated in the 
monitoring stations are transferred to the Data 
Processing Center of Environmental Reference 
Laboratory belonging to the Ministry of 
Environment and Urban Planning. In addition, 
39 air quality monitoring stations have been 
founded in the region by the Directorate of 
Marmara Clean Air Center (MCAC) within the 
body of the relevant ministry. We used all 
possible data belonging to the specified period 
as daily average values of PM10 and SO2 
measurements belonging to those stations after 
a data treatment and validation process. These 
two pollutant parameters are commonly 
monitored at the stations connected to the 
system network. 

In many countries, the limit values set forth by 
the European Union (EU) and the World Health 
Organization (WHO) are used locally in order 
to keep air pollution under control. Long-term 
exposure limit values, short-term limit values, 
winter season average values and warning 
thresholds for PM10 and SO2 are specified in the 
AQEMR published in the year 2008 in Turkey. 
Average limit values for PM10 and SO2 
pollutants specified in AQEMR and 
international regulations are given in Table 1. 

Table 1 PM10 and SO2 pollutants with the national and international limits 

Pollutant Turkish Limit Values 
(AQEMR) (µg/m3) 

EU regulations (µg/m3) WHO guidelines 
(µg/m3) 

PM10

90 (24h) 
56 (ann.) 

50 (24h) 
40 (ann.) 

50 (24h) 
20 (ann.) 

SO2 
470 (1h) 
225 (24h) 
20 (ann.) 

350 (1h) 
125 (24h) 
20 (ann.) 

20 (24h) 
500 (10 min) 

PM10 and SO2 air pollution emissions that 
have been recorded as hourly averages 
between the dates October 1 and March 31 
which is referred to as the winter season in 
AQEMR, were used as dataset in this study. 

Marmara Region was chosen to be the study 
area as previously explained and daily 
averages have been calculated from the 
hourly average data obtained from the 61 air 
quality monitoring stations available in the 
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region are given in Fig. 1, and monthly air 
pollution values are obtained from these daily 
averages. GIS have been used as a platform 
for spatio-temporal analysis of urban air 
quality. Air pollution values have been stored 

in the form of dbf tables which are a database 
format and transferred to the geodatabase 
environment. 

Fig. 1. 61 Air quality monitoring stations available in the Marmara region 

Because of its unique spatial and temporal 
analysis functions, GIS has been widely used 
in pollution monitoring and evaluation of air 
quality. In the study it was benefited from 
ArcGIS 10.1 software for the operations 
related to database formation, querying, and 
analysis of air pollution. It was aimed to map 
spatial distributions of the measured pollutant 
parameters using geostatistical method in the 
study region. With the aid of geostatistical 
analysis module available in the ArcGIS 
software, PM10 and SO2 air pollution 
parameters belonging to the winter season 
have been analyzed according to the kriging 
method and spatial pollution distribution 
maps have been generated for the region. 

The distributions of five pollutant parameters 
obtained from the GIS environment are given 
in Fig. 2. Higher PM10 concentrations 
generally have been observed in the 

industrial territories and at places where solid 
fuels were used for residential heating 
purposes. During the course of winter season, 
higher concentration values as monthly 
averages have been measured in the cities 
such as Kocaeli, Sakarya, Bursa, Tekirdağ 
and İstanbul where the industrial facilities are 
rather intensive. As seen from the Fig. 2 
higher PM10 concentration values were 
obtained from Sakarya and Bursa provinces. 
Measured pollutants are still high in Edirne, 
Kocaeli, İstanbul, Bilecik and Tekirdağ 
cities. Minimum concentrations were 
observed in Yalova city. It should be noted 
that SO2 concentration values measured in 
Edirne and Çanakkale provinces are 
especially higher than the others (Fig. 2). 
That is why solid fuels (i.e. coal, etc.) have 
been used for residential heating in Keşan 
district (in Edirne) and its surroundings. The 
other hand there is a thermal power plant 
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located in Çan district (in Çanakkale) within 
its borders which uses lignite coal to generate 
electric power. Measured NO and NO2 
concentrations are higher in İstanbul than the 
other cities in region. Monthly average O3 

concentrations have high values in Balıkesir 
and Kırklareli cities. 

Fig. 2. Distribution of pollutant parameters of winter season for the provinces in GIS environment 

Results and Discussion  

It is observed that monthly averages for the 
measured PM10 pollutant obtained from the 
Marmara region exceeded the international 
limits (i.e. EU and WHO). Investigating 
hourly concentrations it can be seen that 
measurement values of the pollutant have 
exceeded the adopted limits for many times. 
Monthly averages for the SO2 pollutant 
obtained from the region have found to be 
higher than the limits adopted in WHO 
regulation and conversely found to be lower 

than limits of EU. In addition to this hourly 
measurement values of the pollutant have 
exceeded the adopted limits for many times. 
These results indicate that the region has 
been facing increasing urban air pollution. 
Descriptive statistics for the measured PM10 
parameter as monthly averages are shown in 
the Table 2 for winter season. Limit value is 
also given for the pollutant parameter for 
comparing the measurement concentrations. 
Concentrations as monthly averages are 
higher than limit values for all the months in 
the season except October. 

Arslan and Akyürek / IJEGEO 5(1): 1-16 (2018) 
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Table 2 Descriptive statistics for PM10 parameter by month during winter (heating) season in 2013-
2014 

Minimum 
(µg/m3) 

Maximum 
(µg/m3) 

Average 
(µg/m3) 

Standard 
Deviation 

Limit Value 
(annually) 

October 9 104 54.53 22.13

56 µg/m3 

November 8 125 58.07 24.87
December 10 173 72.57 33.28 

January 8 153 72.31 29.55
February 8 159 65.76 29.76
March 10 127 57.59 24.65

Descriptive statistics for the measured SO2 
parameter as monthly averages are shown in 
the Table 3 for winter season. Limit value is 
also given for the pollutant parameter for 
comparing the measurement concentrations. 

Concentrations exceeded the limit value for 
all the months in the season except October 
particularly. The measured concentration has 
risen to two times the limit value in 
December and January. 

Table 3 Statistical data for SO2 parameter by month during winter (heating) season in 2013-2014 
Minimum 
(µg/m3) 

Maximum 
(µg/m3) 

Average 
(µg/m3) 

Standard 
Deviation 

Limit Value 
(annually) 

October 3 308 17.49 42.67

20 µg/m3 

November 2 554 30.68 81.18
December 5 893 51.09 133.41 
January 1 700 41.15 107.07 
February 2 590 35.49 88.77
March 3 553 33.61 79.76

Figure 3 demonstrates, PM10 and SO2 
pollution parameter concentrations 
respectively generated by the calculation of 
monthly averages from daily averages 
obtained from MHTM for Keşan and Çan 
districts in 2014, and limit values (denoted as 
dotted lines) specified in AQEMR belonging 
to these parameters. SO2 parameter, in 
particular, has been measured quite above the 
limit value during the winter months in both 
districts. SO2 concentrations measured in 
Keşan were greater than the national limit 
value of 150 µg/m³ approximately by a factor 
of five (i.e. five times) in the months January 
and November and by a factor of four in 
February. It is clear that such air pollution 
was resulting from the domestic heating since 
the values measured during summer months 

dropped down to zero. In particular, when 
hourly averages related to SO2 pollutant 
parameter are taken into consideration in 
Keşan, throughout the whole winter season, it 
is observed that pollutant concentration 
shows exceptional rises at certain hours of a 
day. These hours correspond to the hours of 
operating the heaters and lighting the stoves 
during morning and evening hours for the 
heating purposes. The measured values of 
PM10 pollutant emissions reach the same high 
value as proportional to the SO2 peak hours. 
These concentration values for both 
pollutants continue to keep their high levels 
throughout the whole winter season at the 
specified hours of the day (when the heaters 
and stoves are fired up in the morning and 
evening).  

Arslan and Akyürek / IJEGEO 5(1): 1-16 (2018) 
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Fig. 3. PM10 and SO2 concentrations and limit values of Keşan (left) and Çan (right) in the year 
2014.  
Spatial variability with spatial-dependence 
relations of air pollutants can be examined by 
determining spatial patterns related to air 
pollution parameters and generating spatial 
distribution maps of air pollution with the aid 
of GIS. Spatial distribution maps are 
generated by obtaining dependences and 
probabilities determined from the 
semivariograms with the support of classical 
(ordinary) kriging method, which is one of 
the spatial analysis techniques. The pollution 
distribution maps presented in Fig. 4 show 
monthly variations of the PM10 
concentrations. The particulate matter 
concentration measured by months, 
December and January which are literally the 
middle of this time period became the 
maximum. As seen from the Fig. 4a PM10 
concentrations did not exceed limit values of 
AQEMR (national standard) across in the 
Marmara region on October. As seen from 
the figure higher measured concentration 
values are observed  in Dilovası, Kocaeli 
where intensive industrial plants and 
organized industrial zones are located, and in 
Bursa province and also in Sakarya province 
where solid fuel is used (Gümrükçüoğlu and 
Soylu, 2011). 

PM10 concentrations have slightly increased 
in the same region on November as shown in 
Fig. 4b. It is clearly be seen from the 
distribution map belonging to the December 
in Fig. 4c, PM10 levels are generally high 
throughout the region. Air pollution seem to 
be high in the districts where industrial 
facilities (Bursa, Kocaeli and Sakarya, 

Tekirdağ provinces) and solid fuel is still 
used for residential heating in Edirne and 
Çanakkale provinces. Relatively high 
pollution levels can generally be seen in the 
region from the distribution map for January 
in Fig. 4d but air pollution is decreased to a 
certain extent in Istanbul and Kocaeli 
provinces. Higher pollution levels can be 
seen in industrial zones and the districts 
where solid fuel is widely used as the 
beginning of the winter season in the 
distribution map created for February month 
in Fig. 4e. There seems to be a declining 
tendency of pollution in the other provinces. 
Pollutant values are very close to the limit 
values throughout the region in the map for 
March in Fig. 4f.  

Major source of SO2 are the solid fuels used 
for the residential heating purposes. For this 
reason, as it is seen in the distribution maps 
(Fig. 5), throughout the whole heating 
season, much higher pollution values than 
other stations have been measured in Keşan 
and its surroundings where solid fuels are 
used in the houses for heating purposes and 
Çan where there is a thermal power plant 
within its borders using lignite coal in order 
to produce electricity. In addition, high SO2 
values have been recorded in the air quality 
monitoring stations located in the provinces 
such as Kocaeli, Sakarya, Bursa and 
Tekirdağ where the industrial facilities are 
rather concentrated. 

Since direct proportion was observed 
between the two measured pollutants in this 
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district, interactions of the pollutants are also 
evaluated to reveal the relationships between 
the measured concentrations in different 
districts of the whole region. Fig. 6 shows 
correlations between the measured SO2 and 
PM10 pollutants obtained from the different 
stations in Marmara region. It is clearly be 
seen that there is a linear relationship 
between the pollutants. This result is, in fact, 
typical since sources of these two pollutants 

are nearly the same as stated in the literature 
(Tayanç, 2000). Maximum correlation value 
(R2=0.97) is observed in Kandıra district on 
December as shown in Fig. 6c. Minimum 
correlation coefficient is observed (R2=0.73) 
in Keşan district as illustrated in Fig. 6a. 
Evaluating relationship between SO2 and 
PM10 concentrations in the other parts of the 
region direct proportion was seen similarly. 

Fig. 4. PM10 pollutant distribution maps for winter season in the Marmara region; (a) October (b) 
November (c) December (d) January (e) February (f) March 

Arslan and Akyürek / IJEGEO 5(1): 1-16 (2018) 
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Fig. 5. SO2 pollutant distribution maps for winter season in the Marmara region; (a) October (b) 
November (c) December (d) January (e) February (f) March 

Arslan and Akyürek / IJEGEO 5(1): 1-16 (2018) 
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Fig. 6. Relationship between SO2 and PM10 concentrations for districts; (a) Keşan (b) Çan (c) 
Kandıra (d) Lüleburgaz 

In addition, we know from existing 
experience that air pollution has a strongly 
trans-regional character; it inevitably affects 
neighboring regions (i.e. spatial 
autocorrelation). This characteristic breaks 
with the basic precondition for classical 
regression analysis that is if we undertake 
OLS estimation under this circumstance, the 
results are in fact likely to be biased. If 
spatial autocorrelation exists in the spatial 
units being addressed, an appropriate spatial 
regression model must be chosen. Spatial 
regression models allow researchers to 
account for dependence among their 
observations, which often arises when 
observations are collected from points or 
regions located in space. The spatial lag 
model (SAR) is spatially constant coefficient 
model that can be used to produce a spatial 
extension of OLS, thereby correcting certain 
spatial dependence problems. Use of the 
SAR model is appropriate when spatial 
dependence is suspected in the values of the 
dependent variable, an occurrence that can 
give rise to auto-regressive problems. It is 
widely recognized that description of spatial 
patterns using variograms is sometimes prone 

to errors and incorporating the 
autocorrelation structure into modeling may 
be an important task. Spatial autocorrelation 
measures the similarity or strength of 
correlation between samples for a given 
variable as a function of spatial distance. For 
quantitative variables, such as pollutant 
parameters, the Moran’s I coefficient is the 
most commonly used coefficient in 
univariate autocorrelation analyses. Spatial 
data are known to exhibit spatial non-
stationarity, inconstant spatial variability, and 
can imply inconstant relationships among 
variables over space. This property leads to 
spatial instability of regression coefficients 
and can be associated with autocorrelated 
regression residuals (Fotheringham et al., 
1998). Spatial autocorrelation is commonly 
addressed by spatially autoregressive 
modeling and different forms of 
autoregressive models have been recently 
applied in environmental ecology (Lichstein 
et al., 2002; Tognelli and Kelt, 2004; Fortin 
and Dale, 2005). These models have been 
mainly used as a way to take the spatial 
structure into account in data and, at the same 
time, to evaluate how different environmental 
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predictors are related to spatial variations in 
concentration values.  

A spatially autoregressive model (SAR) was 
calculated to produce a valid model when 
spatial structure occurs in the error terms of 
ordinary least squares regression models. The 
SAR model contains an autoregressive term 
(qyi), multiplied by a spatial weights matrix 
(W), which selects spatially autocorrelated 
units (Getis and Aldstadt, 2004). 

yi= β0+ ∑ βkxik+ ρWyi+ εik  
(1) 

where the response variable at location i, i.e., 
yi, (e.g., observed SO2 values), is expressed 
as a function of k meteorological predictors, 
i.e., xi1 through xik . The β0 through βk
regression coefficients were estimated using 
the SAR model. Note that if the 
autoregressive term is ignored in this 
equation, standard regression model form is 
obtained. Both standart regression and spatial 
autoregressive models were employed to 
examine the contribution of different sources 
of air pollution on the levels of pollutants 
observed in study region. Pollution 
concentrations (i.e. SO2, PM10) were 
modelled as a function of the selected 
predictors which included to temperature, 
wind speed, humidity and atmospheric 
pressure. Hence, standard estimation method, 

i.e. OLS regression, was used to investigate 
the influence factors for SO2 emissions. 
Through the OLS estimation, the R2 
(goodness of fit) of the model was found to 
be 0.977, the adjusted R2 was 0.94 and the F-
value was 10.784 are shown in the Table 4. 
The four meteorological variables account for 
97.7% of the variation in SO2 (for January). 
The global regression model is obtained from 
the estimation as in the following. 

y SO2 = -68.097-4.85temperature+4.37windspeed- 0.41humidity+0.14pressure+e		(2) 

The significance tests of the coefficients 
showed that the regression coefficients to 
have different signs—that is to say, the 
selected explanatory variables were shown to 
have both positive and negative effects in 
relation to pollutant values. The most 
important explanatory variable is humidity 
according to the standardized regression 
coefficient (-0.835). All the variables passed 
the significance test at the 1% level. Wind 
speed was found to have less influence in 
relation to SO2 concentrations. Akaike 
information criterion (AIC) was also used to 
select the best model. This AIC criterion of 
the OLS model was -46.8. The diagnostic 
tests (i.e., Moran’s I, p < 0.01) indicate a 
possibility of problems with autocorrelation. 

Table 4 OLS modelling Results for January SO2 as a response variable and 4 predictor variables 

Variable Coeff. Std Coeff. VIF Std Error t P Value 

Constant -68.097 0 0 97.061 -0.702 < 0.01 
Temperature -4.85 -0.484 2.008 2.136 -2.271 < 0.01 
Wind Speed 4.37 0.207 2.653 5.174 0.845 < 0.01 

Humidity -0.41 -0.835 1.157 0.079 -5.159 < 0.01 
Pressure 0.14 0.36 3.802 0.114 1.226 < 0.01 

n: 6     r: 0.989      r2: 0.977      r2adj: 0.943      F: 10.784      P: 0.008 
Akaike’s Information Criterion (AIC): -46.8 

To compare to ordinary linear regression, we 
set up SAR regression model. SAR 
regression model for SO2 concentration data 
yielded 96.6% R2 value. The F-value was 
8.613 and AIC was -12.662 are shown in the 
Table 5. In this model humidity is the most 

important variable again according to the 
standardized regression coefficient. The 
difference between R2 values suggest that the 
autoregressive term accounts for a slightly 
small portion of the model fit. This 
comparison might be evaluated to be suggest 
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some model stability however by comparing 
AIC values of the OLS and SAR models, the 
SAR regression model was considered the 
more appropriate model. Thus, the results 
suggest that the chosen model is adequate for 
modeling the spatial structure in the 
residuals. Table 5 provides the detailed 
results of the SAR estimation. The SAR 
regression model is obtained from the 
estimation as in the following. 

y SO2 = -78.267-5.16temperature+3.26windspeed-0.38humidity+0.15pressure+e  (3) 
On the whole, the value of the parameters 
estimated using SAR were higher than those 
obtained using OLS. As a result for 
predictive purposes, using any model is 
better than assuming that no spatial 
autocorrelation exists, especially considering 
the relative high R2 values of all 
autoregressive models. 

Table 5 SAR modelling results for January SO2 as a response variable and 4 predictor variables 

Variable OLS 
Coeff. 

SAR 
Coeff. 

Std
Coeff. Std Error t P Value 

Constant -68.097 -78.267 0 37.041 -2.113 < 0.01 
Temperature -4.85 -5.16 -0.515 0.848 -6.088 < 0.01 
Wind Speed 4.37 3.263 0.155 2.132 1.531 < 0.01 

Humidity -0.41 -0.387 -0.788 0.032 -12.053 < 0.01 
Pressure 0.14 0.153 0.394 0.044 3.515 < 0.01 

n: 6      F: 8.613      P: 0.012  
Total Explained (Predictor + Space):    r: 0.981   r2:0.962    AIC: -12.662 
Spatial autoregressive parameter (rho): -0.772 
Alpha: 1.0 

It is also plausible to explore spatial patterns 
in the model, especially in model residuals 
(Fig. 7 and Fig. 8). There is relatively high 
Moran’s I values in the first distance class, 
indicating error terms are biased. 
Additionally there is a lack of explanation of 
concentration values at these short distances. 
As it is known Moran’s I usually varies 
between –1.0 and 1.0, for maximum negative 
and positive autocorrelation, respectively. 

Non-zero values of Moran’s I indicate that 
SO2 pollutant values at a given spatial 
distance are more similar or less similar. 
From these figures it can be concluded that 
there is a spatial structure on residuals to a 
some extent degree. Relatively high values of 
Moran’s I (i.e., I > 0.1) remain in the 
residuals of the two (OLS and SAR) models. 

Fig. 7. OLS regression model residual analysis 
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Fig. 8. SAR regression model residual analysis 

The residuals from the linear regression 
model were spatially correlated (i.e. 
according to Moran’s I values), which 
indicates that the model was not meeting the 
independence of errors assumption. Briefly, 
the use of the spatial autoregressive model 
was effective to remove the spatial 
autocorrelation that occurred in the residuals 
of the ordinary least squares regression 
model. 

Conclusion 

This study conducted a spatial analysis on the 
emission patterns of two major air pollutants 
named PM10 and SO2 for winter period from 
2013 through 2014 in Marmara region. One 
of the main contributions of the study is to 
show that GIS based spatial analysis can be a 
powerful tool for air quality management. 
The technique is effectively used for 
monitoring and analyzing air pollution in 
large areas like the study region. Pollution 
distribution patterns were identified by 
means of generated pollution distribution 
maps made by geostatistical interpolation 
technique for the determination of high 
concentrations of air pollution sources. It 
should be noted that considerable increases 
have been obtained in the measured 
concentrations of SO2 and PM10 during the 
winter season forming a serious air pollution 
in the region. The results indicate that 
industry and residential heating seem to be 
responsible for pollution in the study area. 
The values of PM10 measured especially in 
Bursa, Kocaeli, Sakarya and Tekirdağ 
provinces where industrial facilities are 
abundant, were high, and such a trend has 

been also observed in the pollution 
distribution maps. In addition, PM10 values 
were observedly high in the surroundings of 
Keşan and Çan districts as well where solid 
fuels are used for the residential heating 
purposes. Considering the fact that SO2 is 
generated from the solid fuels used for the 
heating purposes, in places where natural gas 
is available for the heating purposes, SO2 
pollution value was measured below the limit 
values. However, pollution concentrations 
measured in such places where solid fuels are 
used for the residential heating purposes as, 
in particular, Keşan and Çan districts were 
above the hourly, daily and monthly 
threshold values in the records. 

This study then analyzed the measured 
emissions to reveal possible factors 
(predictors) of air quality in the region using 
standard OLS and SAR regression models. 
SAR model has been mainly used as a way to 
take the spatial structure into account in data. 
The two regression models revealed that all 
the four explanatory meteorological variables 
used to depict the pollution levels in relation 
to air quality. Among the variables, 
temperature, wind speed, humidity and 
atmospheric pressure were all found to have 
had a significant influence over air quality. 
The humidity variable had the highest 
univariate R2 value for all the univariate 
regressions, which highlights the importance 
of humidity into the models. After the 
specification of the final model parameters, 
the model was fit to the entire data set and 
the residuals were examined for the presence 
of spatial autocorrelation with Moran’s I. 
Compared to the OLS technique, SAR is 
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more appropriate when dependent variables 
exhibit spatial autocorrelation. 
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