# **IDENTIFYING CAUSES OF DELAY IN OIL AND GAS CONSTRUCTION** PROJECTS USING FUZZY DELPHI METHOD

#### ALIYEH KAZEMI<sup>1\*</sup>, ALI KATEBI<sup>2</sup>, MOHAMMAD-HOSSEIN KAZEMI<sup>2</sup>

<sup>1</sup>Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran <sup>2</sup>Department of Civil Engineering, Engineering Faculty, Kharazmi University, Tehran, Iran aliyehkazemi@ut.ac.ir

## KEYWORDS: PROJECT MANAGEMENT, CONSTRUCTION PROJECTS, OIL AND GAS INDUSTRY, FUZZY DELPHI METHOD

#### **1-INTRODUCTION**

Successful implementation of construction projects is are implemented with delay. Construction projects are often the owner, consultant and the contractor. criticized for overrunning time and budgets.

ect due dates and within budget. Therefore, causes of time contractors viewpoint. delay are of critical importance to the profitability of most problems as factors that affect the delay in construction proj- construction projects. ects and will affect company's performance and overall economy of the country as well. The delay in construction projects struction delays in residential projects in Jordan. by many factors is usually linked to the performance of time, ried out in the last decade; however, a deeper understanding the most important factors leading to time overruns. is still needed to improve that. A construction project is comtime, within budget, in accordance with specifications and to investigated byRuqaishi and Bashir (2009). stakeholders' satisfaction (Aziz, 2013)

tion projects in Iran are taken into consideration. In this re- and non-excusable delays. spect, the factors are defined using fuzzy Delphi method.

with in Section 4. Finally, Section 5 concludes the paper.

#### **2- LITERATURE REVIEW**

ferent countries have investigated various aspects of delays in nificantly were indicated. construction projects. Some of these studies are listed below:

of construction, contractors, and consultants were identified ferred with experts from several disciplines. byOdeh and Battaineh (2001).

overruns in construction of groundwater projects in Ghana.

A survey on time performance of different types of conone of the key factors for economic development of every struction projects in Saudi Arabia was conducted by Assaf & Alcountry. Every year, a major part of the countries' capital is Hejji(2006) to determine the causes of delay and their imporallocated to civil and infrastructure projects most of which tance according to each of the project participants consisted of

A questionnaire survey was conducted by Sambasivan Experience and the literature revealed that success- and Soon (2007) to solicit the causes and effects of delay in ful construction projects should be completed before proj- Malaysian construction industry from clients, consultants, and

Le-Hoai et al. (2008) employed a questionnaire survey to construction projects. Many researchershave identified these elicit the causes of delay and cost overruns in Vietnam large

Sweis et al. (2008)identified and classified causes of con-

Salama et al. (2008) investigated the main causes of delays cost, and quality. Meanwhile, identification and evaluating within oil and gas projects in UAE. The research method comfactors causing delay in construction projects have been car- prised interviews with experts for the purpose of identifying

Causes of delay in construction projects in the oil and gas monly acknowledged as successful when it is completed on industry in the Persian Gulf cooperation council countries were

Hamzah et al. (2011) identified cause of construction delay In this research causes of delay for oil and gas construc- in Malaysia. There were two main types of delay: excusable

Ravand and Salahi(2011) examined the causes of delays The article is structured as follows: In Section 2, litera- in the implementation of oil and gas industrial projects in Iran. ture review is presented. Summarized explanations about These factors were investigated in five groups consisted of fuzzy Delphi method are given in Section 3. Findings are dealt weaknesses in basic studies, lack of expert labor, lack of timely funding, contractual ambiguities and other problems.

Factors affecting delays in Indian construction projects were analyzed by Doloi et al.(2012). Using a regression mod-Over the years, professionals and researchers from dif- el, the reasons that affect the overall delay of the project sig-

Fallahnejad (2013) identified and ranked the causes of de-The most important causes of delays in construction lay in gas pipeline projects in Iran. 24 executed gas pipeline projects with traditional type contracts from the viewpoint projects were studied and extracted delay factors were con-

Aziz (2013) determined various factors causing delay Frimpong et al. (2003) identified causes of delay and cost in construction projects in Egypt. Ninety-nine factors were short-listed to be made part of the questionnaire survey and were identified and categorized into nine major categories

<sup>\*</sup> Corresponding author. E-mail address: aliyehkazemi@ut.ac.ir

consist of consultant, contractor, design, equipment, external, labor, material, owner and project related factors.

Sunjka and Jacob (2013) determined the most important causes of project delays in Niger Delta region. They designed a questionnaire that could be adapted for the collection of multivariate data from project practitioners in the mentioned region.

Project pathology and leading causes of delay in the projects of zone 3 of Iranian Gas Transmission Company were investigated by Atafar and Eghbali (2014). Some managers and experts were interviewed.

Marzouk and El-Rasas (2014)presented a list of construction delay causes retrieved from literature. The feedback of construction experts was obtained through interviews.

Głuszak & Leśniak (2015)studied construction delays from the client's perspective. Three basic categories of delay in construction works were caused by the contractor, investor and, external.

Rahimi et al. (2015)investigated the reasons of delay in Iran Gas Field. These reasons have been ranked using TOPSIS method which is a multi-criteria method.

Delay causes of road construction projects in Egypt were explored by Aziz and Abdel-Hakam(2016). A questionnaire and personal interviews formed the basis of this paper listing 293 delay causes.

Causes of construction delays in construction projects were studied by Gundaz and AbuHasssn (2016). Data collection was carried out through an online web survey system.

Alzara et al. (2016)identified the major causes of a university (in northern Saudi Arabia) construction project delays. The University's delay factors were then compared to delay factors experienced on Saudi construction projects, identified by performing a literature research. Al-Hazim et al. (2017) investigated factors causing completion delay and cost overrun in infrastructure projects in Jordan.

Gebrehiwet and Luo (2017)investigated the typical causes of delay at different stages of construction and its effect in the Ethiopian construction projects. The methodologies used in this research were relative important index and correlation coefficient.

#### 3 - FUZZY DELPHI METHOD

The traditional Delphi method has obvious weaknesses including its subjectivity and time-consuming features. To overcome these shortcomings, a number of scholars proposed certain optimized methods, the most representativeof which is the fuzzy Delphi method developed by Murrayet al. (1985), which combines fuzzy theory and the Delphimethod. In the fuzzy Delphi method, the experts' judgments are represented by fuzzy numbers. Then, the subjective opinions aretransformed into objective data through a fuzzy operation. This study uses thefuzzy Delphi method to obtain the evaluation indicators of causes of delay for oil and gas construction projects in Iran. The procedure of the fuzzyDelphi method used in this study is as follows:

Step 1: Collect the decision of the group experts. The judgment of every expert on every evaluation indicator is obtained using thesemantic variables in the questionnaire. In this study, the evaluation linguistic term is set, and the triangular fuzzy numbers are shown in Table 1.

Step 2: Calculate the evaluation values of every indicator accordingto the triangular fuzzy number. Suppose that the evaluationvalue of the importance of the kth indicator given by the ith expert is . Then, the fuzzy weight of the kthindicator is defined as:

Step 1: Collect the decision of the group experts. The judgment of every expert on every evaluation indicator is obtained using thesemantic variables in the questionnaire. In this study, the evaluation inguistic term is set, and the triangular fuzzy numbers are shown in Table 1.

Step 2: Calculate the evaluation values of every indicator according to the triangular fuzzy number. Suppose that the evaluation value of the importance of the *k*th indicator given by the *i*th expert is  $w_{ik} = (a_{ik}, b_{ik}, c_{ik}), \quad i = 1, 2, ..., m$ . Then, the fuzzy weight of the *k*th indicator is defined as:

$$w_{k} = (\alpha_{k}, \beta_{k}, \gamma_{k}), \quad k = 1, 2, ..., n$$
 (1)

where 
$$lpha_k=min(a_{_{ik}})$$
 ,  $eta_k=rac{1}{m}\sum_{_{i=1}}^m b_{_{ik}}$  , and  $egin{array}{c}\gamma_k=max(c_{_{ik}})$ 

Step 3: Defuzzification. To obtain the final weight  $S_k$ , the fuzzy weight of every evaluation indicator is defuzzied using a simplecenter of gravity method by Equation (2).

$$S_k = \frac{\alpha_k + \beta_k + \gamma_k}{3} \tag{2}$$

Step 4: Set a threshold  $\rho$  so as to select the more importantevaluation indicators from the total group. If

 $S_k > \rho$ , the *k*th indicatoris retained; if  $S_k < \rho$ , the *k*th indicator is abandoned. In practice,

if we want more indicators, r is set at a smaller value, while conversely,  $\rho$  is set at a larger one(Zhang, 2017).

| Fuzzy linguistic scale | Evaluation linguistic term set | Triangular fuzzy numbers (a,b,c) |  |  |
|------------------------|--------------------------------|----------------------------------|--|--|
| 9                      | Very important                 | (7,9,9)                          |  |  |
| $\widetilde{7}$        | Important                      | (5,7,9)                          |  |  |
| 5                      | Moderate                       | (3,5,7)                          |  |  |
| Ĩ                      | Unimportant                    | (1,3,5)                          |  |  |
| ĩ                      | Very unimportant               | (1,1,3)                          |  |  |

Table 1: Evaluation linguistic term set and its corre sponding triangular fuzzy numbers.

## 4 - FINDINGS

In order to construct an integrated evaluation index system, this study determines the owner, contractor, consultant, equipment, workforce, materials, design, contract, and contractual relations, laws and regulations, managerialfactors,

and environmental factors by referring to related literature and by consulting Iranian experts in the field of oil and gas project management. Then, this study presents the initial evaluation indicators from the eleven aspects mentioned bellow:

## 1. Owner

- Financial problems and delay in payment
- Unrealistic contract duration
- Delay in reviewing and approving documents
- Slowness in decision making and administrative bureaucracy
- Poor communication and coordination with other parties
- Delay in site delivery
- Technical weakness
- Delay in material delivery
- Interference of owner
- Types of biding and rewards
- Ineffective incentives and penalties
- Change of managers
- Failure to resolve the conflicts at the right time
- Lack of experience
- Inappropriate feasibility study of the project

#### 2. Contractor

- Financial problems
- Inadequate experience
- Poor management and site supervision
- Rework to correct undesirable work
- Inappropriate construction methods
- Poor communication and coordination with other parties
- Inappropriate project planning and scheduling
- Problems with subcontractors
- Weak project management
- Lack of technical personnel in the contractor's organization
- Improper pricing by contractors to win the bid
- 3. Consultant
- Weak communication and coordination with other parties
- Inadequate experience
- Delay in conducting inspection and testing
- Delay in reviewing and approving design, drawings and ...
- Ambiguities and mistakes in specifications and drawings and documents
- Technical and managerial weakness
- Poor contract management
- Quality assurance / control

- Lack of adequate supervision during the conduct of geotechnical studies
- 4. Equipment
- Frequent failure of equipment
- Shortage of equipment
- Low efficiency of equipment
- Inappropriate selection of equipment
- Slow mobilization of equipment
- Lack of high-tech mechanical equipment

5. Workforce

- Low productivity
- Low motivation
- Shortage of workforce
- Personal differences of employees
- Nationality

6- Materials

- Shortage of materials
- Delay in delivery of materials
- Low quality
- Changes in price
- Changes in the type and characteristics of materials
- Damage of stored materials
- Problems with providing materials at current official prices
- Difficulties in obtaining construction materials

7. Design

- Mistakes and discrepancies in design documents
- Unclear and inadequate details in drawings
- Un-use of advanced engineering design software
- Changes in design
- Misunderstanding of owner requirements by design engineer
- 8. Contract and contractual relations
- Mistakes and disputes in the contract documents
- Changes in orders
- Lack of communication between the parties
- Major disputes and negotiations
- Inappropriate organizational structure linking to the project

9. Laws and regulations:

- Changes in laws and regulations
- Weaknesses in the laws and regulations
- Tax laws, tariffs and customs duties

10. Managerial factors

- Absence of a real system for managers' performance measurement
- Failure to appoint managers based on their performance evaluation
- Governmental management systems and therefore no need to provide feedback in case of any deviations in time and

cost and quality of projects

11. Environmental factors

- Unexpected geological conditions
- Weather conditions
- Incidental events such as flood, earthquake, and storm
- Sanction
- Inflation
- Economic changes such as changes in exchange rate
- Problem with neighbors
- Change in government policies

Given the background, this study adopts the fuzzy Delphi method to determine the final representative indicators. Taking into account the advantages of the fuzzy Delphi method, this study collects the experts' judgments through a tworound survey. In order to ensure that the results are more reliable, we select Iranian experts who work as an oil and gas construction project manager with at least 10 years of experience in this field. Every expert was asked to assess the importance per indicator according to the triangular fuzzy numbers shown in Table 1. Then, this study uses Equations (1) and (2) to deal with the data and obtain the values in Columns 3 to 6.

Regarding the threshold Shen et al. (2010) pointed out that its value depends on the fuzzy linguistic scale and the user's preference. Generally, the greater the series of the fuzzy linguistic scale the smaller and vice versa. In addition, if users want more indicators, they can set the threshold small, and vice versa. In this study, we adopt the 9 fuzzy scale; we simultaneously consider the representative of the indicators and the higher management efficiency. Thus, this study sets the, with the mean for moderate and important. The final causes of delay are listed in the Table 2.

### **5 - CONCLUSION**

This study quantitatively investigates the selection of causes of delay in oil and gas construction projects using fuzzy Delphi approach. In this regard, first of all the factors were determined by referring to related literature and by consulting Iranian experts in the field of oil and gas project management.Eleven factors were introduced as causes of delay in oil and gas construction project. These were consisted of owner, contractor, consultant, equipment, workforce, materials, design, contract and contractual relations, laws and regulations, managerial factors, and environmental factors. Then using fuzzy Delphi method and by collecting the experts' judgments through a two-round survey the important factors were defined. The results are useful for decision makers in the way of reducing or omitting the delay factors and timely implementation of the projects.

Table 2: The factors causes delay in oil and gas construction projects in Iran.

| Dimension                                | Indicators                                                    |     | Scores |     |       |  |
|------------------------------------------|---------------------------------------------------------------|-----|--------|-----|-------|--|
|                                          |                                                               | Min | Mean   | Max | Final |  |
| Owner                                    | Financial problems and delay in payment                       | 3   | 6.6    | 9   | 6.2   |  |
|                                          | Unrealistic contract duration                                 | 3   | 6.6    | 9   | 6.2   |  |
|                                          | Delay in material delivery                                    | 3   | 6.6    | 9   | 6.2   |  |
|                                          | Types of biding and rewards                                   | 3   | 6.6    | 9   | 6.2   |  |
|                                          | Inappropriate feasibility study of the project                | 3   | 6.2    | 9   | 6.1   |  |
| Contractor                               | Inadequate experience                                         | 3   | 6.6    | 9   | 6.2   |  |
|                                          | Poor management and site supervision                          | 5   | 7.4    | 9   | 7.1   |  |
|                                          | Rework to correct undesirable work                            | 3   | 6.2    | 9   | 6.1   |  |
|                                          | Inappropriate construction methods                            | 3   | 5.4    | 9   | 5.8   |  |
|                                          | Inappropriate project planning and scheduling                 | 3   | 6.2    | 9   | 6.1   |  |
|                                          | Problems with subcontractors                                  | 3   | 5.8    | 9   | 5.9   |  |
|                                          | Weak project management                                       | 5   | 8      | 9   | 7     |  |
|                                          | Improper pricing by contractors to win the bid                | 3   | 7.4    | 9   | 6.5   |  |
| Consultant                               | Inadequate experience                                         | 3   | 6.6    | 9   | 6.2   |  |
|                                          | Delay in conducting inspection and testing                    | 3   | 6.2    | 9   | 6.1   |  |
|                                          | Ambiguities and mistakes in specifications and                | 3   | 5.8    | 9   | 5.9   |  |
|                                          | drawings and documents                                        |     |        |     |       |  |
|                                          | Technical and managerial weakness                             | 3   | 6.6    | 9   | 6.2   |  |
|                                          | Poor contract management                                      | 3   | 5.4    | 9   | 5.8   |  |
| Equipment                                | Low efficiency of equipment                                   | 3   | 6.2    | 9   | 6.1   |  |
| Workforce                                | Low productivity                                              | 5   | 7.8    | 9   | 7.3   |  |
|                                          | Low motivation                                                | 3   | 7      | 9   | 6.3   |  |
| Materials                                | Changes in price                                              | 3   | 7      | 9   | 6.3   |  |
| Design                                   | Changes in design                                             | 3   | 6.6    | 9   | 6.2   |  |
| Contract and<br>contractual<br>relations | Inappropriate organizational structure linking to the project | 3   | 75.4   | 9   | 5.8   |  |

| Laws and regulations  | Changes in laws and regulations                                                                                                                       | 3 | 6.6 | 9 | 6.2 |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---|-----|
| Managerial<br>factors | Absence of a real system for managers' performance measurement                                                                                        | 5 | 7.8 | 9 | 7.3 |
|                       | Failure to appoint managers based on their performance evaluation                                                                                     | 5 | 7.4 | 9 | 7.1 |
|                       | Governmental management systems and<br>therefore no need to provide feedback in case<br>of any deviations in time and cost and quality of<br>projects | 5 | 8.6 | 9 | 7.5 |
| Environmental         | Sanction                                                                                                                                              | 5 | 7.8 | 9 | 7.3 |
| factors               | Inflation                                                                                                                                             | 5 | 8.2 | 9 | 7.4 |
|                       | Economic changes such as changes in exchange rate                                                                                                     | 5 | 8.6 | 9 | 7.5 |

#### **REFERENCES:**

Al-Hazim, N., Salem, Z. A., & Ahmad, H. (2017). Delay and Cost Overrun in Infrastructure Projects in Jordan. Procedia Engineering, 182, 18–24.

Alzara, M., Kashiwagi, J., Kashiwagi, D., & Al-Tassan, A. (2016). Using PIPS to Minimize Causes of Delay in Saudi Arabian Construction Projects: University Case Study. Procedia Engineering, 145(480), 932–939.

Assaf, S. A., & Al-Hejji, S. (2006). Causes of delay in large construction projects. International Journal of Project Management, 24(4), 349–357.

Atafar A., & Eghbali M. (2014). Analyzing the Factors Influencing Delay of Projects in Zone 3 of Iranian Gas Transmission Company, Journal of Industrial Management, 5(2), 85-102.

Aziz, R. F. (2013). Ranking of Delay Factor in Construction Projects After Egyption Revolution. Alexandria Engineering Journal, 52(3), 387–406.

Aziz, R. F., & Abdel-Hakam, A. A. (2016). Exploring delay causes of road construction projects in Egypt. Alexandria Engineering Journal, 55(2), 1515–1539.

Doloi, H., Sawhney, A., Iyer, K. C., & Rentala, S. (2012). Analysing factors affecting delays in Indian construction projects. International Journal of Project Management, 30(4), 479–489.

Fallahnejad, M. H. (2013). Delay causes in Iran gas pipeline projects. International Journal of Project Management, 31(1), 136–146.

Frimpong, Y., Oluwoye, J., & Crawford, L. (2003). Causes of delay and cost overruns in construction of groundwater projects in a developing countries; Ghana as a case study. International Journal of Project Management, 21(5), 321–326.

Gebrehiwet, T., & Luo, H. (2017). Analysis of Delay Impact on Construction Project Based on RII and Correlation Coefficient: Empirical Study. Procedia Engineering, 196(June), 366–374.

Głuszak, M., & Lešniak, A. (2015). Construction Delays in Clients Opinion - Multivariate Statistical Analysis. Procedia Engineering, 123, 182–189.

Hamzah, N., Khoiry, M. A., Arshad, I., Tawil, N. M., & Che Ani, A. I. (2011). Cause of construction delay - Theoretical framework. Procedia Engineering, 490–495. 2

Le-Hoai, L., Lee, Y. D., & Lee, J. Y. (2008). Delay and cost overruns in Vietnam large construction projects: A comparison with other selected countries. KSCE Journal of Civil Engineering, 12(6), 367–377.

Marzouk, M. M., & El-Rasas, T. I. (2014). Analyzing delay causes in egyptian construction projects. Journal of Advanced Research, 5(1), 49–55.

Odeh, A. M., & Battaineh, H. T. (2001). Causes of construction delay: Traditional contracts. International Journal of Project Management, 20(1), 67–73.

Rahimi, Z., Keramati, M. A., & Javanmard, H. (2015). Identifying the Causes of Delay in Projects of Phase 15 and Phase 16 of South Pars Gas Field Using TOPSIS Method, 5, 924–934.

Ravand M., Salai A. M. (2011). Investigating the Causes of Delay in Performing Oil and Gas Industrial Projects of the National Iranian South Oil Company, Industrial Management Journal of Islamic Azad University, Sanadaj Branch, 17, 2011, 43-57.

Ruqaishi, M., & Bashir, H. A. (2009). Causes of Delay in Construction Projects in the Oil and Gas Industry in the Gulf Cooperation Council Countries : A Case Study. Journal of Management in Engi- Neering, 31(3), 1–8.

Salama, M., Hamid, M., & Keogh, B. (2008). Investigating the Causes of Delay Within Oil and Gas Projects in the UAE. Procs 24th Annual ARCOM Conference, 819–827.

Sambasivan, M., & Soon, Y. W. (2007). Causes and effects of delays in Malaysian construction industry. International Journal of Project Management, 25(5), 517–526.

Shen, Y.C., Chang, S.H., Lin, G.T.R., Yu, H.C., (2010). A hybrid selection model for emerging technology. Technological Forecasting and Social Change, 77 (1), 151-166.

Sweis, G., Sweis, R., Abu Hammad, A., & Shboul, A. (2008). Delays in construction projects: The case of Jordan. International Journal of Project Management, 26(6), 665–674.

Zhang, J. (2017). Evaluating regional low-carbon tourism strategies using the fuzzy Delphi-analytic network process approach. Journal of Cleaner Production, 141, 409–419.

# IDENTIFYING CAUSES OF DELAY IN OIL AND GAS CONSTRUCTION PROJECTS USING FUZZY DELPHI METHOD

### ALIYEH KAZEMI<sup>1\*</sup>, ALI KATEBI<sup>2</sup>, MOHAMMAD-HOSSEIN KAZEMI<sup>2</sup>

<sup>1</sup>Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran <sup>2</sup>Department of Civil Engineering, Engineering Faculty, Kharazmi University, Tehran, Iran aliyehkazemi@ut.ac.ir

## **KEYWORDS:** PROJECT MANAGEMENT, CONSTRUCTION PROJECTS, OIL AND GAS INDUSTRY, FUZZY DELPHI METHOD

#### SUMMARY

One of the challenges project managers are dealt with is management of delay in construction projects. Organizations particularly pay special attention to the efficient management of projects and make a lot of efforts to achieve this goal by reducing delay in projects. Analyzing the factors causing delay is essential with the aim of omitting them and timely implementation of these projects. On account of the importance of oil and gas projects, in this research the factors causing delay in oil and gas construction projects are taken in to the consideration. These factors are identified by using fuzzy Delphi method.

<sup>\*</sup> Corresponding author. E-mail address: aliyehkazemi@ut.ac.ir