
Arid Zone Journal of Engineering, Technology and Environment. August, 2013; Vol. 9: 51-67 
Copyright© Faculty of Engineering, University of Maiduguri, Nigeria. 
Print ISSN: 1596-2490, Electronic ISSN: 2545-5818  
www.azojete.com.ng 

 

51 
 

DESIGN AND IMPLEMENTATION OF EMBEDDED HARDWARE        

ACCELERATOR FOR DIAGNOSING HDL-CODE IN ASSERTION-BASED       

VERIFICATION ENVIRONMENT 

 

Ngene C. U.  
(Department of Computer Engineering University of Maiduguri, Maiduguri, Nigeria) 

e-mail address: umerahlove@yahoo.co.uk 

 

Abstract 

The use of assertions for monitoring the designer’s intention in hardware description language (HDL) model is 

gaining popularity as it helps the designer to observe internal errors at the output ports of the device under 

verification. During verification assertions are synthesised and the generated data are represented in a tabular 

forms. The amount of data generated can be enormous depending on the size of the code and the number of 

modules that constitute the code. Furthermore, to manually inspect these data and diagnose the module with 

functional violation is a time consuming process which negatively affects the overall product development time. 

To locate the module with functional violation within acceptable diagnostic time, the data processing and 

analysis procedure must be accelerated. In this paper a multi-array processor (hardware accelerator) was 

designed and implemented in Virtex6 field programmable gate array (FPGA) and it can be integrated into 

verification environment. The design was captured in very high speed integrated circuit HDL (VHDL). The 

design was synthesised with Xilinx design suite ISE 13.1 and simulated with Xilinx ISIM. The multi-array 

processor (MAP) executes three logical operations (AND, OR, XOR) and a one’s compaction operation on array 

of data in parallel. An improvement in processing and analysis time was recorded as compared to the manual 

procedure after the multi-array processor was integrated into the verification environment. It was also found that 

the multi-array processor which was developed as an Intellectual Property (IP) core can also be used in 

applications where output responses and golden model that are represented in the form of matrices can be 

compared for searching, recognition and decision-making.  
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1.  Introduction 

In recent years, the cost of software has become the dominant factor that determines the 

effectiveness of the creation of electronic devices in the electronic industry. Practically all 

electronic designs (from super computers, PCs to mobile handheld devices) in the industry 

are HDL-based (Ashenden, 2001; Begeron, 2003). HDL based design has established itself as 

the modern approach to design of digital systems, with VHDL  and Verilog HDL being the 

two dominant HDLs. The benefits of HDL is that designs can be reused thus speeding up 

time to market. The continuous increase in the complexity of systems on chip led to the fact 

that traditional approaches to the verification can no longer be used effectively because of the 

limitations associated with the reduction in observability and controllability of the internal 

lines of the system. In general, assertion-based verification is used as part of the traditional 

methodology of simulation -directed and random simulation, formal and semi-formal method 

and emulation. An assertion is a statement about a design’s intended behaviour or property, 

which must be verified (Foster, 2004). Its popularity is partly because it increases the 

controllability and observability which in turn improves the diagnosability (diagnostic 

resolution) of the code. Furthermore, assertions reduce debug time, improve integration 

through correct usage checking, improve verification efficiency and improve communication 

through documentation. Assertion synthesis is a technology that allows you to automatically 
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generate high-approval to verify the key constraints and design specifications, attributes, 

functional coverage, and identify problems in the test bench. 

 

When assertions are synthesised for a very large code, the data generated become very large 

to the extent that it becomes very difficult to analyse and process them, thus defeating the 

purposes for which they were used in the first place. This situation increases the time required 

to locate the module with functional violation, which in turn negatively affect the product 

development time. It therefore, becomes necessary to reduce the time required to diagnose 

functional violation in a module by designing a built-in hardware accelerator (MAP) to 

concurrently process all the synthesised assertions. 

 

This paper seeks to use the new models and methods for testing and diagnosis of HDL model 

system on chip (SoC) developed by Ngene (2011), to implement a built-in testing 

infrastructure that aids in the reduction of verification time and improves the quality of SoC 

models using hardware accelerators at the stages of system design. A MAP with a minimal 

instruction set architecture was designed and implemented in Virtex 6 FPGA. The processor 

was practically verified by using appropriate test benches and synthesised before it was 

committed to silicon. The specific objectives include the determination of requirement 

specification in terms of the instruction set architecture; determination a priori of the HDL 

and EDA tool to use; partitioning of the design in line with the chosen HDL; programming 

the chosen FPGA using appropriate tools. 

 

2. Materials and method 

2.1 Theoretical Background  

Usually, computer engineers create a model of a design written in hardware description 

languages (Verilog or VHDL) and test benches which includes a copy of the model or device 

under verification. The test vectors are read every clock cycle and the output response vectors 

from the device are compared with a reference model (Seward, 2003; Bergeron, 2003). This 

is black-box testing approach. This approach does not allow for direct observation and 

validation. This is a major setback of black-box testing in that the device under verification 

may exhibit improper internal behaviour, but still have a proper output response at a specific 

or observed point in time. In this situation a design error exists, but it will definitely be 

missed because some problem prevents the error from being propagated to an output port and 

as a result cannot be directly observed on the output ports (Foster, 2004). If other set of test 

vectors is applied or previous test vectors are run for few clock cycles longer the internal 

error might be observable. Test benches have evolved over the years to what is known as 

self-checking test benches, which allows for direct observation and validation. Test benches 

have become complex verification environments that are regularly built with a hardware 

verification language (for example Questasim from Mentor Graphics) that combines 

automatic vector generation, output response validation, and coverage analysis (Foster, 2004; 

Andrew, 2003). In order to increase the observability of internal points of a device under 

verification, assertions or monitors are placed close to these critical points so as to catch any 

violation that might occur. An assertion is an extra line of code that is added to the HDL 

model to catch any violation of a design’s property (intended behaviour). An assertion 
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statement does not contribute in any way to the functionality of the design; its sole purpose is 

in ensuring consistency between the designer’s intention and what is created. The use of 

assertions in codes is good example of white-box testing approach as it allows us access to 

the internal nodes within the design and thus results in an increase in observable behaviour 

during testing. Emerging hardware verification languages include various forms of assertion 

library templates. Furthermore, HDLs include constructs that support assertion specification. 

For example, VHDL [IEEE 1076-1993] (IEEE, 1994) includes a keyword assert, which can 

be used in behavioural modelling. The VHDL assertion syntax is shown in Figure 1. 

 

[label]: assert boolean_expression 

  [report expression]  

  [severity expression] ; 

Example 

check: process is 

begin 

assert not (s = '1' and r = '1') 

report "Incorrect use of S R flip_flop: s and r both '1'"; 

wait on s, r; 

end process check;  

Figure 1: VHDL Assertion syntax 

An error is reported when the Boolean_expression evaluates to FALSE. The assertion’s 

optional report clause specifies a message string that will be included in error messages 

generated by the assertion (Ashenden, 2001; IEEE, 1994). In the absence of a report clause 

for a given assertion, the string ―Assertion violation‖ is the default value for the message 

string. 

 

2.2 Assertion-based transaction model  

A model for representing HDL code was developed to aid the diagnosis of functional 

violation that may be present in a VHDL code (Figure 2). An assertion based transaction 

graph was used.  Assertions embedded in the vertices further increase the diagnosability of 

the HDL-code.    

Figure 2 was further transformed into its equivalent matrix data structure (Table 1) to further 

simplify the analysis of the code during verification. In order to implement this model and 

process the matrix after verification three methods were developed by Ngene (2011). These 

include method of logical analysis of columns, method of logical analysis of rows and matrix 

method. The vertices (S) in Figure 2 represent the state of the various variables when test 

patterns are applied and the edges (B) represent the program module with their associated 

assertions. The state of each program module depends on the states of program 

module/modules preceding it. For example the module B11 depends on the state S5 which is 

the cumulative results of processing modules B1, B2 and B7. The state S9 is the state at which 

the final result or results of the program is/are obtained and there are only two modules (B13 

and B14) that are finally processed to the yield this state. The number of test sets required to 

test this program is derived from the Boolean equations Equation 1 of the program modules 
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and represented in Equation 2. Shown in Equation 1 is sum-of-product representation of 

Boolean expression, where the product terms of the blocks or modules is logical ANDing and 

the symbol V is logical ORing operations. Shown in Equation 2 are six (6) products 

representing six test sets (T1 to T6) depicted in Table 1, which is an alternative representation 

of Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Example of Assertion-based transaction graph for an arbitrary  

code with fourteen modules 

 

 

Table 1 Code modules activation matrix 

Test 
Sets 

Code Modules 
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 

T1 1  1      1    1  

T2 1   1      1    1 

T3 1 1   1      1  1  

T4  1    1    1    1 

T5  1     1    1  1  

T6        1    1  1 
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         (1)  
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The row is the relationship between test segment (T) and a subset of activated segment of 

program blocks Ti ≈ (Bi1, Bi2,..., Bij, ..., Bin).    The column of the table forms the relationship 

between the program modules and test segments Bj ≈ (T1j, T2j,..., Tij, ..., Tpj)    that activate it. 

Otherwise, the column is the assertion vector identifying functional violation within the 

module. The presence of 1 in a row corresponding to a given code modules means that the 

test activates the block and a single test can activate more than one program modules. For 

example T1 activates B1, B3, B9 and B13. The functional violation matrix shown in Table 2 

helps to determine which of the blocks has functional violation. 

Table 2  Functional Violation Matrix 

Test Sets Code modules Output 
Response 

 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14  

T1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 

T2 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 

T3 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 

T4 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 

T5 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 

T6 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 

 

This is achieved by applying all the test sets to the program and observing the output 

response. The column test sets and Code modules serve as fault table and by comparing the 

output response vector with each of the columns the module with functional violation can be 

determined. In Table 2 the output response vector corresponds to column B14. A single 

module with functional violation is located in this case. There are cases where more than one 

experiment is required to generate corresponding output responses. This comparison should 

be carried out for each output response with each column of the code modules. This means 

that B14 has functional violation and further debugging can be concentrated in this module for 

logical errors rather than blindly searching for the fault in all the modules. 

2.3 Method of matrix analysis 

Further to the software transaction graph shown in Figure 1, a method for diagnosing 

functional failures in software modules uses the triad of matrices (B, A and L) of the same 

dimension. In order to illustrate the method of matrix analysis, Table 2 is restructured into 

Table 3. Only eight code modules from Table 2 have been considered for simplicity. Also 

considered are eight assertions (A) corresponding to each code module (B). Here matrices 

.

))(())((B
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form: B – block activation on test segments during simulation; A – activity of assertions, 

corresponding to blocks on test segments during simulation; L – faulty blocks, obtained as 

result of XOR-operation on the two matrices above is illustrated by Equation 3. XOR-

operation is defined by Equation 4. The presence of functional violation in a code can be 

determined by carrying out coordinate-wise analysis of the matrices B and A. If the resulting 

matrix coordinates are all zero, then there is no violation (Table 3). Otherwise a functional 

violation exists in the code. And the next task is to determine the module in which functional 

violation occurs – diagnosis.  

 

{0,1}}L,A,{BABLABL  0,LABM ijijijijijij                                  (3) 

.  ;m1,j  ;n1,i  ],[LL  ],[AA  ],[BB ijijij baba                                              (4) 

Table 3  Triad Matrices without Functional Violation 

 

In Table 4, it has been shown that the module contains functional violations by examining the 

L-matrix. In order to unambiguously detect the modules with functional violation, a logical 

OR operation of individual columns is carried out as shown in the last row of the L-matrix of 

Table 4. The software modules B1 and B3 contain functional violation because of the 

presence of ones in columns L1 and L3 at the last row (i.e.  L = {B1, B3}. 

Table 4 Triad Matrices with Functional Violation  

 

2.4 Design methodology 

A modular and hierarchical approach was adopted for this design, and the model was 

captured using VHDL (Chang, 1995; Chang, 1996). The corresponding VHDL model of each 

module was written in a top-down approach. The device, which was implemented as an IP-

core can be used to process not only the synthesised assertions but is also suitable for 

comparing golden (reference) values and output response values that are represented in the 

form of matrices. This is appropriate for pattern recognition applications and other 

applications for searching, recognition and decision making.  

Bijj B1 B2 B3 B4 B5 B6 B7 B8 

T1 1 0 1 0 0 0 0 0 

T2 1 0 0 1 0 0 0 0 

T3 1 1 0 0 0 0 0 0 

T4 0 1 0 0 0 1 0 0 

T5 0 1 0 0 0 0 1 0 

T6 0 0 0 0 0 0 0 1 

Aijj A1 A2 A3 A4 A5 A6 A7 A8 

T1 1 0 1 0 0 0 0 0 

T2 1 0 0 1 0 0 0 0 

T3 1 1 0 0 0 0 0 0 

T4 0 1 0 0 0 1 0 0 

T5 0 1 0 0 0 0 1 0 

T6 0 0 0 0 0 0 0 1 

Lijj L1 L2 L3 L4 L5 L6 L7 L8 

T1 0 0 0 0 0 0 0 0 

T2 0 0 0 0 0 0 0 0 

T3 0 0 0 0 0 0 0 0 

T4 0 0 0 0 0 0 0 0 

T5 0 0 0 0 0 0 0 0 

T6 0 0 0 0 0 0 0 0 

Bijj B1 B2 B3 B4 B5 B6 B7 B8 

T1 1 0 1 0 0 0 0 0 

T2 0 0 0 1 0 0 0 0 

T3 0 1 1 0 0 0 0 0 

T4 1 1 0 0 0 1 0 0 

T5 0 1 1 0 0 0 1 0 

T6 0 0 0 0 0 0 0 1 

Aijj A1 A2 A3 A4 A5 A6 A7 A8 

T1 1 0 1 0 0 0 0 0 

T2 1 0 0 1 0 0 0 0 

T3 1 1 0 0 0 0 0 0 

T4 0 1 0 0 0 1 0 0 

T5 0 1 0 0 0 0 1 0 

T6 0 0 0 0 0 0 0 1 

VAi 1 1 1 1 0 1 1 1 

Lijj L1 L2 L3 L4 L5 L6 L7 L8 

T1 0 0 0 0 0 0 0 0 

T2 1 0 0 0 0 0 0 0 

T3 1 0 1 0 0 0 0 0 

T4 1 0 0 0 0 0 0 0 

T5 0 0 1 0 0 0 0 0 

T6 0 0 0 0 0 0 0 0 

VLi 1 0 1 0 0 0 0 0 

= 

= 
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2.5 Choice of methods:  

The design was based on a tabular data structure with rows containing the test vectors that 

activate a subset of the code module (columns) and corresponding output response vector 

(Figure 2 and Table 1). The matrix method discussed in the previous section was used to 

accomplish the design because it provides the right relationship between the test vectors, code 

modules, assertions and functional violations and can achieve the same results as the other 

two methods discussed in Ngene (2011). With the achievement of the desired diagnostic 

resolution using the proposed methods, logic synthesis scheme and functional coverage 

analysis and test generation were used to create software and hardware infrastructure for the 

diagnosis of HDL- code.  

 

 2.6 Choice of HDL and EDA tool 

As earlier mentioned there are two popular HDLs available (VHDL and Verilog) to use for 

this design, but VHDL was used in view of its strength in paper documentation. The EDA 

tool used for the VHDL code was Xilinx ISE 13 design suite web edition. The design was 

partitioned into 2 – the top module and the execution unit. The execution unit in turn consists 

of 3 modules – AND, XOR, OR and SLC (Shift-left with 1s compaction). The SLC is used in 

the circuit for selecting the optimal solution. The solution with more number of 1s in the bit 

position is a less optimal solution than the solution with lower number of 1s. The worst 

solution is one that has 1s in all bit positions. An example of SLC operation is shown in 

Figure 3.  The register is used to compact 1s and fill the remaining part of the register with 0s 

. In view of the simple nature of the processor, which has only 4 instructions, the control unit 

was incorporated into the register file in the top entity module of the design. In this case a 

hardwired control system was implemented. 

 

 

      

(a) 

 

(b) 

             Figure 3:  SLC example: (a) Uncompacted. (b) Compacted 

2.7 Instruction set architecture 

The MAP is a processor that is purely hardware-based; none of the registers is software 

addressable, consequently it has no program counter or any special purpose registers. It is a 

16-bit processor with a simple instruction set. The choice of 16-bit processor was not 

accidental; it was based on the computational resources available for use at the time of 

design. The positive side is that a parameterised design approach was used, whereby the 

number of bits can be changed only in the VHDL package. Increasing the bits should be 

considered when enough computation resources (high speed multiprocessor computers etc.) 

          1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0  

0          R0 

         1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
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that could speed up the synthesis to a few days depending on the size of the code are 

available. There are 32 registers (Figure 4) used for holding `two 16x16 matrices that are 

loaded at the same time from their respective RAMs and intermediate results. All the four 

instructions are shown in Table 5 alongside their functions and operation codes (opcode). 

 

 

                                                      15                                         0 

 

 

           .   

                                                                             . 

                                                                             . 

                                                                             

 

                    Figure 4: MAP registers 

Table 5   MAP Logical Instruction 

Instruction Name Function Opcode 

 

XOR 

 

AND 

 

OR 

 

SLC 

 

Modular 2 addition 

 

Logical multiplication 

 

Logical addition 

 

Shift-left bit crowding 

(Compaction of 1s) 

 

R0-15  R0-15 R16-32 

 

R0-15  R0-15   R16-32 

 

R0-15  R0-15   R16-32  

 

R0-15  SLC R0-15   

 

 

00 

 

01 

 

10 

 

11 

 

2.8 Data transfers 

Loading and transfer of appropriate data to and from the memory is triggered by a special 

signal gen_rd_wr. Data transfer is not implemented as a specific instruction; rather it is 

executed once the appropriate value of gen_rd_wr signal is asserted. The gen_rd_wr codes 

with their corresponding function are shown in Table 6. This signal has 4 states. Two of the 

states are used for memory operations while the rest are used for data transfers between the 

register file unit and the Execution unit. 

 

 

 

 

 

                        R0 

                        R1 

                        R31 
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Table 6  Data Transfer Function and their Codes 

Transfer Function Opcode Gen_rd_wr 

 

From RAM 

 

To Exec_unit 

 

From Exec_unit 

 

To RAM 

 

R0-15  (RAM1) 

 

Exec  (R0-15)  

 

R0-15  (Exec) 

 

RAM4  (R0-15) 

 

any 

 

any 

 

any 

 

any 

 

001 

 

010 

 

011 

 

100 

 

2.9 Design Units 

The MAP was divided into two major units: the register file and the execution unit. The 

execution unit is further reduced into sub modules xorandor and SLC. The modules that 

realises the logical operations XOR, OR and AND were combined in the xorandor sub unit, 

while that of SLC was implemented in a separate module as depicted in Figure 5.  The 

memory elements present in the FPGA were used to implement the various RAMs. In order 

to improve the speed of loading and storing data, a separate RAM was implemented for each 

of the logical operations. The VHDL code for the MAP was not included in this paper 

because of the size (over one thousand lines of code including test bench). 

ADDRESS BUS

n-bit

DATA BUS

k-bit

MULTI-ARRAY PROCESSOR

RAM1

RAM4

RAM3

RAM2

Register

 File

EXECUTION

UNIT

SLC

XORANDOR

XOR

OR

AND

 

Figure 5:  The structure of the Multi-array processor 

2.10  VHDL coding considerations 

The VHDL model for the MAP consists of entity declarations and a mixture of synthesisable 

behavioural and structural descriptions. As mentioned earlier the code was divided into two 

major units: register file and the execution units. The execution unit where the actual 
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computation takes place was further divided into sub units; one of the sub units does the 

XOR, AND and OR computation and the second sub unit executes the SLC operations. The 

sub units were instantiated as components in the execution unit and the execution unit was 

further instantiated as a component in the top module entity –register file. However, before 

the units were written the types used in the external and internal interfaces in a package called 

map_type_pkg were defined. In order to ensure future enhancements of the code, the code 

was parameterised to allow for the register and the bus widths to be increased only in one 

place (i.e. in the MAP type’s package). 

 

4. Results and discussion 

The results of the actual design of the multi-array processor are first presented by examining 

the synthesis and the simulation results. Then, the overall improvement brought about by the 

use of the device in an assertion-based integrated verification environment for HDL models 

of SoCs was highlighted. 

 

4.1 Synthesis 

The processor was synthesised with Xilinx ISE 13.1 design suite and simulated using Xilinx 

ISIM. Test benches were used to verify the functionality of the design, which was 

implemented in Virtex 6 FPGA by using Xilinx configuration tools. The device utilisation 

summary for the targeted Virtex 6 and the top module interfaces are shown in Table 7 and 

Figure 6.  

Table 7 Device utilisation summary 
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Figure 6: Interfaces of MAP  

It is evident from the summary that some parts of the device were poorly utilised, especially 

the number of slice registers and BUFG/BUFGCTRLs. The reason for choosing Virtex 6 was 

because there was a large number of the bonded input/output blocks whose utilisation was 

above 50%. The input/output lines were large due to the high level of parallelism of the 

design, which generally improved the speed of operation of the device at the expense of area 

or large number of primitives used. The components interconnection implementation is 

shown in Figure 7. The synthesis report showing various components used and their total 

number is shown in Figure 8 rather than the actual netlist (logic components and their 

interconnection). 

 

 

 

 

 

 

 

 

 

Figure 7: Components interconnection implementation   
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Figure 8:  Synthesis report summary 

4.2 Verification of results 

The test benches used to verify the functionality of the design is not shown in this report 

because of limited space. The golden matrix values were loaded into RAM2 whereas the 

input matrix values (i.e. input vectors) to be compared with the golden values were loaded 

into RAM1. After they have been processed by the execution unit the contents of both RAMs 

can be overwritten by the results. The simulation in Figure 9 shows that the contents of the 

RAMs were read simultaneously into corresponding registers in the file at the rising edge of 

the clock when mem_rd signal is high.   
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Figure 9: Input vectors verification waveforms 

After the memory contents have been read they are transferred to the execution unit in 

parallel and concurrently executed depending on the logical instruction to be executed. The 

result of XOR operation is depicted in Figure 10 and that of SLC operation is shown in   

Figure 11. The simulation results for AND and OR operations were similarly carried out and 

were deliberately omitted in this paper. 
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Figure 10: XOR operation verification waveforms 
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Figure: 11 SLC operation verification waveforms 

4.3 Improvement analysis 

The results of the introduction and integration of the MAP into the verification environment 

were plotted as speed of data analysis versus the number of program modules for manual and 

MAP analyses (Figure 12). The fact here is that the same number of engineers analysed the 

result of the assertion synthesis for all the program modules considered in this paper.  
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Figure 12: Chart of speed against number of modules  

Results show a significant improvement in the analysis time and the overall verification time. 

With the use of the MAP, about 17% of the time taken to manually analyse the data generated 

from synthesised assertions when the number of modules are small was achieved. Figure 12 

shows that with fewer modules the effectiveness of the processor is marginal and slightly 

better than manual analysis. With increase in the number modules the superiority of the 

device is clearly shown on the graph. The difficulty of humans to examine enormous data 

generated by simulation tools was once again highlighted. 

 

5. Conclusions  

This paper was embarked upon in order to reduce the analysis and computation time of 

synthesised assertions in a software/hardware verification environment. The design was 

verified and implemented by using simulation, synthesis and configuration tools of Xilinx 

Inc. USA. Although it appears that a cheaper FPGA could have been used instead of Virtex6 

for this design, the available components can be of advantage when new functionality is 

added to the device. A further optimisation of the code could lead to a reduction in area, 

which would make it possible to use a cheaper FPGA. The HDL code has been parameterised 

such that the width of the registers can be increased to be able to handle papers with 

increased program modules if there are enough computing resources.   

It has been shown that the MAP reduces the time required to analyse and process synthesised 

assertions or any other data presented in the form of matrices that compares a golden model 

and input response vectors.  
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