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ABSTRACT 
In developing a specific WQI (Water Quality Index), many quality parameters are involved with different levels of 

importance. The impact of experts’ different opinions and viewpoints, current risks affecting their opinions, and 

plurality of the involved parameters double the significance of the issue. Hence, the current study tries to apply a 

consensus-based FOWA (Fuzzy Ordered Weighting Average) model as one of the most powerful and well-known 

Multi-Criteria Decision- Making (MCDM) techniques to determine the importance of the used parameters in the 

development of such WQIs which is shown with an example. This operator has provided the capability of modeling 

the risks in decision-making through applying the optimistic degree of stakeholders and their power coupled with 

the use of fuzzy numbers. Totally, 22 water quality parameters for drinking purposes were considered in this study. 

To determine the weight of each parameter, the viewpoints of 4 decision-making groups of experts were taken into 

account. After determining the final weights, to validate the use of each parameter in a potential WQI, consensus 

degrees of both the decision makers and the parameters are calculated. The highest and the lowest weight values, 

0.999 and 0.073 respectively, were related to Hg and temperature. Regarding the type of consumption that was 

drinking, the parameters’ weights and ranks were consistent with their health impacts. Moreover, the decision 

makers’ highest and lowest consensus degrees were 0.9905 and 0.9669, respectively. Among the water quality 

parameters, temperature (with consensus degree of 0.9972) and Pb (with consensus degree of 0.9665), received the 

highest and lowest agreement with the decision-making group. This study indicated that the weight of parameters in 

determining water quality largely depends on the experts’ opinions and approaches. Moreover, using the FOWA 

model provides results accurate and closer- to-reality on the significance of each of the water quality parameters. 

Thus, using this operator can be a precise and appropriate method to determine the parameters’ weights and 

importance in order to develop specific WQIs for drinking, industrial, and agricultural purposes. 
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LIST of ABBREVIATIONS  
WQI: (Water Quality Index) 

NSFWQI: (National Sanitation Foundation Water Quality Index) 

MCDM: (Multi Criteria Decision Making) 

GFDM: (Group Fuzzy Decision Making) 

AHP: (Analytical Hierarchy Process) 

SAW: (Simple Additive Weighting) 

FOWA: (Fuzzy Ordered Weighting Average) 

TOPSIS: (Technique for Order Preference by Similarity to Ideal Solution) 

RIM: (Regular Increasing Monotonous) 

DM: (Decision Maker) 

 

INTRODUCTION 
Many environmental and health legislator institutions 

have used different water quality parameters as 

applicable and useful criteria to develop WQIs. The 

advantage of these indices is aggregating the 

physical, chemical, and biological parameters and 

indicating water quality conditions comprehensively 

and in the form of a unit number [1, 2]. Since the last 

decade they are widely used in water quality 

programs [3]. These factors have given the indices a 
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specific place in water resources management plans, 

especially in drinking section [4, 5]. So far, many 

global WQIs have been introduced for evaluating the 

water quality, but they may not be properly useful for 

all regions. Many researchers also believed that these 

indices are not appropriate to be used universally due 

to consideration of professionals’ opinions in specific 

regions of the world and improper distribution of the 

parameters’ weights [6-8]. Hence, developing 

specific and local WQIs has been welcomed in recent 

years. For instance, Prakirake et al., [9], developed a 

specific WQI for rivers in Thai region in Thailand, 

2009. In order to determine parameters’ weights, they 

used the Delphi technique just like the NSFWQI 

method, but through benefiting from 24 experts’ 

opinions in Thailand. They selected and weighted 13 

parameters, including turbidity, Fe, fecal coliforms, 

TDS, NO3, pH, DO, color, NH3, Mn, BOD5, total 

hardness, and total phosphorus.  

Generally, the process of developing a standard WQI 

includes different stages, such as selecting and 

weighting the parameters, determining the sub-index 

of each parameter, and aggregating them to calculate 

the index value [10]. Among these stages, the 

weighting process is considered to be one of the most 

important and determinant ones. This process is 

affected by many factors, such as parameters type, 

water consumption, local standards, intensity of the 

resulting impacts due to their increased 

concentration, accessibility to water treatment 

facilities, and decision makers’ viewpoints, 

knowledge, and experiences. These factors lead to 

uncertainty and more complexity in the weighting 

process. Due to such ambiguities, in spite of the need 

for specifying WQIs by considering local conditions, 

many societies are still using conventional indices. 

These problems indicate the necessity to use accurate 

and powerful ways. Using MCDM techniques can be 

considered to be an appropriate way to solve such 

problems. These models have indicated a high 

potential in water resources management and 

environmental assessment [11]. In the recent years, 

researchers have benefitted from MCDM methods for 

weighting parameters in local WQIs. In 2012, 

Karbassi et al. [12], developed a specific WQI for 

Gorgan Rood River, Iran. They considered nine 

parameters, including pH, temperature deviation, 

PO4, NO3, DO, BOD5, fecal coliforms, turbidity, and 

TSS. Then, they weighted the parameters using the 

AHP method. In 2013, Kohanestani et al., [13], used 

the AHP model to weigh 9 parameters in order to 

evaluate the water quality in Zaringol Stream in 

Golestan Province, Iran. 

Fuzzy theory is a robust way to deal with 

uncertainties in the weighting process. If this theory 

is used appropriately, it can be a useful tool to assess 

environmental problems, Raman believes. This 

method, then, has been used by researchers for 

solving the complexities of issues in the field of 

water, especially when a large number of parameters 

are involved in water quality. Studies of hosseini-

moghari et al., 2015, Kageyama et al., 2016, and 

Tavakoli et al., 2015 are some new researches in this 

field [14-19] . FOWA operator is one of the most 

powerful MCDM methods, which can model the 

risks and uncertainties in aggregating group opinions. 

On the other hand, very rarely applied researches 

about water quality issues have been conducted using 

this model. Therefore, the present study aimed to 

evaluate application of a consensus-based Fuzzy 

OWA model to determine water quality parameters’ 

weights in order to utilize them in specific WQIs 

which was illustrated as a case study. 

 

MATERIALS AND METHODS 
Background information 

Fuzzy numbers 
The infrastructure of fuzzy theory was developed by 

Zadeh in 1965. It was then established by Zadeh and 

Bellman in 1970. In recent years, increasing attention 

has been paid to utilization of this theory for 

analyzing and controlling complex systems. This is 

due to the fact that it is capable of being understood 

by humans and is considered to be a successful 

method in modeling non-linear functions based on 

the natural language [14, 20]. Fuzzy numbers are 

used for utilizing linguistic terms and considering 

uncertainties. If X is a non-empty set, the fuzzy set A 

in X is expressed as its membership function: 

     [   ] 
Where μ_A (x) is interpreted as the membership 

degree of the element X in the fuzzy set A so that x ϵ  

X. 
A fuzzy number like A is known by its membership 

function μ_A (x), which depends on each x of A as a 

real number. Membership functions of fuzzy numbers 

are expressible in triangular, trapezoidal, or Gaussian 

(bell shape) layouts. The examples of these functions 

are shown in Fig. 1. Triangular fuzzy numbers were 

used in the MCDM model in the present study. 

 

Fig. 1: Fuzzy membership functions: (A) Triangular, (B) 

Trapezoidal, (C) Bell shape [21] 
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A triangular fuzzy number is expressed as Eq. 1: 
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Arithmetic functions in a triangular fuzzy number are as follows: 
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FOWA operator 
OWA operator is one of the well-known MCDM 

models, which was extended by Yager in 1988. 

Thereafter, introducing the fuzzy theory in the model 

was an appropriate response to uncertainties in group 

decision making problems [20]. In order to 

approximate the decision- making process to real 

conditions and apply stakeholders’ opinions, 

measures such as existing risks, including DMs’ 

optimistic and pessimistic views, as well as their 

power have been considered. Indeed, OWA method 

is a mapping of an n-dimensional to one-dimensional 

space in which, according to Eq. 3, there is a 

dependent weight vector of wj: 

      
    

  (             )  ∑     
 
                        Eq(3) 

   is the jth value in input dataset {  }. In fact, vector 

b indicates the descending ordered values of the 

vector a, which are indeed the weight of a criterion 

from the viewpoint of each DM. In this equation, n is 

the number of DMs.     shows the order weight and 

has the following conditions: 

∑                   
 
            Eq (4) 

Optimistic degree 
With changes in the orders’ weights, the OWA 

operator’s behavioral features change, as well. The 

orders’ weight change in this operator reflects DMs’ 

optimistic or pessimistic attitude. Larger values at the 

beginning and at the end of the vector of the orders’ 

weight indicate DMs’ optimistic and pessimistic 

attitude towards the issue, respectively. For modeling 

this feature, the term optimistic degree (θ) was 

introduced by Yager in 1988 as Eq. 5:  

𝛉      ⁄  ∑ (   )  
 
             Eq (5) 

Where, n is the number of criteria. 

The   value ranges from zero to 1. In addition, it can 

be defined through three modes as is shown in Fig.2. 

Fig. 2: Different statuses for optimistic degree (20) 

In this study, a fuzzy linguistic quantifier namely 

RIM operator was used to extract the orders’ weights 

(w_j). In this quantifier, linguistic terms are 

expressed by the fuzzy membership function of Q(r)  

in the range of. Eq. 6 is one of such quantifiers that 

has many applications in this regard: 

 ( )                                             Eq (6) 

In the current study, the strictly RIM operator was 

used according to eq. 9. Assuming that n → ∞, and 

merging Eq. 5 and Eq. 6, we have: 

θ  ∫          ⁄
 

 
                Eq (7)    

The linguistic quantifiers and their equivalent θ are 

presented in Table 1. 
Table 1: Family of RIM and its relevant θ values [20] 

Optimism 

degree 

Optimism 

status 

Parameter of 

the quantifier 

Linguistic 

quantifier 

0.999      At least one of 

them 

0.909 Optimistic 0.1 Few of them 

0.667  0.5 Some of them 

0.500 Neutral 1.0 Half of them 

0.333  2.0 Many of them 

0.091 Pessimistic 10.0 Most of them 

0.001    ∞ All of them 

Based on the optimistic degree, Eq. 3 can be defined 

as Eq. 8: 

  (  )  ∑ [(
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]   
 
             Eq (8)         

Where   (  ) is the aggregated weight of each 

criterion. 
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DM’s power 
This term indicates the value of each stakeholder’s 

opinion about the criteria’s importance. Since DMs’ 

power has been defined by using linguistic terms, the 

fuzzy linguistic quantifiers in Table 2 should be 

utilized in order to change them into fuzzy numbers 

and use them in the model. 
Table 2: Fuzzy numbers for DMs’ power [22] 

Fuzzy numbers Label Linguistic variables 

(0.00, 0.00, 0.01) VL Very low 

(0.2, 0.10, 0.20) L Low 

(0.35, 0.20, 0.20) SL Slightly low 

(0.50, 0.20, 0.20) M Medium 

(0.65, 0.20, 0.20) SH Slightly high 

(0.80, 0.20, 0.10) H High 

(1.00, 0.10, 0.00) VH Very high 

If the numeric value of the jth criterion’s weight from 

the viewpoint of     is equal to   (  ), the value of 

the criterion’s weight with applying each DM’s 

power can be computed using Eq. 9:  (  )  

 (    (  )     (  )     (  ))        Eq(9)    

Consensus degree 
In group decision problems, all stakeholders’ 

consensus on the criteria must be taken into account. 

This term indicates that only the criteria with the 

minimum agreement from DMs should be used in the 

decision-making process. According to Ashton’s 

remark in 1992, the minimum consensus threshold to 

accept the results of group opinions is 0.6 [23]. To 

determine this measure, first the non-consensus 

degree of each stakeholder is defined based on Eq. 

10: 

  (  )  |  (  )     (  )|
 
       Eq (10)             

Where   (  )  is, the non-consensus index,   (  ) is 

the DM’s opinion regarding the weight of criterion j, 

and    (  ) is the numerical value of the group’s 

opinion on the importance of the criterion j (group 

weight of criteria j). In this study, the value of p is 

supposed to be equal to 1. The consensus degree of 

the criteria is calculated according to Eq. 11: 

   (  )    
 
 ⁄ ∑   

 
   (  )    Eq (11)       

Where    (  ) is, the consensus degree and m is the 

number of DMs. 

The proposed methodology 
The proposed MCDM framework is shown in Fig. 3. 

In a WQI, lots of water quality parameters are 

involved with different levels of importance. In the 

process of developing new WQIs, stakeholders’ 

opinions should be considered in a proper way to 

determine parameters’ weights. In this framework 

DMs’ viewpoint regarding each parameter’s 

importance is taken by using pairwise comparison 

matrix of AHP. Besides, initial weights are calculated 

using Expert Choice software. The consensus-based 

FOWA model consists of a group decision making 

section. By applying optimistic degree and DMs’ 

power, this model is used to aggregate group’s 

opinions and finalize parameters’ weights. After 

calculating the final weights of water quality 

parameters, they should be validated in order to make 

sure that they have received the minimum agreement 

from DMs. It should be considered by determining 

the consensus degree of each parameter.  Generally, 

changes in each DM’s power results in a change in 

the weight of water quality parameters. In order to 

determine the optimal status of this factor, sensitivity 

analysis should be run. In this way, different 

scenarios are defined in which, specific powers are 

determined for DMs and extracted weights from each 

scenario, are normalized and compared. Calculations 

of FOWA and consensus degrees are performed 

using GFDM software. Acting as an expert system, 

this software has a smart module. In the case where a 

consensus degree of a parameter is under the 

minimum defined threshold, it will be automatically 

removed from the decision-making process. 

An applied example 
The application of the proposed MCDM method was 

evaluated in a case study in Shiraz, Iran. In the 

current study, 22 water quality parameters were used. 

In weighting, the parameters, the opinions of the 

majority of experts who had professional attitudes 

towards water quality were used. In doing so, four 

decision-making groups including 25 DMs were 

determined, which consisted of university professors 

(group 1), experts from Water and Wastewater Co. 

(group 2) and Regional Water Co. (group 3), and 

environmental health managers and experts from 

Shiraz University of Medical Sciences (group 4). 

First, each DM was asked to determine the 

importance of each water quality parameter. Next, 

initial weights extracted from AHP were entered into 

the FOWA model. In this study, the decision-making 

manager selected the intended θ value regarding the 

Table 1. 
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Fig. 3: The proposed decision-making framework 

To find the optimal status of DMs’ power, in order to 

calculate the final group weights, the following 

sensitivity analysis has been performed. First, 7 

scenarios were defined with specific powers for each 

group. For each scenario, parameters’ group weights 

were calculated using FOWA operator and have been 

normalized. Then, the scenarios were compared with 

each other regarding mean and standard deviation of 

weight change via 5 sensitivity analyses.  

 

RESULTS  
The present study dealt with integrating two MCDM 

models (AHP and FOWA) for weighting the water 

quality parameters used in new WQIs. To show how 

these models were used, a real numerical example as 

a case study in Shiraz, Iran was performed. Each DM 

was asked to determine the importance of each water 

quality parameter (initial weights). The initial 

weights were entered into the FOWA model is shown 

in Table 3. According to Table 1, the decision-

making manager selected the term “half of them” (θ 

value of 0.5) as the optimistic degree. The results of 

the sensitivity analysis are represented in Tables 4, 5, 

and 6. Among the sensitivity analyses, the sensitivity 

No. 3 with the lowest standard deviation in weight 

change was selected as the most robust one. This 

analysis contains two scenarios (No. 2 and No. 4). 

According to Table 4, the variety of powers (3 types) 

in scenario No. 4 was more than that in scenario No. 

2 (2 types). Therefore, scenario No. 4 was selected as 

the most stable one. The final weighting factors of 

water quality parameters are presented in Table 7. 

After determining the final weights, they were 

validated by calculating the DMs’ and parameters’ 

consensus degrees. The results of calculating the two 

degrees are shown in Tables 8 and 9, respectively. 

Accordingly, DM11 and DM1 showed the highest 

and lowest consensus degrees, respectively among 

the decision-making groups. Moreover, temperature 

and Pb had respectively the highest and lowest 

consensus degrees among the 22 water quality 

parameters. 
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Table 3: The matrix of DMs’ opinions for parameters’ weights 

weight [  (  )] 
   

DM25 DM24 DM23 DM22 DM21 DM20 DM19 DM18 DM17 DM16 DM15 DM14 DM13 DM12 DM11 DM10 DM9 DM8 DM7 DM6 DM5 DM4 DM3 DM2 DM1  

0.055 0.143 0.059 0.107 0.109 0.102 0.124 0.129 0.097 0.107 0.083 0.070 0.138 0.109 0.082 0.086 0.054 0.038 0.122 0.083 0.093 0.068 0.144 0.125 0.108 Pb 

0.056 0.102 0.054 0.09 0.118 0.086 0.091 0.110 0.142 0.136 0.119 0.122 0.115 0.105 0.082 0.104 0.057 0.057 0.097 0.084 0.122 0.113 0.132 0.119 0.085 Hg 

0.056 0.083 0.051 0.069 0.108 0.089 0.098 0.074 0.121 0.095 0.109 0.096 0.086 0.105 0.082 0.085 0.026 0.059 0.053 0.111 0.122 0.093 0.106 0.099 0.113 Cd 

0.089 0.062 0.085 0.087 0.107 0.100 0.069 0.081 0.088 0.124 0.096 0.123 0.110 0.105 0.082 0.082 0.046 0.070 0.070 0.080 0.122 0.120 0.065 0.080 0.109 As 

0.065 0.054 0.079 0.053 0.058 0.087 0.043 0.036 0.046 0.055 0.048 0.057 0.055 0.058 0.047 0.033 0.112 0.021 0.037 0.066 0.045 0.060 0.055 0.029 0.023 NO3 

0.041 0.038 0.021 0.033 0.022 0.009 0.023 0.024 0.021 0.045 0.045 0.010 0.011 0.020 0.021 0.013 0.023 0.031 0.020 0.019 0.010 0.023 0.008 0.028 0.016 NH4 

0.016 0.029 0.021 0.019 0.020 0.009 0.019 0.023 0.028 0.025 0.022 0.015 0.015 0.021 0.013 0.013 0.024 0.039 0.011 0.039 0.011 0.023 0.007 0.013 0.019 PO4 

0.015 0.026 0.021 0.019 0.007 0.009 0.017 0.010 0.005 0.008 0.006 0.010 0.009 0.010 0.010 0.013 0.041 0.023 0.011 0.016 0.011 0.013 0.008 0.011 0.009 SO4 

0.139 0.034 0.076 0.066 0.019 0.107 0.046 0.040 0.057 0.023 0.032 0.087 0.081 0.040 0.048 0.104 0.069 0.032 0.070 0.063 0.024 0.094 0.034 0.040 0.077 FC 1 

0.123 0.030 0.067 0.063 0.017 0.006 0.033 0.036 0.051 0.023 0.031 0.044 0.040 0.033 0.034 0.061 0.050 0.020 0.076 0.041 0.024 0.020 0.029 0.036 0.061 BOD5 

0.007 0.018 0.020 0.011 0.015 0.009 0.018 0.011 0.010 0.016 0.016 0.023 0.021 0.008 0.025 0.016 0.027 0.047 0.020 0.017 0.023 0.013 0.016 0.025 0.011 Fe 

0.005 0.016 0.015 0.009 0.016 0.009 0.040 0.011 0.009 0.018 0.032 0.023 0.021 0.008 0.025 0.016 0.020 0.054 0.017 0.012 0.022 0.014 0.011 0.013 0.011 Mn 

0.027 0.013 0.019 0.024 0.008 0.009 0.015 0.014 0.007 0.006 0.004 0.012 0.010 0.008 0.010 0.014 0.039 0.024 0.012 0.014 0.013 0.008 0.008 0.008 0.009 TH 2 

0.005 0.011 0.015 0.015 0.005 0.009 0.009 0.009 0.006 0.006 0.004 0.007 0.007 0.008 0.011 0.014 0.028 0.040 0.006 0.004 0.013 0.005 0.007 0.009 0.011 Alk 3 

0.009 0.010 0.017 0.019 0.005 0.009 0.008 0.019 0.006 0.006 0.006 0.007 0.007 0.007 0.010 0.014 0.022 0.018 0.011 0.011 0.014 0.007 0.007 0.010 0.007 TDS 

0.005 0.008 0.012 0.007 0.011 0.009 0.014 0.017 0.004 0.009 0.003 0.007 0.006 0.007 0.008 0.023 0.015 0.025 0.006 0.006 0.014 0.008 0.008 0.014 0.004 F 

0.023 0.007 0.012 0.007 0.017 0.045 0.006 0.007 0.008 0.013 0.024 0.012 0.012 0.009 0.017 0.026 0.020 0.039 0.019 0.022 0.021 0.007 0.008 0.012 0.015 Cl 

0.016 0.006 0.013 0.012 0.006 0.009 0.005 0.016 0.004 0.008 0.010 0.006 0.006 0.007 0.008 0.016 0.022 0.019 0.023 0.012 0.014 0.013 0.008 0.009 0.007 Turb4 

0.012 0.007 0.032 0.020 0.006 0.021 0.009 0.017 0.009 0.005 0.015 0.023 0.020 0.014 0.039 0.024 0.018 0.021 0.066 0.004 0.008 0.009 0.009 0.011 0.004 DO 

0.007 0.006 0.028 0.043 0.008 0.015 0.006 0.010 0.012 0.017 0.011 0.011 0.011 0.007 0.012 0.010 0.015 0.017 0.011 0.006 0.006 0.005 0.009 0.007 0.030 pH 

0.006 0.005 0.015 0.015 0.004 0.008 0.003 0.018 0.009 0.006 0.007 0.008 0.007 0.011 0.038 0.012 0.015 0.026 0.026 0.004 0.006 0.004 0.008 0.010 0.033 Temp5 

0.003 0.004 0.012 0.012 0.004 0.008 0.005 0.007 0.004 0.005 0.005 0.005 0.005 0.006 0.007 0.013 0.012 0.016 0.012 0.005 0.004 0.004 0.007 0.007 0.009 EC 6 

1 Fecal Coliform, 2 Total Hardness, 3 Alkalinity, 4 Turbidity, 5 Temperature, 6 Electrical Conductivity 
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Table 4: DMs’ powers in defined scenarios 

DMs’ powers (  ) 
Scenario  

Group 4 Group 3 Group 2 Group 1 

L M H VH 1 

M M VH VH 2 

M H H VH 3 

M M H VH 4 

SH SH H VH 5 

SH SH VH VH 6 

M SH H VH 7 

 

Table 5: Absolute group weights of parameters in scenarios  

   
Group weights in scenarios [  (  )] 

1 2 3 4 5 6 7 

Hg 0.659 0.771 0.781 0.727 0.784 0.828 0.750 

Pb 0.619 0.739 0.743 0.699 0.760 0.800 0.719 

As 0.586 0.694 0.696 0.654 0.706 0.746 0.671 

Cd 0.581 0.680 0.684 0.645 0.694 0.729 0.662 

FC 0.378 0.465 0.454 0.435 0.472 0.501 0.442 

NO3 0.324 0.399 0.394 0.375 0.409 0.433 0.383 

BOD5 0.259 0.320 0.315 0.300 0.327 0.347 0.303 

NH4 0.137 0.169 0.167 0.159 0.171 0.184 0.164 

PO4 0.126 0.151 0.152 0.142 0.154 0.163 0.146 

Fe 0.123 0.145 0.140 0.134 0.142 0.153 0.136 

Mn 0.120 0.145 0.139 0.133 0.142 0.153 0.135 

Turb 0.113 0.138 0.130 0.125 0.134 0.146 0.127 

F 0.107 0.130 0.125 0.121 0.130 0.139 0.122 

pH 0.087 0.104 0.101 0.098 0.106 0.113 0.099 

SO4 0.084 0.102 0.099 0.096 0.104 0.111 0.097 

TH 0.082 0.101 0.098 0.093 0.099 0.106 0.095 

DO 0.076 0.095 0.095 0.090 0.099 0.104 0.092 

Cl 0.074 0.088 0.086 0.082 0.088 0.094 0.084 

Alk 0.071 0.086 0.083 0.080 0.087 0.093 0.082 

TDS 0.070 0.085 0.081 0.079 0.084 0.091 0.080 

EC 0.066 0.078 0.077 0.073 0.079 0.084 0.075 

Temp. 0.048 0.058 0.056 0.053 0.057 0.061 0.054 
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Table 5: Absolute group weights of parameters in scenarios 

   
Group weights in scenarios [  (  )] 

1 2 3 4 5 6 7 

Hg 0.659 0.771 0.781 0.727 0.784 0.828 0.750 

Pb 0.619 0.739 0.743 0.699 0.760 0.800 0.719 

As 0.586 0.694 0.696 0.654 0.706 0.746 0.671 

Cd 0.581 0.680 0.684 0.645 0.694 0.729 0.662 

FC 0.378 0.465 0.454 0.435 0.472 0.501 0.442 

NO3 0.324 0.399 0.394 0.375 0.409 0.433 0.383 

BOD5 0.259 0.320 0.315 0.300 0.327 0.347 0.303 

NH4 0.137 0.169 0.167 0.159 0.171 0.184 0.164 

PO4 0.126 0.151 0.152 0.142 0.154 0.163 0.146 

Fe 0.123 0.145 0.140 0.134 0.142 0.153 0.136 

Mn 0.120 0.145 0.139 0.133 0.142 0.153 0.135 

Turb 0.113 0.138 0.130 0.125 0.134 0.146 0.127 

F 0.107 0.130 0.125 0.121 0.130 0.139 0.122 

pH 0.087 0.104 0.101 0.098 0.106 0.113 0.099 

SO4 0.084 0.102 0.099 0.096 0.104 0.111 0.097 

TH 0.082 0.101 0.098 0.093 0.099 0.106 0.095 

DO 0.076 0.095 0.095 0.090 0.099 0.104 0.092 

Cl 0.074 0.088 0.086 0.082 0.088 0.094 0.084 

Alk 0.071 0.086 0.083 0.080 0.087 0.093 0.082 

TDS 0.070 0.085 0.081 0.079 0.084 0.091 0.080 

EC 0.066 0.078 0.077 0.073 0.079 0.084 0.075 

Temp 0.048 0.058 0.056 0.053 0.057 0.061 0.054 

 

Table 6: Statistical comparison of sensitivity analyses 

SD Mean Compared scenarios Analysis 

0.014076 0.022661 7 to 1 1 

0.014879 0.020865 4 to 1 2 

0.008776 0.009992 4 to 2 3 

0.009503 0.010522 6 to 5 4 

0.009140 0.012703 4 to 3 5 

 

Table 7: Final weights of water quality parameters 

 

 

 

Table 8: DMs’ consensus degrees 

DM     (  ) 

DM11 0.9905 

DM18 0.9898 

DM2 0.9892 

DM6 0.9887 

DM19 0.9887 

DM10 0.9886 

DM12 0.9884 

DM14 0.9881 

DM24 0.9880 

DM13 0.9879 

DM4 0.9878 

DM22 0.9875 

DM23 0.9874 

DM5 0.9869 

DM7 0.9869 

DM15 0.9868 

DM16 0.9866 

DM3 0.9863 

DM17 0.9863 

DM21 0.9856 

DM20 0.9850 

DM8 0.9828 

DM25 0.9824 

DM9 0.9822 

DM1 0.9669 

 

 

 

 

 

 

Parameter Weight 

Hg 0.999 

Pb 0.961 

As 0.899 

Cd 0.887 

FC 0.598 

NO3 0.516 

BOD5 0.412 

NH4 0.219 

PO4 0.195 

Fe 0.184 

Mn 0.183 

Turb 0.172 

F 0.166 

SO4 0.135 

TH 0.132 

pH 0.128 

DO 0.124 

Cl 0.113 

TDS 0.110 

Alk 0.109 

EC 0.102 

Temp 0.073 
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Table 9: Consensus degree of water quality parameters 
DM     (  ) 

DM11 0.9905 

DM18 0.9898 

DM2 0.9892 

DM6 0.9887 

DM19 0.9887 

DM10 0.9886 

DM12 0.9884 

DM14 0.9881 

DM24 0.9880 

DM13 0.9879 

DM4 0.9878 

DM22 0.9875 

DM23 0.9874 

DM5 0.9869 

DM7 0.9869 

DM15 0.9868 

DM16 0.9866 

DM3 0.9863 

DM17 0.9863 

DM21 0.9856 

DM20 0.9850 

DM8 0.9828 

DM25 0.9824 

DM9 0.9822 

DM1 0.9669 

 

DISCUSSION 
As shown in the results (Table 7), Hg, Pb, As, and Cd 

had the highest weight values. On the contrary, 

temperature, EC, alkalinity, and TDS were the least 

significant ones. Parameters, such as FC, NO3, BOD5, 

and PO4 had medium to slightly high weights. 

According to the discoveries, the parameters with the 

highest weight were all heavy metals.  Regarding the 

proposed consumption type (drinking), it seems that 

the parameters’ weight and ranks have been 

consistent with their health effects. However, 

distribution of the parameters’ weights in the present 

study was identified different from that of Prakirake 

et al. in 2009 [9]. In their study, turbidity was the 

most important parameter with the weight of 0.09, 

Fecal Coliforms, TDS, NO3, pH, DO, and Fe gained 

the second rank with the weight of 0.08, and total 

hardness, NH3, Mn, BOD5, and phosphate were the 

least important parameters with the weight of 0.07. In 

the current study, on the other hand, turbidity was 

ranked at the 12th level and Mn, phosphate, NH3, 

BOD5, and total hardness obtained the 11th, 9th, 8th, 

7th, and 15st ranks, respectively. NO3 was also the 

6th important parameter.  

Because the DMs’ power was determined by the 

manager in the decision-making group, this may 

create some ambiguities in the way one’s attitudes 

and thoughts affect determination of DMs’ powers. 

This has been considered by using sensitivity 

analysis. In the present study, the scenario No. 4 was 

considered to be the most stable one and its weights 

were used as the final ones. For explaining the 

rationale of selecting this scenario, it must be 

mentioned that if the power of all decision-making 

groups would be considered equal, weight change 

standard deviation value would become zero. This 

indicates that in case a lower variety of impacts or 

attitudes in the decision-making group results in 

lower criteria’s weight change, the model showed 

less sensitivity to these impacts. In addition to having 

a higher variety of powers (impacts) compared to 

scenario 2, scenario 4 showed lesser sensitivity to 

change in the parameters’ weights. Therefore, despite 

more differences in DMs’ powers compared to 

scenario 2, this scenario had lower impacts on the 

parameters’ weight change. Consequently, this 

scenario was more robust compared to scenario No. 2 

and was selected as the best DMs’ power status. 

Choosing the best mode of water quality parameters’ 

weights in their proposed WQI, Karbassi et al., 2012, 

[12], carried out sensitivity analysis. Doing this, they 

omitted the opinions with the highest incompatibility 

rate with the average value of the group’s opinion 

that was equal to 0.15. Sensitivity analysis carried out 

in the current study is to some extent different from 

that of Karbassi et al. In this study, however, none of 

the DMs’ opinions were omitted and just the power 

of each DM changed in different scenarios. For 

determination of group weights in the FOWA model, 

factors such as DMs’ power and optimistic degree 

were applied, which helped to have better access to 

the minimum required group consensus degree in the 

decision-making. This is one of the strong points of 

the present study in comparison to that of mentioned 

study.  

Considering the MCDM model, the current 

discussion can be compared to other researches trying 

to develop new WQIs by using similar models. In the 

study performed by Kohanestani et al., 2013, [13], 

parameters’ weighting was performed by the AHP 

method. The results revealed that the highest and 

lowest weights were related to DO (0.17) and TSS 

(0.07), respectively. Therefore, the two studies 

resulted differently, concerning parameters’ weights 

and priorities. This difference might has been due to 

differences in the nature of the MCDM models as 

well as to different attitudes of DMs as professionals 
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in these two areas regarding the importance of water 

quality parameters. Although they used the MCDM 

method and benefitted from its positive features, the 

FOWA model seems to be closer –to-real decision- 

making conditions due to consider decision-making 

risks as well as application of DMs’ powers. 

Therefore, the weights calculated by this method 

seem to be much more accurate than those computed 

by the AHP model. 

Both consensus degrees of DMs and parameters met 

the minimum required value (0.6). According to 

Table 8, all DMs’ consensus degrees were above 0.9 

in the very first survey. This indicates that the DMs 

had very close perspectives to each other. Moreover, 

the results presented in Table 9 demonstrate that the 

consensus degrees of all water quality parameters 

were above 0.9 from the DMs’ points of view. This 

implies that the decision-making team had a high 

agreement on the importance (weight) of each 

parameter. It should be noticed that the consensus 

degree of a parameter is independent from its weight. 

This degree expresses that, whether with low or high 

weight, the criteria must achieve the minimum 

consensus level from the viewpoint of the decision-

making team in order to be applied in the process of 

decision-making. On the other hand, parameters’ 

group weight indicates the intensity of the impact of 

each parameter on the overall water quality. The 

results of computation of the two consensus degrees 

clearly showed the logical answers of DMs, their 

profession and experience as well as the true use of 

parameters in evaluating the water quality, which is 

another strong point of the current study. 

 

CONCLUSION 
In the recent years, researchers have shown that due 

to different conditions ruling different regions of the 

world, the common water quality indices cannot be 

used publicly. In order to evaluate the water quality 

of each region, properly, through indices, it is better 

to determine the type and importance (weight) of the 

involved parameters regarding local policies and 

standards using the opinions of regional experts. This 

has led many health and environmental researchers to 

take steps towards the development of specific 

indices for their own region. On the other hand, the 

existing ambiguities and complexities can make the 

process more difficult. Thus, the importance of using 

accurate and appropriate models in this field is quite 

evident. The results of the current study indicated that 

the weights of the parameters involved in 

determination of water quality were depended on 

experts’ opinions and attitudes. In this study using a 

consensus-based FOWA model caused the 

parameters’ weights and priorities to become 

different, but closer-to-real conditions, in comparing 

to other studies, such as those of Karbasi, 

Kohanestani, and Prakirake. The highest and the 

lowest weight values were related to Hg and 

temperature, respectively. Furthermore, ranking the 

parameters based on their weights indicated that they 

were consistent with their effects on the overall water 

quality and consumers’ health. 

Considered to be one of the most important stages in 

development of WQIs, since most difficulties and 

ambiguities occur during the determination of 

parameters’ weights, the related calculations need to 

be highly accurate. On the other hand, impact of 

different experts’ opinions and attitudes on this stage 

as well as the existing risks in decision-making 

double the significance of the issue. The current 

study indicated the potential of the FOWA model for 

calculating the weights of water quality parameters 

well. Therefore, this model is recommended to be 

used by environmental and health researchers and 

experts all over the world in order to determine the 

parameters’ weights and importance in the process of 

developing new and specific WQIs for drinking, 

industrial, or agricultural purposes. 
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