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Abstract I give new relativistic formulas for kinetic, rest and total energies. The change in kinetic
energy of a particle will be determined as the work done by the spatial part of the Minkowski
four-force. The new relativistic kinetic energy and its relation with the spatial part of the four-
momentum are given by the expressions similar to its classical equivalents. In particular, I justified
that the rest energy is half of the amount determined by the traditional relation. I present a new
interpretation of the temporal component of the Minkowski four-force.
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1 Introduction

The traditional form of the mass-energy equivalence principle proposed by Einstein [1] E0 = mc2 is
sometimes derived [2] using the Planck equations of motion [3] F = d(mγv)/dt. Usage of these equations
in special relativity leads to errors because they are not covariant under Lorentz transformations. The
Lorentz covariance of the physical equations and the Lorentz invariance of the speed of light in a vacuum
are the two basic postulates of special relativity. In my view, the Planck equations of motion are an
interesting example of a heuristic hypothesis and have only historical significance. For calculation of the
relativistic kinetic energy and its relationship with the rest and the total energies it is necessary to use
the Lorentz covariant four-dimensional Minkowski equations of motion [4].

2 The Lorentz Covariant Four-Dimensional Minkowski Equations of Motion

The Lorentz covariant four-dimensional Minkowski equations of motion are given by:

F̃α = mγ
dṽα
dt

= mãα (1)

where
F̃α – components of the Minkowski four-force; α = 1, 2, 3, 4; m – invariant mass of a particle; γ ≡(
1− v2c−2

)− 1
2 – Lorentz factor; c – speed of light in vacuum; ṽα ≡ γ (dxα/dt) – components of the four-

velocity; x1 ≡ x, x2 ≡ y, x3 ≡ z, x4 ≡ ict; i – imaginary unit; v ≡ dr/dt – three-dimensional velocity;

r ≡ (x, y, z) = (x1, x2, x3) – three-dimensional position vector; v2 ≡ (dx1/dt)
2

+ (dx2/dt)
2

+ (dx3/dt)
2

–
square modulus of the three-dimensional velocity; ãα ≡ γ (dṽα/dt) – components of the four-acceleration.

3 The Spatial Part of the Minkowski Four-Force

The Minkowski four-force (1) can be written as

F̃ =

(
F,mγ

dγic

dt

)
(2)

where

F ≡ mγdγv
dt

(3)

is the spatial part of this four-vector.
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After taking into account that dγ/dt = γ3c−2v · (dv/dt); a = dv/dt – three-dimensional acceleration;
a = a‖ + a⊥; a‖ ≡ a ‖ v; a⊥ ≡ a⊥v; v · a⊥ = 0; v ·

(
v · a‖

)
= v2a‖; v

2c−2 + γ−2 = 1, we can write the
spatial part of the Minkowski four-force (3) in the form needed for further considerations:

F = mγ4a‖ +mγ2a⊥ (4)

4 The New Formulas for Energies in Relativistic Mechanics

Let a particle of mass m moves (for simplicity) uniformly along a straight line with velocity v. Now we
will determine the kinetic energy of this particle, i.e. the work that needed to be done by the spatial
part of the Minkowski four-force (3, 4) in order to accelerate initially resting particle to velocity v (in
addition, we assumed that v, a and F are parallel to r).

Ek =

∫ v

0

F · dr (5)

Because a‖ · dr = a · dr; a⊥ · dr = 0; a ≡ dv/dt; dr = vdt, the expression under the integral takes the
form:

F · dr = mγ4v · dv = mγ4vdv = dEk (6)

Finally, we can determine the relativistic kinetic energy of a particle:

Ek =
1

2
mγ2c2 − 1

2
mc2 =

1

2
mγ2v2 (7)

where

E ≡ 1

2
mγ2c2 (8)

and

E0 ≡
1

2
mc2 (9)

are the total energy of a particle of mass m moving with velocity v and the rest energy of a particle,
respectively.

The relativistic kinetic energy (7) of a particle moving at low speed in relation to the speed of light
(v � c) is approximately equal to the value determined from the classical formula:

Ek ≈
1

2
mv2 (10)

Note that Einstein in his famous paper [5] proposed for the kinetic energy the following expression:

Ek = mγc2 −mc2 (11)

5 The Square Modulus of the Four-Velocity

The four-vector of velocity (four-velocity) is defined by:

ṽ ≡ (ṽ1, ṽ2, ṽ3, ṽ4) =

(
γ
dx1
dt

, γ
dx2
dt

, γ
dx3
dt

, γ
dx4
dt

)
(12)

Calculating the square modulus of this four-vector

ṽ2 = γ2v2 − γ2c2 = −c2 (13)

we obtain the following equation:
γ2v2 + c2 = γ2c2 (14)

By multiplying both sides of the above equation by 1
2m we receive again the relationship between kinetic,

rest and total energies of a particle moving with velocity v :

1

2
mγ2v2 +

1

2
mc2 =

1

2
mγ2c2 (15)
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6 The New Relation between Kinetic Energy and Momentum

The four-vector of momentum (four-momentum) is defined through the equation:

p̃ ≡ mṽ = (p̃1, p̃2, p̃3, p̃4) (16)

where
p̃α ≡ mṽα (17)

The temporal component of the four-momentum using Eqs. (17, 12, 8) takes the form:

p̃4 ≡ mṽ4 = mγic = i
√

2mE (18)

Determining twice the square modulus of the four-momentum (16), we obtain:

p̃2 = −m2c2 (19)

and
p̃2 = p2 −m2γ2c2 (20)

where

p ≡ mγv =

(
mγ

dx1
dt

,mγ
dx2
dt

,mγ
dx3
dt

)
= (p̃1, p̃2, p̃3) (21)

and
p2 = p2 = p̃21 + p̃22 + p̃23 = m2γ2v2 (22)

are the spatial part of the four-momentum and the square of its modulus, respectively.
Equating the right sides of the both equations (19) and (20) for the square modulus of the four-

momentum, after simple transformations and taking into account Eqs. (7, 8, 9), we have:

p2

2m
=

1

2
mγ2c2 − 1

2
mc2 = E − E0 (23)

or
p2

2m
=

1

2
mγ2v2 = Ek (24)

7 The Temporal Component of the Minkowski Four-Force

The temporal component of the Minkowski four-force

F̃4 = mγ
dγic

dt
= imcγ

dγ

dt
(25)

after taking into consideration that γdγ/dt =
(
dγ2/dt

)
/2 and Eqs. (7, 8, 9) may be written as:

F̃4 = ic−1
d

dt

(
1

2
mγ2c2

)
= ic−1

dE

dt
= ic−1

dEk
dt

(26)

Note that the dot product of the Minkowski force four-vector

F̃ =
(
F̃1, F̃2, F̃3, F̃4

)
=
(
F, F̃4

)
(27)

and the differential of the position four-vector

dr̃ = (dx1, dx2, dx3, dx4) = (dr, dx4) (28)

is the Lorentz invariant equal to zero.

F̃ · dr̃ = F̃1dx1 + F̃2dx2 + F̃3dx3 + F̃4dx4 = F · dr + F̃4dx4 = 0 (29)

24 Theoretical Physics, Vol. 4, No. 1, March 2019

TP Copyright © 2019  Isaac Scientific Publishing



8 A More General Form of the Mikowski Equations of Motion

Combining Eqs. (1) and (17), we obtain a more general form of the Minkowski equations of motion:

F̃α = γ
dmṽα
dt

= γ
dp̃α
dt

(30)

From Eq. (30) follows the conservation law of momentum and energy, which states that:
If all components of the four-force acting on the particle are equal to zero, then all components of the
four-momentum of this particle are constant over time.

9 Conclusions and Discussion

Presented in this paper the new relativistic formulas for kinetic, rest and total energies differ from the
commonly applied analogous expressions. These differences are caused by assumption that the Minkowski
equations of motion are correct while the Planck equations of motion are incorrect. The new relativistic
kinetic energy and its relation with the spatial part of the four-momentum are given by the expressions
similar to its classical equivalents. In particular, I justified that the rest energy is half of the amount
determined by the traditional relation E0 = mc2. The most popular formula of physics is not correct.

Disagreement between the traditional form of the mass-energy equivalence principle and the experi-
mental data was recently discussed by Muhyedeen [6] .
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