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Abstract 

In this study, dynamic optimization and identification of petroleum reservoir waterflooding using receding horizon (RH) 

principles was examined. Two forms of the strategy were compared on a realistic reservoir model. Sequential quadratic 

programming (SQP) was applied to optimize net present value (NPV) using water injection rates as the variables. 

MRST from SINTEF was used for the reservoir modeling. The identification of the reservoir was performed using 

nonlinear autoregressive with exogenous input (NARX) neural network from MATLAB. Data for the network training 

and validation was obtained by carrying out a numerical experiment on a high fidelity model of the reservoir. This 

model was developed with Eclipse Reservoir Simulator from Schlumberger. From the results obtained, moving-end RH 

gave a higher NPV than fixed-end RH with a margin of $0.5 billion. The identification algorithm was very much 

effective and near perfect for the studied reservoir. 
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1. Introduction 

The World energy statistical review by BP (British Petroleum) shows that most of the global energy 

consumption comes from fossil fuels. It has been estimated that global oil consumption grew by 

890,000 barrels per day or 0.9% (BP , 2011). Unfortunately, oil and gas reserves are fixed and are 

depleting by the day, the chance of discovering new ones is also getting slimmer. So, there is 

prudent need to produce these resources in the most intelligent way possible. Oil and gas are 

hydrocarbons that are stored in underground formations called reservoirs. Reservoirs are porous in 

nature with the hydrocarbons found in the pores which are interconnected to ease their 

(hydrocarbon) flow. At the discovery, the reservoir pressure is usually high, and oil and gas can 

flow to the surface through a drilled well. The pressure decreases with production and reaches a 

point where it can no longer sustain it (Völcker et al., 2011). This is called primary recovery phase. 

After this phase, the reservoir pressure is boosted by injection of certain fluids in a secondary 

recovery phase. When the injecting fluid is water, the process is called waterflooding and this is the 

commonest secondary recovery method. In tertiary or enhanced oil recovery, the phase properties of 

the fluids are altered by injecting more or less expensive fluids such as polymers and foams. 

Unfortunately, even with implementation of waterflooding, only about one third of the original oil 

in place is recovered using the conventional techniques. 

Petroleum reservoirs are highly heterogeneous. This makes waterflooding non-uniform in the 

reservoir formation. In fact, the injected water will naturally flow through more conductive fractures 

and high permeable zones of the reservoir thereby bypassing the oil. The effect of this is premature 

water breakthrough and low sweep energy. Several methods of improving sweep efficiency were 

suggested by others (Mody et al., 1989). One of such that is receiving great attention is the use of 

smart production and injection wells. A smart well is an unconventional well that is equipped down 

hole with inflow control devices (ICVs) which divide the well into segments so that fluid flow in 

various zones of the reservoir can be controlled independently (Brouwer et al., 2001). This is 

achieved by redistributing injection and production among the sections so that early water break-

through could be delayed or prevented (Meum et al., 2008).  
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In the last two decades, studies on water-flooding optimization were focused mainly on rather 

simplified systems (Virnovsky, 1988 and Virnovsky, 1991). Over the last few years, several 

methods were applied for the optimization of water-flooding such as conjugate gradient (Yeten et 

al., 2003 and Asadollah et al., 2009), optimal control based on adjoint methods (Brouwer et al., 

2004) and ensemble Kalman filter techniques (Lorentzen, et al., 2006). In all of these, the 

optimization was aimed at maximizing either the net present value (NPV) or recovery of oil. The 

variables usually used are injection rates and bottom-hole pressure of production wells. 

In oil companies, a reactive measure is usually taken to curtail early water break-through by taking 

measurements of oil-water ratio. This strategy often leads to poor sweep efficiency. A proactive 

means was suggested by introducing a feedback into reservoir waterflooding management (Meum, 

et al., 2008). A model predictive control (MPC) was designed to control the injection rates and 

production bottomhole pressure (Van Essen et al., 2010). The prediction of the controller was 

performed by identifying a linear model using subspace identification technique. The identified 

model was assumed to have better short-term prediction accuracy than the available commercial 

reservoir simulators which are based on physical laws. A related work explained the benefit of using 

a data-driven model in formulating such control strategy (Van Essen et al., 2012). It was stated that 

subsurface devices have high measurement frequencies (in the order of seconds or minutes) while 

physics-based models are constructed with time step size that ranges from days to several months. 

This time scale mismatch will lead to a loss of precious data used to capture fast dynamics. The 

prediction for the MPC controller was performed using Eclipse reservoir simulator which was 

treated as input-output black-box model. The simulator was interfaced with an in-house MPC 

software (Meum et al., 2008). 

In the downstream of oil and gas, as well as other industries, the application of linear MPC has been 

successful. However, MPC depends on linear models even though most processes are nonlinear 

(Cao et al., 2003). Despite the numerous advantages offered by identified models, the use of linear 

models in conjunction with MPC has some drawbacks especially when it comes to waterflooding 

management. Waterflooding process is nonlinear and as such the prediction accuracy of the 

identified linear model will decrease as the prediction horizon increases. In the past, total liquid rate 

had been used as the output instead of individual oil and water rates because of the very strong 

nonlinear relationship that exists between water cut and the inputs to the model (injection rates and 

producer bottomhole pressure), (Van Essen et al., 2010). For this reason, research into nonlinear 

MPC (NMPC) is receiving attention over the years. One of the shortcomings in using NMPC is the 

task associated with the solution of highly nonlinear equations. This necessitated investigations into 

the possible use of artificial neural networks (ANN) for identification and control purposes.  

The use of ANN in the upstream oil and gas has been reported in the literature. Juniard et al., (1993) 

used ANN in well test analysis. Dang et al. (1993) used NN to model rock lithology. ANN was also 

applied to a field wise waterflooding problem where wellhead pressure was predicted as a function 

of injection rate and vice versa (Nikravesh et al., 1996). History matching and prediction was 

performed using the identified model and the best injection strategy was determined that maximized 

recovery with decreased formation damage (permeability impairment). In another work, Nikravesh 

et al. (1996) employed feedforward with back propagation neural networks to model reservoir 

performance under steam and water injection. Garg et al. (1996) used ANN to model water 

imbibition. Demiryurek et al. (2008) used ANN to establish injector-producer relationship. Also, 

Nakutnyy et al. (2008) has been reported to utilize ANN in modeling waterflooding. 

The choice of ANN as a method of identification is based on some of its inherent advantages over 

other methods. For instance, it has the ability to approximate any nonlinear relationship to any 

degree of accuracy. It also has the ability to learn how to perform certain task based on supplied 
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data, which can be processed in parallel and applied to multivariable systems (Nakutn et al., 2008). 

Apart from this, ANN can be trained easily using past data (Garg et al., 1996). 

This study is in two folds: dynamic optimization of reservoir waterflooding was carried out using 

the principles of receding horizon (RH). Although, the approach of RH was reported (Grema et al., 

2013), only a simplified reservoir was considered. Present work has considered a realistic reservoir.  

The second aspect of the paper deals with nonlinear identification of the waterflooding process used 

in the optimization by applying nonlinear autoregressive with exogenous input (NARX) neural 

networks. This is a part of methodology to create NMPC for waterflooding in order to investigate 

the effect of feedback into long term reservoir production planning. This is shown in Figure 1. The 

NMPC consists of the identified model and optimization module which computes the control, u’ 

that minimizes an objective and the optimal control, u is applied to the reservoir. The reference 

trajectory, yr is computed through the dynamic optimization. The real reservoir is represented here 

by the large-scale physics-based reservoir model.  

 

 

Figure 1: NMPC for Waterflooding 

 

2. Problem Formulation 

2.1 Reservoir Description and Dynamics  

The reservoir model used in this work is the SAIGUP (Sensistivity Analysis of the Impact of 

Geological Uncertainties) model that is a part of MATLAB Reservoir Simulator Toolbox (MRST) 

software suit. SAIGUP model is a synthetic but realistic model with faults, inactive cells and 

disconnected component. It mimics progradational shallow marine reservoirs with heterogeneous 

permeability and porosity. There are five each of injection and production wells. For the 

optimization case, the reservoir was modeled with MRST from SINTEF while Eclipse commercial 

simulator was used for the data-driven model. In both cases Cartesian gridding system was used. 

For the case of modeling using MRST the fluid system was assumed to be incompressible while 

black oil simulation was applied with Eclipse model. Figures 2a and 2b show the reservoir models 

developed from the two softwares. The difference in the two models is from the assumption of the 

fluid properties. For the MRST model (Figure 2a), the fluid was assumed to be incompressible 

while black oil model was adopted for Figure 1b.  

a                                           b 

 

Figure 2: Reservoir model (a) MRST (b) ECLIPSE 

Reservoir model can be represented in discrete form in terms of states and input variables as follows 
(Jansen, et al., 2008): 
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        (1) 

where: g is a nonlinear function, u is the input vector which represents variables such as injection 

rates and/or bottomhole pressure, x is the reservoir states which include pressure, water and oil 

saturation. The discrete time is denoted by k while K is the end of production time. Usually, an 

initial condition such as Equation 2 is supplied to complete the model. 

                                                                   (2) 

The output vector consisting of production rates is a function of state and input variables as follows: 

                                       

           (3) 

2.2 Optimization using Receding Horizon 

In previous works, optimal control u was obtained to optimize an objective functional J (Brouwer et 

al., 2004 and Völcker et al., 2011). In this work, receding horizon (RH) was used for the 

optimization of waterflooding. RH is an extension of optimal control algorithms that was applied for 

both linear and nonlinear systems. It involves solving a fixed horizon optimization problem where a 

sequence of predicted inputs is determined over a prediction horizon (for instance T time steps) and 

then implementing only the first step in the series. The prediction time is moved one step forward 

and the whole process is repeated (Goodwin et al., 2006). Sequential quadratic programming (SQP) 

was adopted for solving the optimization problem. 

2.3 Nonlinear Identification of Waterflooding using Artificial Neural Network 

System identification is a process of formulating a mathematical model of a system based on 

observed data (Ljung, 1999). ANN has been proven to be powerful tool for nonlinear identification. 

ANNs are composed of simple computing elements called neurons.  One of the most common type 

of ANNs used for nonlinear identification is feed forward neural network (FFNN) with back 

propagation (Centilmen et al., 1999). But some authors are of the opinion that FFNN can only 

predict for a predefined number of steps, in most cases single step, and as such are not good for 

applications that may require a multiple step predictions (Cao et al., 2003). Recurrent or dynamic 

networks are found helpful in overcoming this shortcoming of single-step prediction. These are 

multilayer FFNN with feedback. There are several architectures of dynamic NN. One of such is 

Nonlinear Autoregressive with Exogenous Input (NARX). NARX networks are computationally 

powerful with a more effective learning of gradient descent algorithms than other recurrent 

networks, hence, our choice of NARX in this work. For a given d past values of y(t) and u(t), 

NARX can predict subsequent series of y(t) as follows: 

                                    (4) 

 

3. Methodology 

3.1 Optimization 

Dynamic optimization was performed using RH strategy. Two forms of RH were compared; 

moving-end and fixed-end strategies. The objective function used in this study is optimizing a net 

present value (NPV) of the venture (Jansen et al., 2009). The optimization variables are the various 

injection rates. 
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                                                  (5) 

Here, Ninj and Nprod are the number of injectors and producers respectively. uw, yw, and yo are water 

injection, water production and oil production rates respectively. The oil selling price, ro was fixed 

at $80/m
3
 while water injection and production costs, rw and rwp were both fixed at $5/m

3
. The 

discount factor b was taken as 10% per year. The time interval is ∆tk at time tk where k denotes the 

step. 

There were five each of injection and production wells for the considered reservoir which were 

placed arbitrarily. Eight-year total production period was used for the two optimization cases with 

two years of sampling period. The prediction period of moving-end was also two years. The NPV 

was optimized using sequential quadratic programming (SQP). 

3.2 Numerical Experiment for Identification 

To obtain data for identifying the reservoir, a high fidelity model was created using Eclipse 

reservoir simulator. A stair case experiment was conducted by injecting various rates of water and 

fixing the producers bottomhole pressures at varying values over a period of 5,110 days at an 

interval of 730 days. The water injection rates were initially fixed at 500 m
3
/day which were 

increased by 200 m
3
/day twice and then to the peak of 1000 m

3
/day. This was followed by a one-

step decrease of 100 m
3
/day and then a two-step decrease of 200 m

3
/day to reach the minimum of 

500 m
3
/day. For the case of producers’ bottomhole pressures, the minimum and maximum pressures 

were set at 3 and 9 bars respectively. There were 3 steps each of increment and decrement pegged at 

a value of 2 bars. These are shown for producer 1 and injector 1 in Figures 3 and 4 respectively. 

 

 

 

 

 

3.3 Nonlinear Identification using Neural Network 

The data collected from the numerical experiment were first processed into a form suitable for time-

series identification. MATLAB neural network toolbox was used for the identification using NARX 

Figure 4: Injection Rate in m
3
/day Experimental Input  

 

 

Input 

 

Figure 3: Producer BHP Experimental Input  
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algorithms. The network has two layers. Different number of neurons in the hidden layer was tested 

ranging from 5 to 12 while fixing the number in the output layer to 10. The input and the feedback 

have two delays each. Sigmoid and linear transfer functions were adopted in the hidden and output 

layers respectively. Training of the network was performed using the Levenberg-Marquardt 

algorithms while performance of the network was computed using mean squared error (MSE). The 

data were divided into three parts for training, validation and testing. 

 

4. Results and Discussion 

4.1 Optimization 

From Figure 5, it can be seen that water injection rates remain relatively constant for all the wells in 

the case of moving-end RH while there are considerable fluctuations for the case of fixed-end RH 

with peak attainment after 1460 days (4 years). The same pattern of flow is observed for oil 

production (Figure 6). The total amounts of oil and water productions are higher for moving-end 

than fixed-end RH (Figures 7 and 8). The difference in total oil production is 1.27 million m
3
 and 

4.5 million m
3
 for water. This difference in production results to a NPV margin of $0.5 billion in 

favour of moving-end strategy as can be seen in Figure 9. In general, the computational time for this 

optimization is very high, in the order of days. 

a                                b 

 

Figure 5: Injection Rates (a) Moving-end (b) Fixed-end 

 

 

a                                       b 

 

 

Figure 6: Oil Production Rates (a) Moving-end (b) Fixed-end 
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4.2 Identification 

The stair case experiment performed using Eclipse is shown in Figures 10 and 11. It can be seen that 

both oil and water productions (outputs) responded to the changes in injection rates and producers 

bottomhole pressures.  

 

a                                             b 

 

Figure 7: Total Oil Production (a) Moving-end (b) Fixed-end 
 

a                                             b 

 

 

 

Figure 9: NPV Comparison for the Two Strategies 

Hence, the obtained data show that they are good candidate for identification. 

 

Figure 10: Oil Production Rates Experimental Outputs 

Figure 8: Total Water Production (a) Moving-end (b) Fixed-end 
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Figure 12 shows the network structure with 10 neurons each in the hidden and output layers. In 

Figure 13, the R-value is 0.9868 which shows a near perfect correlation. The time-series response is 

also seen in the figure where the targets, outputs and errors are shown. There are no much variations 

between the targets and the network outputs. The error line confirms this also.  

 

 

 

 

 

Figure 13: Regression and Time-Series Response 

5. Conclusion 

Two different forms of RH optimization on a realistic but synthetic reservoir from SAIGUP study 

group was carried out. The optimization considered water injection as a variable during 

waterflooding of the reservoir. Moving-end RH strategy gave a higher NPV than the fixed-end. 

Both high oil and water productions were recorded for the case of moving-end RH due to high water 

injection rates. The effect of high water production did not cause the NPV by this method (moving-

end RH) to be less than that obtained by fixed-end RH due to high volume of oil production 

recorded.  

Although the methodology appeared to be effective as far as dynamic optimization is concerned, it 

is however computationally prohibitive. This is because due to the complex nature of the physics-

based reservoir models on one hand, and the multiple function evaluations required by the 

optimization algorithms on the other hand. For this reason, a NARX neural network was chosen to 

identify a reservoir model which can be used for subsequent studies. From the results obtained, the 

identified model showed a very good prediction power with negligible error and good R-value. 

Figure 11: Water Production Rates Experimental Outputs 

 

 

Figure 12: NARX NN Structure for the Reservoir     Identification 
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