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Abstract. The present paper extends a previous proof of the Clock Hypothesis from the case of light 
clocks to clocks realized from oscillating massive particles. We also extend the study from the case of 
clocks undergoing constant proper acceleration to the case of clocks undergoing variable proper 
acceleration. We transformed the problem into one of general relativity and we applied the Euler-
Lagrange formalism, thus providing a straightforward tool in solving this class of problems.  
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1. Introduction: the Lagrangian Method Applied to Radial Motion 

According to Rindler [1]: 
“If an ideal clock moves non--‐uniformly through an inertial frame, we shall assume that acceleration as 
such has no effect on the rate of the clock, i.e. its instantaneous rate depends only on its instantaneous 
speed v according to the above rule. This we call the clock hypothesis”. (Rindler 1977, p43). 

What Rindler refers to as “the above rule” is the standard time dilation formula that ties the proper 
time, the coordinate time and the speed: 

 τ = −
2

2
1 vd dt

c
  (1.1) 

Rindler allows that “certain natural clocks (vibrating atoms, decaying muons) conform very 
accurately to the clock hypothesis” [1] (page 43). There are both an experimental confirmation [2,3], [4-6] 
and a recent, very nice theoretical proof [7] , for the case of light (electromagnetic) clocks under 
constant acceleration. In the current paper we set to extend Fletcher’s proof to non-light clocks. i.e., 
clocks realized from massive particle oscillating between a pair of ideal mirrors while undergoing 
constant proper acceleration. For the case of uniform acceleration, we have transformed our problem 
from a special relativity problem of hyperbolic motion to a general relativity problem of clocks 
stationary in a uniform gravitational field by using the equivalence principle. The approach lends itself 
to some very easy to follow, elegant solutions based on the Euler-Lagrange variational methods. 
Throughout the paper we will consider that the acceleration vector coincides with the direction of 
motion and both are perpendicular on the two mirrors that form the clock. The mirrors are considered 
to be ideal, i.e. fully reflective.  

The second part of our program is to study what happens in the case of non-uniform acceleration. In 
this case we can no longer appeal to the equivalence principle, since this principle applies exclusively to 
the equivalence between constant acceleration and (uniform) gravitational fields. Nevertheless, the 
Euler-Lagrange formalism, as applied to the Schwarzschild space developed in [8], produces valuable 
insight on whether the clock hypothesis applies to variable proper acceleration.  

Throughout the second part of the paper we will use the Schwarzschild metric format for the 
particular case of absence of rotation ( θ ϕ= = 0d d ) in order to describe the purely radial motion of the 
photons and of the massive particles making up the clocks. In all cases, the clock is made up of two 
mirrors moving independent of each other with the same proper acceleration thus maintaining a 
constant distance between them.  

2. Electromagnetic Clocks under Uniform Acceleration 
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As explained in the introduction, we consider a light (electromagnetic) clock realized by two parallel 
mirrors undergoing the same proper acceleration and separated by the proper distanced . Instead of 
studying the complicated formalism describing the light clock kinematics in accelerated motion, we will 
use the equivalence principle in considering the mirrors stationary in a uniform gravitational field. A ray 
of light bouncing between the two mirrors follows the (null) geodesic of equation: 

 − =2 2 2
2

( ) ( ) 0gr cdt dr
c

  (2.1) 

In other words: 

 =
c drdt
g r

  (2.2) 

We are interested in the proper time, not the coordinate time. The proper time for an observer attached 
to the mirrors stationary in the gravitational field (i.e. for = 0dr  ) is: 

 τ =2 2 2
2

( ) ( ) ( )grcd cdt
c

  (2.3) 

In other words: 

 τ = =
2

gr drd dt
cc

  (2.4) 

So, we have proved that the oscillation period of the electromagnetic clock is independent of 
acceleration: 

 τ
−

= = =∫
2

1

2 12 2 2
r

r

r r dT d
c c

  (2.5) 

3. Generalization for Particle Clocks under Uniform Acceleration 

We now consider a clock realized by an arbitrary particle bouncing between two parallel mirrors 
undergoing the same proper acceleration and separated by the proper distanced . Towards the very end 
of his paper, Fletcher writes (without any proof): “In both the lemma and the theorem, it is clear that 
one can just as easily use timelike instead of null geodesics as the clock mechanism, i.e., bouncing 
massive particles instead of photons. But one must additionally require that the speed v of the particles 
relative to the worldline whose proper time is to be measured be constant”. In the following section we 
will demonstrate that speed does not need to be constant, it is a constant acceleration that satisfies the 
clock hypothesis. The trajectory of the bouncing particle is described by the geodesic that can be 
derived directly from the metric: 

 
α

α

= −

=

2 2 2 2ds dt dr
gr
c

  (3.1) 

From the metric we obtain: 
a) The Lagrangian [1] 

 α= −
2 2

2
2 2

dt drL
ds ds

  (3.2) 

As explained in [1], expression (3.2) is actually the square of the Lagrangian because it is easier to work 
with and it doesn’t affect the expression of the Euler-Lagrange equations.  
b) From the Lagrangian we obtain the Euler-Lagrange system of equations [1]: 

 
•

•

∂ ∂
− =
∂

∂
∂ ∂

− =
∂

∂

( ) 0

( ) 0

d L L
ds tt
d L L
ds rr

  (3.3) 

The over-dots signify derivative with respect to s . From (3.3) we obtain: 
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α =

− − =

2

2 2
2

2 2
2 2 ( ) 0

dt k
ds
d r g r dt

dsds c

  (3.4) 

In (3.4) k  is the total energy per unit of mass and the first equation signifies the conservation of total 

energy. The total angular momentum per unit mass [1] φ
= 2 dh r

ds
 is null in the case of radial motion 

and this falls out from the fact that the Lagrangian is independent of φ  because the Schwarzschild 
metric is independent of φ . 
From the metric (3.1) we obtain: 

 

α = +

+
=

2 2 2

2

( ) 1 ( )

1 ( )

dt dr
ds ds

dr
dsdt ds
k

  (3.5) 

The above is similar with the result shown in Landau and Lifshitz [9], eq (44.8) if we remember that the 

term α =2 dt k
ds

 represents the total (potential + kinetic) energy and s  is the general coordinate. The 

only difference is the absence of the square root, which is explained in [1] (see the explanation for the 
formula of the Lagrangian (3.2)).  
Substituting (3.5) into (3.4) we obtain 
c) The equation of motion: 

 
+

= −

2
2

2

1 ( )dr
d r ds

rds
  (3.6) 

From (3.6) we can see that the acceleration increases as the radial coordinate decreases. In order to 
solve (3.6) we will need to resort to the fact that [8]: 

 −=
2

2
2

1 ( )
2

d r d ds
dr drds

  (3.7) 

Applying (3.7), equation (3.6) becomes: 

 −
+

= −

2

2
( ) 11 ( )

2

dr
d ds ds
dr dr r

  (3.8) 

With the notation −= 2( )dsy
dr

, equation (3.8) becomes: 

 
+

= −

1 1
1
2

dy y
dr r

  (3.9) 

with the immediate solution: 

 − + =
2
0
2

ln(1 ) ln
r

y y
r

  (3.10) 

where =0 (0)r r  is the initial position of the particle oscillating between the mirrors.  
Though we cannot find a symbolic solution for the above transcendental equation, we can easily see that 

the solution does not depend on the acceleration g . For << + ≈ −
2

1, ln(1 )
2
yy y y  so (3.10) can be solved 

via approximation: 

 =
2
0
2

ln
r

y
r

  (3.11) 
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On the other hand, = 2( )dry
ds

, so (3.11) reduces to: 

 =
2
04
2

1

ln

ds
dr r

r

  (3.12) 

In other words: 

 τ
=

2
04
2

1

ln

dc
dr r

r

  (3.13) 

So, we get further confirmation that the clock period does not depend on the acceleration for the case 
of a clock made from a massive particle oscillating between the two mirrors moving with constant 
proper acceleration.  

4. Electromagnetic Clocks in a Non-Uniform Gravitational Field 

Though there is no correspondent equivalence principle for the case of non-uniform acceleration, it is 
interesting to study the case of non-uniform gravitational field in order to infer the behavior of clocks 
subjected to variable acceleration. For example, let’s look at the case of the null geodesic in the 
Schwarzschild case (the null geodesic is the general relativity form of expressing the Maupertuis 
principle): 
 − − =

−

2
2(1 )( ) 0

1

s

s

r drcdt
r r

r

  (4.1) 
So: 

 =

−

1

1 s

drdt
c r

r

  (4.2) 

On the other hand, the proper time for an observer attached to the mirrors stationary in the 
gravitational field (i.e. for = 0dr  ) is: 

 τ = −1 srd dt
r

  (4.3) 

giving: 

 τ =

−

1

1 s

drd
c r

r

  (4.4) 

So, the oscillation period of the electromagnetic clock is: 

 τ
+ − −

= = − − − +
+ − −

∫
2

1

2 2
2 1 1 2

1 1

2 (1 1 / )22 ( 1 / 1 / ln )
2 (1 1 / )

r
s s

s s s
r s s

r r r r
T d r r r r r r r

c r r r r
  (4.5) 

If we consider >> >>1 2,s sr r r r  and − =2 1r r d we obtain: 

 ≈ + + ≈ +
2

2
1 1

2 2ln(1 )s sr rd d d dT
c c r c c r

  (4.6) 

We can conclude that there is a contribution, however small from the variable gravitational 
acceleration mediated by the Schwarzschild radius. On Earth, for a clock that has a 1m distance 
between the mirrors, this contribution is negligible, of the order of less than −257.5 *10  seconds. If we 
make the interval − =2 1r r d  very small, then we can apply the equivalence principle and we can 
conclude, once again that  

 ≈
2dT
c

  (4.7) 
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That is, the period of the clock is independent of its proper acceleration.  

5. Particle Clocks in a Non-Uniform Gravitational Field 

We start with the metric:  

 
α

α

α

= −

= −

2 2 21

1 s

ds dt dr

r
r

  (5.1) 

According to reference [8], we obtain: 

 =

−
0

1

s s

ds
dr r r

r r

  (5.2) 

where =0 (0)r r  is the initial position of the particle oscillating between the mirrors.  
We can see that, again, there is a contribution from the gravitational acceleration mediated by the 

Schwarzschild radius. 

 τ
− −

−
=

0 0
0

0

( )
s

rr arctg r r r
r r r

c r
  (5.3) 

So, once again, we see that the period of the clock is sensitive to the strength of the gravitational field. 
In a very small domain, we can apply the equivalence principle concluding that the period of the particle 
clock is independent of its proper acceleration.  

6. Relationship with the “Clock Ambiguity” 

During the review, a question has arisen: “What is the relationship, if any, between the Clock 
Hypothesis and the Clock Ambiguity?” The “Clock Ambiguity” [10] is a theory put forward by A. 
Albrecht and A. Islesias that relies on time independent Hamiltonians in order to postulate that there 
exists an “ambiguity” associated with the choice of clock in time reparameterization invariant theories. 
The answer is that there is no correlation between the two concepts, the “Clock Hypothesis” relies 
exclusively on time dependent Lagrangian / Hamiltonuian as derived from time dependent 
Schwarzschild solutions to Einstein field equations while the “Clock Ambiguity” relies on time-
independent Hamiltoniians. The thrust of our paper has been to reduce the Clock Hypothesis from the 
rank of postulate to the level of theorem.  

7. Conclusion 

We have reduced the hypothesis in the “Clock Hypothesis” to a provable theorem applicable not only to 
light (electromagnetic) clocks but also to clocks realized from massive particle oscillating between a pair 
of ideal mirrors while undergoing constant proper acceleration. We have derived some interesting 
conclusions for the case of light and massive particle clocks undergoing variable proper acceleration. By 
transforming the problem into one of general relativity, we have provided a simple, straightforward 
formalism for attacking the issue of proving the clock hypothesis in the case of generic (not light only) 
clocks.  
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