
Arid Zone Journal of Engineering, Technology and Environment. August, 2013; Vol. 9: 51-67
Copyright© Faculty of Engineering, University of Maiduguri, Nigeria.
Print ISSN: 1596-2490, Electronic ISSN: 2545-5818
www.azojete.com.ng

51

DESIGN AND IMPLEMENTATION OF EMBEDDED HARDWARE

ACCELERATOR FOR DIAGNOSING HDL-CODE IN ASSERTION-BASED

VERIFICATION ENVIRONMENT

Ngene C. U.
(Department of Computer Engineering University of Maiduguri, Maiduguri, Nigeria)

e-mail address: umerahlove@yahoo.co.uk

Abstract

The use of assertions for monitoring the designer’s intention in hardware description language (HDL) model is

gaining popularity as it helps the designer to observe internal errors at the output ports of the device under

verification. During verification assertions are synthesised and the generated data are represented in a tabular

forms. The amount of data generated can be enormous depending on the size of the code and the number of

modules that constitute the code. Furthermore, to manually inspect these data and diagnose the module with

functional violation is a time consuming process which negatively affects the overall product development time.

To locate the module with functional violation within acceptable diagnostic time, the data processing and

analysis procedure must be accelerated. In this paper a multi-array processor (hardware accelerator) was

designed and implemented in Virtex6 field programmable gate array (FPGA) and it can be integrated into

verification environment. The design was captured in very high speed integrated circuit HDL (VHDL). The

design was synthesised with Xilinx design suite ISE 13.1 and simulated with Xilinx ISIM. The multi-array

processor (MAP) executes three logical operations (AND, OR, XOR) and a one’s compaction operation on array

of data in parallel. An improvement in processing and analysis time was recorded as compared to the manual

procedure after the multi-array processor was integrated into the verification environment. It was also found that

the multi-array processor which was developed as an Intellectual Property (IP) core can also be used in

applications where output responses and golden model that are represented in the form of matrices can be

compared for searching, recognition and decision-making.

Keywords: Hardware accelerator, HDL-code, design, simulation, multi-array processor

1. Introduction

In recent years, the cost of software has become the dominant factor that determines the

effectiveness of the creation of electronic devices in the electronic industry. Practically all

electronic designs (from super computers, PCs to mobile handheld devices) in the industry

are HDL-based (Ashenden, 2001; Begeron, 2003). HDL based design has established itself as

the modern approach to design of digital systems, with VHDL and Verilog HDL being the

two dominant HDLs. The benefits of HDL is that designs can be reused thus speeding up

time to market. The continuous increase in the complexity of systems on chip led to the fact

that traditional approaches to the verification can no longer be used effectively because of the

limitations associated with the reduction in observability and controllability of the internal

lines of the system. In general, assertion-based verification is used as part of the traditional

methodology of simulation -directed and random simulation, formal and semi-formal method

and emulation. An assertion is a statement about a design’s intended behaviour or property,

which must be verified (Foster, 2004). Its popularity is partly because it increases the

controllability and observability which in turn improves the diagnosability (diagnostic

resolution) of the code. Furthermore, assertions reduce debug time, improve integration

through correct usage checking, improve verification efficiency and improve communication

through documentation. Assertion synthesis is a technology that allows you to automatically

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

52

generate high-approval to verify the key constraints and design specifications, attributes,

functional coverage, and identify problems in the test bench.

When assertions are synthesised for a very large code, the data generated become very large

to the extent that it becomes very difficult to analyse and process them, thus defeating the

purposes for which they were used in the first place. This situation increases the time required

to locate the module with functional violation, which in turn negatively affect the product

development time. It therefore, becomes necessary to reduce the time required to diagnose

functional violation in a module by designing a built-in hardware accelerator (MAP) to

concurrently process all the synthesised assertions.

This paper seeks to use the new models and methods for testing and diagnosis of HDL model

system on chip (SoC) developed by Ngene (2011), to implement a built-in testing

infrastructure that aids in the reduction of verification time and improves the quality of SoC

models using hardware accelerators at the stages of system design. A MAP with a minimal

instruction set architecture was designed and implemented in Virtex 6 FPGA. The processor

was practically verified by using appropriate test benches and synthesised before it was

committed to silicon. The specific objectives include the determination of requirement

specification in terms of the instruction set architecture; determination a priori of the HDL

and EDA tool to use; partitioning of the design in line with the chosen HDL; programming

the chosen FPGA using appropriate tools.

2. Materials and method

2.1 Theoretical Background

Usually, computer engineers create a model of a design written in hardware description

languages (Verilog or VHDL) and test benches which includes a copy of the model or device

under verification. The test vectors are read every clock cycle and the output response vectors

from the device are compared with a reference model (Seward, 2003; Bergeron, 2003). This

is black-box testing approach. This approach does not allow for direct observation and

validation. This is a major setback of black-box testing in that the device under verification

may exhibit improper internal behaviour, but still have a proper output response at a specific

or observed point in time. In this situation a design error exists, but it will definitely be

missed because some problem prevents the error from being propagated to an output port and

as a result cannot be directly observed on the output ports (Foster, 2004). If other set of test

vectors is applied or previous test vectors are run for few clock cycles longer the internal

error might be observable. Test benches have evolved over the years to what is known as

self-checking test benches, which allows for direct observation and validation. Test benches

have become complex verification environments that are regularly built with a hardware

verification language (for example Questasim from Mentor Graphics) that combines

automatic vector generation, output response validation, and coverage analysis (Foster, 2004;

Andrew, 2003). In order to increase the observability of internal points of a device under

verification, assertions or monitors are placed close to these critical points so as to catch any

violation that might occur. An assertion is an extra line of code that is added to the HDL

model to catch any violation of a design’s property (intended behaviour). An assertion

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

53

statement does not contribute in any way to the functionality of the design; its sole purpose is

in ensuring consistency between the designer’s intention and what is created. The use of

assertions in codes is good example of white-box testing approach as it allows us access to

the internal nodes within the design and thus results in an increase in observable behaviour

during testing. Emerging hardware verification languages include various forms of assertion

library templates. Furthermore, HDLs include constructs that support assertion specification.

For example, VHDL [IEEE 1076-1993] (IEEE, 1994) includes a keyword assert, which can

be used in behavioural modelling. The VHDL assertion syntax is shown in Figure 1.

[label]: assert boolean_expression

 [report expression]

 [severity expression] ;

Example

check: process is

begin

assert not (s = '1' and r = '1')

report "Incorrect use of S R flip_flop: s and r both '1'";

wait on s, r;

end process check;

Figure 1: VHDL Assertion syntax

An error is reported when the Boolean_expression evaluates to FALSE. The assertion’s

optional report clause specifies a message string that will be included in error messages

generated by the assertion (Ashenden, 2001; IEEE, 1994). In the absence of a report clause

for a given assertion, the string ―Assertion violation‖ is the default value for the message

string.

2.2 Assertion-based transaction model

A model for representing HDL code was developed to aid the diagnosis of functional

violation that may be present in a VHDL code (Figure 2). An assertion based transaction

graph was used. Assertions embedded in the vertices further increase the diagnosability of

the HDL-code.

Figure 2 was further transformed into its equivalent matrix data structure (Table 1) to further

simplify the analysis of the code during verification. In order to implement this model and

process the matrix after verification three methods were developed by Ngene (2011). These

include method of logical analysis of columns, method of logical analysis of rows and matrix

method. The vertices (S) in Figure 2 represent the state of the various variables when test

patterns are applied and the edges (B) represent the program module with their associated

assertions. The state of each program module depends on the states of program

module/modules preceding it. For example the module B11 depends on the state S5 which is

the cumulative results of processing modules B1, B2 and B7. The state S9 is the state at which

the final result or results of the program is/are obtained and there are only two modules (B13

and B14) that are finally processed to the yield this state. The number of test sets required to

test this program is derived from the Boolean equations Equation 1 of the program modules

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

54

and represented in Equation 2. Shown in Equation 1 is sum-of-product representation of

Boolean expression, where the product terms of the blocks or modules is logical ANDing and

the symbol V is logical ORing operations. Shown in Equation 2 are six (6) products

representing six test sets (T1 to T6) depicted in Table 1, which is an alternative representation

of Figure 1.

Figure 2: Example of Assertion-based transaction graph for an arbitrary

code with fourteen modules

Table 1 Code modules activation matrix

Test
Sets

Code Modules
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

T1 1 1 1 1

T2 1 1 1 1

T3 1 1 1 1 1

T4 1 1 1 1

T5 1 1 1 1

T6 1 1 1

B4

B14

5

B5

B6

B3

B9
B11 B10

B13

B12

B2

B8

B7

B1

S0

S2

S1

S3

S4

S5

S6

S7

S8

S9

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

55

 (1)

)2(.SSSSSSSSSSSSSSSSSSSSSSSSSSSSSST 986209752098420975109841097310 

The row is the relationship between test segment (T) and a subset of activated segment of

program blocks Ti ≈ (Bi1, Bi2,..., Bij, ..., Bin). The column of the table forms the relationship

between the program modules and test segments Bj ≈ (T1j, T2j,..., Tij, ..., Tpj) that activate it.

Otherwise, the column is the assertion vector identifying functional violation within the

module. The presence of 1 in a row corresponding to a given code modules means that the

test activates the block and a single test can activate more than one program modules. For

example T1 activates B1, B3, B9 and B13. The functional violation matrix shown in Table 2

helps to determine which of the blocks has functional violation.

Table 2 Functional Violation Matrix

Test Sets Code modules Output
Response

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

T1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0

T2 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1

T3 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0

T4 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1

T5 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0

T6 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1

This is achieved by applying all the test sets to the program and observing the output

response. The column test sets and Code modules serve as fault table and by comparing the

output response vector with each of the columns the module with functional violation can be

determined. In Table 2 the output response vector corresponds to column B14. A single

module with functional violation is located in this case. There are cases where more than one

experiment is required to generate corresponding output responses. This comparison should

be carried out for each output response with each column of the code modules. This means

that B14 has functional violation and further debugging can be concentrated in this module for

logical errors rather than blindly searching for the fault in all the modules.

2.3 Method of matrix analysis

Further to the software transaction graph shown in Figure 1, a method for diagnosing

functional failures in software modules uses the triad of matrices (B, A and L) of the same

dimension. In order to illustrate the method of matrix analysis, Table 2 is restructured into

Table 3. Only eight code modules from Table 2 have been considered for simplicity. Also

considered are eight assertions (A) corresponding to each code module (B). Here matrices

.

))(())((B

14128214106214104113115113117213931

14128210624113115172931

BBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBB





Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

56

form: B – block activation on test segments during simulation; A – activity of assertions,

corresponding to blocks on test segments during simulation; L – faulty blocks, obtained as

result of XOR-operation on the two matrices above is illustrated by Equation 3. XOR-

operation is defined by Equation 4. The presence of functional violation in a code can be

determined by carrying out coordinate-wise analysis of the matrices B and A. If the resulting

matrix coordinates are all zero, then there is no violation (Table 3). Otherwise a functional

violation exists in the code. And the next task is to determine the module in which functional

violation occurs – diagnosis.

{0,1}}L,A,{BABLABL 0,LABM ijijijijijij  (3)

. ;m1,j ;n1,i],[LL],[AA],[BB ijijij baba  (4)

Table 3 Triad Matrices without Functional Violation

In Table 4, it has been shown that the module contains functional violations by examining the

L-matrix. In order to unambiguously detect the modules with functional violation, a logical

OR operation of individual columns is carried out as shown in the last row of the L-matrix of

Table 4. The software modules B1 and B3 contain functional violation because of the

presence of ones in columns L1 and L3 at the last row (i.e. L = {B1, B3}.

Table 4 Triad Matrices with Functional Violation

2.4 Design methodology

A modular and hierarchical approach was adopted for this design, and the model was

captured using VHDL (Chang, 1995; Chang, 1996). The corresponding VHDL model of each

module was written in a top-down approach. The device, which was implemented as an IP-

core can be used to process not only the synthesised assertions but is also suitable for

comparing golden (reference) values and output response values that are represented in the

form of matrices. This is appropriate for pattern recognition applications and other

applications for searching, recognition and decision making.

Bijj B1 B2 B3 B4 B5 B6 B7 B8

T1 1 0 1 0 0 0 0 0

T2 1 0 0 1 0 0 0 0

T3 1 1 0 0 0 0 0 0

T4 0 1 0 0 0 1 0 0

T5 0 1 0 0 0 0 1 0

T6 0 0 0 0 0 0 0 1

Aijj A1 A2 A3 A4 A5 A6 A7 A8

T1 1 0 1 0 0 0 0 0

T2 1 0 0 1 0 0 0 0

T3 1 1 0 0 0 0 0 0

T4 0 1 0 0 0 1 0 0

T5 0 1 0 0 0 0 1 0

T6 0 0 0 0 0 0 0 1

Lijj L1 L2 L3 L4 L5 L6 L7 L8

T1 0 0 0 0 0 0 0 0

T2 0 0 0 0 0 0 0 0

T3 0 0 0 0 0 0 0 0

T4 0 0 0 0 0 0 0 0

T5 0 0 0 0 0 0 0 0

T6 0 0 0 0 0 0 0 0

Bijj B1 B2 B3 B4 B5 B6 B7 B8

T1 1 0 1 0 0 0 0 0

T2 0 0 0 1 0 0 0 0

T3 0 1 1 0 0 0 0 0

T4 1 1 0 0 0 1 0 0

T5 0 1 1 0 0 0 1 0

T6 0 0 0 0 0 0 0 1

Aijj A1 A2 A3 A4 A5 A6 A7 A8

T1 1 0 1 0 0 0 0 0

T2 1 0 0 1 0 0 0 0

T3 1 1 0 0 0 0 0 0

T4 0 1 0 0 0 1 0 0

T5 0 1 0 0 0 0 1 0

T6 0 0 0 0 0 0 0 1

VAi 1 1 1 1 0 1 1 1

Lijj L1 L2 L3 L4 L5 L6 L7 L8

T1 0 0 0 0 0 0 0 0

T2 1 0 0 0 0 0 0 0

T3 1 0 1 0 0 0 0 0

T4 1 0 0 0 0 0 0 0

T5 0 0 1 0 0 0 0 0

T6 0 0 0 0 0 0 0 0

VLi 1 0 1 0 0 0 0 0

=

=

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

57

2.5 Choice of methods:

The design was based on a tabular data structure with rows containing the test vectors that

activate a subset of the code module (columns) and corresponding output response vector

(Figure 2 and Table 1). The matrix method discussed in the previous section was used to

accomplish the design because it provides the right relationship between the test vectors, code

modules, assertions and functional violations and can achieve the same results as the other

two methods discussed in Ngene (2011). With the achievement of the desired diagnostic

resolution using the proposed methods, logic synthesis scheme and functional coverage

analysis and test generation were used to create software and hardware infrastructure for the

diagnosis of HDL- code.

 2.6 Choice of HDL and EDA tool

As earlier mentioned there are two popular HDLs available (VHDL and Verilog) to use for

this design, but VHDL was used in view of its strength in paper documentation. The EDA

tool used for the VHDL code was Xilinx ISE 13 design suite web edition. The design was

partitioned into 2 – the top module and the execution unit. The execution unit in turn consists

of 3 modules – AND, XOR, OR and SLC (Shift-left with 1s compaction). The SLC is used in

the circuit for selecting the optimal solution. The solution with more number of 1s in the bit

position is a less optimal solution than the solution with lower number of 1s. The worst

solution is one that has 1s in all bit positions. An example of SLC operation is shown in

Figure 3. The register is used to compact 1s and fill the remaining part of the register with 0s

. In view of the simple nature of the processor, which has only 4 instructions, the control unit

was incorporated into the register file in the top entity module of the design. In this case a

hardwired control system was implemented.

(a)

(b)

 Figure 3: SLC example: (a) Uncompacted. (b) Compacted

2.7 Instruction set architecture

The MAP is a processor that is purely hardware-based; none of the registers is software

addressable, consequently it has no program counter or any special purpose registers. It is a

16-bit processor with a simple instruction set. The choice of 16-bit processor was not

accidental; it was based on the computational resources available for use at the time of

design. The positive side is that a parameterised design approach was used, whereby the

number of bits can be changed only in the VHDL package. Increasing the bits should be

considered when enough computation resources (high speed multiprocessor computers etc.)

 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0

0 R0

 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

58

that could speed up the synthesis to a few days depending on the size of the code are

available. There are 32 registers (Figure 4) used for holding `two 16x16 matrices that are

loaded at the same time from their respective RAMs and intermediate results. All the four

instructions are shown in Table 5 alongside their functions and operation codes (opcode).

 15 0

 .

 .

 .

 Figure 4: MAP registers

Table 5 MAP Logical Instruction

Instruction Name Function Opcode

XOR

AND

OR

SLC

Modular 2 addition

Logical multiplication

Logical addition

Shift-left bit crowding

(Compaction of 1s)

R0-15  R0-15 R16-32

R0-15  R0-15  R16-32

R0-15  R0-15  R16-32

R0-15  SLC R0-15

00

01

10

11

2.8 Data transfers

Loading and transfer of appropriate data to and from the memory is triggered by a special

signal gen_rd_wr. Data transfer is not implemented as a specific instruction; rather it is

executed once the appropriate value of gen_rd_wr signal is asserted. The gen_rd_wr codes

with their corresponding function are shown in Table 6. This signal has 4 states. Two of the

states are used for memory operations while the rest are used for data transfers between the

register file unit and the Execution unit.

 R0

 R1

 R31

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

59

Table 6 Data Transfer Function and their Codes

Transfer Function Opcode Gen_rd_wr

From RAM

To Exec_unit

From Exec_unit

To RAM

R0-15  (RAM1)

Exec  (R0-15)

R0-15  (Exec)

RAM4  (R0-15)

any

any

any

any

001

010

011

100

2.9 Design Units

The MAP was divided into two major units: the register file and the execution unit. The

execution unit is further reduced into sub modules xorandor and SLC. The modules that

realises the logical operations XOR, OR and AND were combined in the xorandor sub unit,

while that of SLC was implemented in a separate module as depicted in Figure 5. The

memory elements present in the FPGA were used to implement the various RAMs. In order

to improve the speed of loading and storing data, a separate RAM was implemented for each

of the logical operations. The VHDL code for the MAP was not included in this paper

because of the size (over one thousand lines of code including test bench).

ADDRESS BUS

n-bit

DATA BUS

k-bit

MULTI-ARRAY PROCESSOR

RAM1

RAM4

RAM3

RAM2

Register

 File

EXECUTION

UNIT

SLC

XORANDOR

XOR

OR

AND

Figure 5: The structure of the Multi-array processor

2.10 VHDL coding considerations

The VHDL model for the MAP consists of entity declarations and a mixture of synthesisable

behavioural and structural descriptions. As mentioned earlier the code was divided into two

major units: register file and the execution units. The execution unit where the actual

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

60

computation takes place was further divided into sub units; one of the sub units does the

XOR, AND and OR computation and the second sub unit executes the SLC operations. The

sub units were instantiated as components in the execution unit and the execution unit was

further instantiated as a component in the top module entity –register file. However, before

the units were written the types used in the external and internal interfaces in a package called

map_type_pkg were defined. In order to ensure future enhancements of the code, the code

was parameterised to allow for the register and the bus widths to be increased only in one

place (i.e. in the MAP type’s package).

4. Results and discussion

The results of the actual design of the multi-array processor are first presented by examining

the synthesis and the simulation results. Then, the overall improvement brought about by the

use of the device in an assertion-based integrated verification environment for HDL models

of SoCs was highlighted.

4.1 Synthesis

The processor was synthesised with Xilinx ISE 13.1 design suite and simulated using Xilinx

ISIM. Test benches were used to verify the functionality of the design, which was

implemented in Virtex 6 FPGA by using Xilinx configuration tools. The device utilisation

summary for the targeted Virtex 6 and the top module interfaces are shown in Table 7 and

Figure 6.

Table 7 Device utilisation summary

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

61

Figure 6: Interfaces of MAP

It is evident from the summary that some parts of the device were poorly utilised, especially

the number of slice registers and BUFG/BUFGCTRLs. The reason for choosing Virtex 6 was

because there was a large number of the bonded input/output blocks whose utilisation was

above 50%. The input/output lines were large due to the high level of parallelism of the

design, which generally improved the speed of operation of the device at the expense of area

or large number of primitives used. The components interconnection implementation is

shown in Figure 7. The synthesis report showing various components used and their total

number is shown in Figure 8 rather than the actual netlist (logic components and their

interconnection).

Figure 7: Components interconnection implementation

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

62

Figure 8: Synthesis report summary

4.2 Verification of results

The test benches used to verify the functionality of the design is not shown in this report

because of limited space. The golden matrix values were loaded into RAM2 whereas the

input matrix values (i.e. input vectors) to be compared with the golden values were loaded

into RAM1. After they have been processed by the execution unit the contents of both RAMs

can be overwritten by the results. The simulation in Figure 9 shows that the contents of the

RAMs were read simultaneously into corresponding registers in the file at the rising edge of

the clock when mem_rd signal is high.

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

63

Figure 9: Input vectors verification waveforms

After the memory contents have been read they are transferred to the execution unit in

parallel and concurrently executed depending on the logical instruction to be executed. The

result of XOR operation is depicted in Figure 10 and that of SLC operation is shown in

Figure 11. The simulation results for AND and OR operations were similarly carried out and

were deliberately omitted in this paper.

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

64

Figure 10: XOR operation verification waveforms

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

65

Figure: 11 SLC operation verification waveforms

4.3 Improvement analysis

The results of the introduction and integration of the MAP into the verification environment

were plotted as speed of data analysis versus the number of program modules for manual and

MAP analyses (Figure 12). The fact here is that the same number of engineers analysed the

result of the assertion synthesis for all the program modules considered in this paper.

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

66

Figure 12: Chart of speed against number of modules

Results show a significant improvement in the analysis time and the overall verification time.

With the use of the MAP, about 17% of the time taken to manually analyse the data generated

from synthesised assertions when the number of modules are small was achieved. Figure 12

shows that with fewer modules the effectiveness of the processor is marginal and slightly

better than manual analysis. With increase in the number modules the superiority of the

device is clearly shown on the graph. The difficulty of humans to examine enormous data

generated by simulation tools was once again highlighted.

5. Conclusions

This paper was embarked upon in order to reduce the analysis and computation time of

synthesised assertions in a software/hardware verification environment. The design was

verified and implemented by using simulation, synthesis and configuration tools of Xilinx

Inc. USA. Although it appears that a cheaper FPGA could have been used instead of Virtex6

for this design, the available components can be of advantage when new functionality is

added to the device. A further optimisation of the code could lead to a reduction in area,

which would make it possible to use a cheaper FPGA. The HDL code has been parameterised

such that the width of the registers can be increased to be able to handle papers with

increased program modules if there are enough computing resources.

It has been shown that the MAP reduces the time required to analyse and process synthesised

assertions or any other data presented in the form of matrices that compares a golden model

and input response vectors.

Ngene: Design and implementation of embedded hardware accelerator for diagnosing HDL-CODE in assertion-
based verification environment. AZOJETE, 9: 51-67, 2013

67

References

Andrew, A., O’Fallon, A. and Chen T. 2003. A Rule-Based Software Testing Method

forVHDL Models Proceedings. IFIPInternational Conf. of VLSI SoC, Darmstadt, Germany.

Ashenden, PJ. 2001. The Designer’s Guide to VHDL, 2
nd

 ed. Morgan Kaufmann Publishers,

San Francisco. pp138 – 140.

Bergeron, J. 2003. Writing Test Benches: Functional Verification of HDL Models, 2
nd

 ed.,

Kluwer Academic Publishers. Boston, USA.

Chang, M. 1995. From VHDL to CPLD — a Synthesizable Journey, One-day Tutorial

Workshop, IEEE International ASIC Conference, Austin, Texas.

Chang, M. 1996. Teaching Top-down Design Using VHDL and CPLD. Proceedings of

Frontiers in Education Conference, 2: 514 – 517.

Foster, HD., Krolnik, AC. and Lacey, DJ. 2004. Assertion-Based Design, 2
nd

 ed. Kluwer

Academic Publishers, Boston, USA.

IEEE. 1994. IEEE Standard VHDL Language Reference Manual: ANSI/IEEE Standard

1076–1993. New York.

Kalyaev, IA., Levin, II., Semernikov, EA. 2011. Reconfigurable System Uses Large FPGA

Computation Fields. Xcell Journal, 75: 24 – 29.

Ngene, CU. 2011. Embedded Diagnostic Infrastructure for HDL-models of Digital Systems

on Chip, Ph.D Dissertation, Kharkov National University of Radioelectronics.

Seward, SR. and Lala, PK. 2003. Fault Injection for Verifying Testability at the VHDL

Level. IEEE ITC International Test Conference, pp 131 – 137.

Xilinx. 2011. ISE In-Depth Tutorial. UG695 (v13.1). www.xilinx.com

Xilinx. 2010. XST User Guide for Virtex-6 and Spartan-6 Devices. UG687 (v 12.1)

www.xilinx.com

http://www.xilinx.com/
http://www.xilinx.com/

