
Revista Romana de Interactiune Om-Calculator 10 (3) 2017, 216-230 © MatrixRom
�

Gesture-based Visual Analytics in Virtual Reality

Mihai Pop, Adrian Sabou
Computer Science Department, Technical University of Cluj-Napoca
Str. G. Baritiu, Nr.28, 400027, Cluj-Napoca
E-mail: mihai.m.m.pop@gmail.com, adrian.sabou@cs.utcluj.ro

Abstract. This paper presents an approach to dynamic data visualization and manipulation
using virtual reality as a means of display and the Leap Motion controller in order to interact
with the virtual scene. The data and related APIs provided to the virtual reality application
are based on a separate web application which provides REST APIs in order to get and further
manipulate existent data. The algorithm pipeline is managed by using the Unity Game
Engine, which provides a means to express control and logic over the sensory inputs of the
Leap Motion controller. The application is built by using the Unity Game Engine and it is
streamed on any Android phone through RiftCat Vridge software solution for streaming
application over Wi-Fi, while interpreting the phone’s sensor input and translating it into
virtual head movements. The issues from the standpoint of a corporate need for a more
interactive and natural experience in viewing and interacting with big data.

Keywords: Visual Analytics; Virtual Reality; Leap Motion; Gestures detection; RiftCat
Vridge; Node server application.

1. Introduction
Over the last couple of years, the virtual reality scene has become more and
more popular. Part of the reason is that computational power has become less
expensive and readily available to those who study and create projects with
such needs. From its early cumbersome beginnings, Virtual Reality has
become widely spread in the game industry through simulation games using
handheld controllers and a head-mount for displaying the virtual scene.
Though this has been the main use case for virtual reality applications, new
use cases are emerging lately from the corporate world.

When compared to the conventional means of analyzing big data, virtual
reality data analytics is more appealing and visually pleasing than scrolling
through endless table rows. There are large datasets which need to be sorted,
viewed, compared, enhanced. A virtual reality solution would offer the user
a means of interacting with the data in a more natural manner; through
gestures, and physical user interface objects which mimic the behavior of

Gesture-based Visual Analytics in Virtual Reality 217

real-life buttons, sliders and knobs.
As a response, this need of a more convenient and natural way to approach

data analytics has fueled the development of an application designed to
receive large sets of data and display and manipulate them in order to fulfill
the user’s data queries and study.

The context for this virtual reality application is set by the corporate need
of a better data analytics visualization and manipulation approach. Having
this in mind, an auxiliary server-side application has been developed in order
to substantiate real-world server behavior that we plug into our analytics
application. The server application provides a basic REST API for querying
and filtering data.

Then, the users queries data by requesting it with the appropriate request
URL. The requesting of data can be done through the use of hand gestures in
front of the Leap Motion controller. For testing purpose, the data is currently
represented as a 3D array of cubes. This array of cubes is generated at runtime
through an instantiation algorithm which takes into account all data from the
server application and maps it accordingly to Unity game objects with
attached data storing scripts for the server-side data.

So, by mapping the server-side data into compatible Unity game objects,
we can apply our desired logic onto the virtual scene providing the user many
features for an interactive and immersive experience in order to suit his goals
through simple hand gestures.

The proposed solution makes use of the phone’s gyroscopic information
in order to track head movements and to supply this information to the
cameras in the virtual scene, allowing them to rotate and translate with respect
to the tracked head movements. Also, we use the Leap motion controller for
its hand tracking and development library which provides a toolkit for
defining custom gestures to be detected and many user interface
functionalities which make the application user friendly and smooth.

The chosen solution uses custom gestures built upon predefined elements
for certain actions which are all described as Unity classes or logic gates
between several gesture detectors from the Leap Motion Controller library.

This paper elaborates on a dual application solution which tries to solve
the issue of big data manipulation using natural gestures in order to achieve
this goal.

218 Mihai Pop, Adrian Sabou

2. Related Work
A variety of techniques for virtual reality interaction already exist, due to the
high demand in the gaming market for such applications and games. As a
result, several iterations of relevant libraries and APIs have been created to
suffice the development of virtual reality applications. As virtual reality
further matures, it will only get easier to start developing and creating an
interactive virtual reality application due to the advances of previous
developers and the documentation of their features.

Ridder et al. used Virtual Reality and Augmented reality coupled with
gestures to create an immersive environment for visualizing fMRI data. fMRI
or Functional magnetic resonance imaging consists of a functional
neuroimaging procedure using MRI technology in order to measure brain
activity by detecting changes related with blood flow. They suggested that
VR/AR can potentially allow a reduction in visual clutter and lets users keep
their focus on visualizations by allowing them to navigate the data
abstractions in a natural way.

Moran et al. used interactive Virtual Reality to manipulate Twitter datasets
and to visualize them in the original geospatial domain. By using emerging
technologies, they created a fully immersive tool that promotes visualization
and interaction and that can help ease the process of understanding and
representing big data.

Olshannikova et al. provide a multidisciplinary overview of the research
issues and achievements in the field of Big Data and its visualization
techniques and tools. They discuss the impacts of new technologies, such as
Virtual Reality displays and Augmented Reality helmets on the Big Data
visualization as well as to the classification of the main challenges of
integrating the technology.

Hackathorn and Margolis outline the objectives for analytical reasoning
and immersive data spaces, followed by suggestions for the design and
architecture of data worlds. Finally, they describe current work for building
data worlds.

Gesture-based Visual Analytics in Virtual Reality 219

3. The Leap Motion Controller

The Leap Motion Controller device consists of two cameras and three
infrared LEDs. These track the infrared light with a wavelength of 850
Motion Controller doesn’t generate a depth map – instead it applies advanced
algorithms to the raw sensor data.

The Leap Motion Service is the software on your computer that processes
the images. After compensating for background objects (such as heads) and
ambient environmental lighting, the images are analyzed to reconstruct a 3D
representation of what the device sees.

�
Figure 1. The Leap Motion interaction area.

Next, the tracking layer matches the data to extract tracking information
such as fingers and tools. Our tracking algorithms interpret the 3D data and
infer the positions of occluded objects. Filtering techniques are applied to
ensure smooth temporal coherence of the data. The Leap Motion Service then
feeds the results – expressed as a series of frames, or snapshots, containing
all of the tracking data – into a transport protocol.

Thanks to its wide-angle lenses, the device has a large interaction space of
0.226 cubic meters, which takes the shape of an inverted pyramid – the
intersection of the binocular cameras’ fields of view (Figure 1).

With the Orion beta software (the current iteration of the software
development kit for the Leap Motion device), this has been expanded to 2.6
feet (80 cm). This range is limited by LED light propagation through space,
since it becomes much harder to infer your hand’s position in 3D beyond a

220 Mihai Pop, Adrian Sabou

certain distance.
At this point, the device’s USB controller reads the sensor data into its

own local memory and performs any necessary resolution adjustments. This
data is then streamed via USB to the Leap Motion tracking software.

The data takes the form of a grayscale stereo image of the near-infrared
light spectrum, separated into the left and right cameras. Typically, the only
objects you’ll see are those directly illuminated by the Leap Motion
Controller’s LEDs. However, incandescent light bulbs, halogens, and
daylight will also light up the scene in infrared. You might also notice that
certain things, like cotton shirts, can appear white even though they are dark
in the visible spectrum.

Once the image data is streamed to your computer, it is time for complex
mathematical computations. Despite popular misconceptions, the Leap

4. Node REST application with MongoDB database
As mentioned in the introduction, there is an auxiliary application which
interacts with the virtual reality application, providing it with the dynamic
data and advanced query capabilities. In the following, there is a brief
description of the core concepts of such an application.

One of the most used approaches is Representational State Transfer –
REST – because it is an open approach for lots of conventions that are used
for consumers of your API. The way this transfer is made is determined by
the resources provided by your API.

RESTful applications use HTTP requests to perform four operations
termed as CRUD (C: create, R: read, U: update, and D: delete). Create and/or
update is used to post data, get for reading/listing data, and delete to remove
data.

MongoDB is an open source database that uses a document-oriented data
model. MongoDB is one of several database types to arise in the mid-2000s
under the NoSQL banner. Instead of using tables and rows as in relational
databases, MongoDB is built on an architecture of collections and documents.
Documents comprise of sets key-value pairs and are the basic unit of data in
MongoDB. Collections contain sets of documents and function as the
equivalent of relational database tables.

So, the server-side application is a REST application which uses Node for
server emulation. Node being a server-side solution for JavaScript, and in

Gesture-based Visual Analytics in Virtual Reality 221

particular, for receiving and responding to HTTP requests. The application is
written in JavaScript language, for a clean and rapid development.

Figure 2. The configuration of the Palm Direction Detector

5. Leap Motion gestures
The Leap motion software development library by itself does not contain
definition for complex gestures. The Leap motion API contains definitions
for the mapped human body parts (Hand, Arm, Bone, Finger, etc.) and also
definitions for concepts like Frame (the clipped viewport in which a Leap
object exists) or Controller (you can access the actual controller attributes and
methods) or other non-physical control concepts.

So, in order to define more complex gestures, we can make use of the Leap
Motion Detection Utilities Module. The detection utilities are a set of scripts
in the core asset package that provide a convenient way to detect what a user’s
hand is doing. For example, you can detect when the fingers of a hand are
curled or extended, whether a finger or palm are pointing in a particular
direction, or whether the hand or fingertip are close to one of a set of target
objects.

Detectors can be combined together in order to declare complex gestures.
This can be done by using a Logic Gate. The Detector Logic Gate provided
by this module is in itself a detector which combines two or more detectors
to determine its own state.

Detectors ultimately dispatch standard Unity events upon activation or
deactivation. This provides a convenient means to hook different function
handlers.

For instance, when we would want to detect if the user has his hand

222 Mihai Pop, Adrian Sabou

camera-facing and open we would assemble the following detectors:

1.� Extended Finger Detector (Figure 3) - configure the component so
that all fingers must be extended.

2. Palm Direction Detector (Figure 2)
a. Pointing direction = (0, 0, -1)
b. Pointing type = Relative to Horizon
c. On and off angles: set as desired

�
Figure 3. The configuration of the Extended Finger Detector

After that, we can link these two detectors in the Detector Logic Gate and
link other C# scripts and functions to further our desired logic or use case
(Figure 4).

This minimal setup can facilitate powerful results. The above example
links the detection of a camera-facing open hand to a function call from a
separate file, which provides an UI attachment to the left palm of the user
(Figure 5).

Another such gesture is pinching which is defined similarly through the
use of detectors. The effects of pinching with the left hand while looking at a
given cube will cause it to highlight and display a panel over it with its
mapped data from the server-side application (Figure 6).

The data from the server-side application is parsed before attaching it in
the form of data scripts to Unity game objects. The parsed JSON data is
further integrated in the application by being mapped as a custom list of

Gesture-based Visual Analytics in Virtual Reality 223

ResourceNode objects, which are a custom class linked to the project
namespace.

�
Figure 4. Detector Logic Gate configuration

If the user would pinch with his right hand while looking at any certain
cube, that cube will change position in the Unity scene hierarchy and shall be
moved under the RTS node which stands for Rotate Translate Scale node
(Figure 7).

This Node has scripts attached to it which rotate, translate and scale any
mounted game object. It also has capabilities for one and two-handed
rotation.

224 Mihai Pop, Adrian Sabou

6. Server application in depth
The server application uses a MongoDB database on port 27017, the standard
MongoDB port, this can obviously be changed if conflicting settings. The
application runs on port 3000 and has different URL mappings, in order to
provide consumption to its API.

Of course, in order to start the MongoDB local service on port 27017 we
would need to execute this statement in a terminal: mongod --dbpath
"C:\data". This statement just starts the “mongod” process having as database
path, the above-mentioned path.

The server mappings are a collection of URLs for getting information,
which support search parameters. Examples of the URL mappings are as
follows:

1.� http://localhost:3000/api/data
This is the main GET URL, which gets all data in the database (Figure
8)

2.� http://localhost:3000/api/data?name=Youfeed
This gets the node with the name Youfeed.

3.� http://localhost:3000/api/data?influenceGt=20&influenceLt=40
This gets the nodes with the influence key between 20 and 40 (Figure
9).

On the root mapping, “http://localhost:3000/”, there is exposed a list of all
the possible request patterns in order for developers to visualize the
capabilities of the existing API and quickly determine how to send requests
for specific filtered data. (Figure 10)

Figure 6. Pinching with left hand
highlights cube and displays its

information

Figure 5. The instantiation of UI
components on camera-facing open

hand gesture

Gesture-based Visual Analytics in Virtual Reality 225

These filtering operations can essentially be endless because MongoDB
offers rich functionality for collection manipulation.

6.1 Server data mapping
In order to represent the server-side data as cubes, there must be defined

some transitory objects between the primitive cube game objects and the
actual raw data.
The typical pipeline of processing server data in our application is:

1.� Execute Start void function from Instantiation Service script
This function calls another function which does the actual request.
2. Check if erroneous response from the function which made the server

call. If everything is ok, we call a function which builds the data
3. The function which builds the data does the parsing of the JSON server

response. Each value is parsed as the appropriate data type it should have. A
list of Resource Nodes are created, which aid in mapping the JSON data.
Resource Node is a custom class which belongs to the project namespace
After parsing, call a function which creates nodes.

4. The function which creates the nodes loops over the list of Resource
Nodes and creates new Cube object which is also a custom class that has
attributes for parsed values and methods for setting them and also a render
method which adds a game object to the scene with mapped properties

Figure 7. Pinching with right hand
mounts the looked at cube in the RTS

node

Figure 8. Main get URL for getting all
database entries

226 Mihai Pop, Adrian Sabou

����� �
Figure 9. Nodes between influence range [20, 30]

5. The position of each cube is computed by the place cubes function which
basically tries to construct a cube of cubes.

Figure 10. Server API interface list querying data

The raw data (Figure 11) received on a sent request is a JavaScript array of

Gesture-based Visual Analytics in Virtual Reality 227

objects which contain relevant keys, in order for the mapped 3d objects to
respect and help to visually determine the characteristics of this data. Because
we are using MongoDB for our database solution, a supplementary “_id”
parameter is inserted into the array objects. This parameter is used by
MongoDB to uniquely define a resource; it does not interfere in any way in
our mapping mechanism.

�
Figure 11. Raw data received on a request

228 Mihai Pop, Adrian Sabou

7. Implementation

The Unity game engine
For the implementation, there was an extensive research as to how to assure
compatibility the many components at play in this project. The final versions
chosen for the components are:

1.� Leap Motion SDK 3.1.2
2.� Leap Motion Core SDK 4.1.4
3.� Leap Motion Attachments Module 1.0.4
4.� Leap Motion UI input module 1.0.0
5.� Unity Game Engine 5.3.4f1
6.� RiftCat Vridge 1.3.3
7.� Oculus Runtime 0.8

The reasoning for choosing these compatible versions was in order to
stream the application on any android phone and make use of its sensors by
not faking sensor input and using the actual phone’s sensor information.

In order to aid the user in his visualizing experience, some custom UI
elements have been defined:

1.� Information Canvas (Figure 12)
This element serves as an informative panel which attaches to the currently

viewed 3d mapped resource. Currently, it provides information about the
resource name and its influence value. These pieces of information are not
constrained in any way and can be mapped to any property on the received
request array object.

�
Figure 12. Information Canvas

2.� Query Builder (Figure 13)

Gesture-based Visual Analytics in Virtual Reality 229

The query builder panel serves as a graphical utility in order to make
custom requests to the server application, by using virtual buttons and sliders.

�
Figure 13. Query Builder

8. Conclusions
In the world of virtual reality, technology is advancing drastically and new
implementations and solutions to problems we do not know we have arrive
every day. The rise of the virtual reality world has fueled other industries to
peer down and indulge into the advantages this industry brings.

Therefore, the use cases associated with virtual reality got more complex
and more ‘big players’ got into the virtual reality game. In consequence, there
is a fueled need in the corporate world for a solution to common reporting
problems through the means of virtual reality.

230 Mihai Pop, Adrian Sabou

Trying to provide a user friendly and straightforward solution, this
application could be the start of the modern way to visualize and manipulate
data analytics by using virtual reality.

This paper presented a dual application solution in order to give a user the
opportunity to do his queries and tasks through a virtual interface in which
everything is controlled by gestures and intuitive design.

Future work includes a better user experience and integrating with email
and text-to-speech APIs.

References
M. de Ridder, Y. Jung, R. Huang, J. Kim and D. D. Feng. Exploration of Virtual and

Augmented Reality for Visual Analytics and 3D Volume Rendering of Functional
Magnetic Resonance Imaging (fMRI) Data. 2015 Big Data Visual Analytics (BDVA),
TAS (2015), 1-8.

A. Moran, V. Gadepally, M. Hubbell and J. Kepner. Improving Big Data visual analytics
with interactive virtual reality. 2015 IEEE High Performance Extreme Computing
Conference (HPEC), (2015), 1-6.

Ekaterina Olshannikova, Aleksandr Ometov, Yevgeni Koucheryavy and Thomas Olsson.
Visualizing Big Data with augmented and virtual reality: challenges and research
agenda. Journal of Big Data 2, 1 (2015), 22.

R. Hackathorn and T. Margolis. Immersive analytics: Building virtual data worlds for
collaborative decision support. 2016 Workshop on Immersive Analytics (IA), (2016),
44-47.

Alex Colgan. How Does the Leap Motion Controller Work?. Leap Motion Blog. (2014),
Available: http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-
controller-work/.

Leap Motion Inc. Leap Motion. (2017), Available: https://www.leapmotion.com/.
MongoDB Inc. MongoDB. (2017), Available: https://www.mongodb.com/.
Leap Motion Inc. Using the Tracking API. Leap Motion Developer (2017), Available:

https://developer.leapmotion.com/documentation/python/devguide/Leap_Guides2.html.
Node.js® JavaScript runtime (2017), Available: https://nodejs.org/en.

