
 COMPARISON OF THE ALGORITHMS FOR CS IMAGE 

RECONSTRUCTION 

 

 

Milica Medenica, Sanja Zuković, Andjela Draganić, Irena Orović, Srdjan Stanković
∗ 
 

 

 

Keywords: Compressive Sensing, image reconstruction, 
1

l -minimization, Total Variation 

 

Abstract: This paper describes comparison of algorithms for Compressive Sensing 

reconstruction of 2D signals. Compressive Sensing is a new signal sensing approach 

aiming to decrease the requirements for resources in real digital systems (number of 

sensors, memory requirements, etc.). This method provides signal analysis and 

reconstruction using small set of randomly chosen samples. Reconstruction is based 

on complex mathematical algorithms - optimization algorithms. Depending on the 

signal type, different optimization algorithms are used. This paper deals with three 

algorithms for CS image reconstruction. Performances of the algorithms are 

compared for different types of 2D signals. Reconstruction quality is measured by 

calculating PSNR between original and reconstructed signal. Execution time for each 

considered algorithm is calculated, as well. 

1. INTRODUCTION 

Standard approach to signal processing is based on the signal sampling according to the 

Shannon-Nyquist theorem. Signal has to be sampled with frequency which is at least two 

times higher than the maximal signal frequency, in order to provide high accuracy signal 

reconstruction. This way of sampling requires significant resources for storing and 

transmitting data, and therefore, signal has to be compressed. In recent years, there is an 

intensive growth of the alternative ways for signal sampling, based on Compressive 

Sensing (CS) methods [1]-[5]. CS is new method for signal acquisition, based on sampling 

with frequency beyond Nyquist. CS provides high accuracy signal reconstruction, despite 

the reduction of number of signal samples. However, certain conditions have to be satisfied 

in order to apply CS reconstruction method. Namely, signal has to be sparse in its own or in 

some transform domain (discrete Fourier transform domain, discrete cosine transform 

domain, wavelet domain, etc.). Another condition that has to be satisfied in CS is related to 

the sampling/measurement procedure. Measurement procedure has to provide signal 

reconstruction from small number of acquired samples called measurements. 

Reconstruction from the small number of samples requires powerful mathematical solvers 

to be used – i.e. optimization algorithms. A large number of optimization algorithms are 
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used nowadays, and they are still intensively developing. Commonly used are optimization 

algorithms based on 
1

l -norm minimization.  

 The possibility of 2D under-sampled signal reconstruction using CS is analyzed in this 

paper [1]-[5], [11]-[13]. Two types of 2D signals are considered - the real life, natural 

images and images used in medical purposes. The majority of 2D signals do not satisfy the 

first CS condition – sparsity. Therefore, the alternative CS algorithms are developed for 

reconstruction of the signals which are not perfectly sparse. One of them is Total Variation 

method (TV) [1]. TV is based on signal gradient 
1

l -norm minimization. TV uses gradient 

minimization, as gradient of 2D signals has sparse representation in its own or in some 

transform domain.  

Different algorithms for the 2D signal reconstruction are considered in this paper. All of 

the described algorithms are based on TV minimization. The comparison of the 

reconstruction quality for different number of measurements is given, as well as the 

algorithm execution time. 

The paper is organized as follows. The theoretical background on the intensively studied 

CS methods for signal processing, their main properties, as well as the procedure for CS 

signal acquisition, is given in Section II. The algorithms used in this paper are described in 

the Section III, while the experimental results along with the discussion could be found in 

the Section IV.  The concluding remarks are given in the Section V. 

2. COMPRESSIVE SENSING 

Finite, real, 1D signal x could be described as column, N×1 vector, in the R
N
 space. 

Mathematically, signal could be described as [1]-[4]: 

 
1

N

i ii
x s s

=

= =∑ ψ ψ , (1) 

where ψ  denotes N×N transform domain matrix, while s is transform coefficients vector. 

Vectors x and s are representations of the same signal in different domains - in time (space) 

domain and in transform domain (denoted with ψ  in this paper). Two conditions have to 

be satisfied in order to reconstruct signal from the small number of acquired samples. First, 

signal has to be sparse, which means that small number of signal coefficients (in its own 

domain or in the transform domain) has non-zero values.  The second condition is related to 

the measurement procedure. Namely, measurement procedure has to be incoherent. If the 

incoherence property is satisfied, the signal will be reconstructed with high accuracy using 

small number of acquired samples. The majority of real signals satisfy sparsity property and 

the measurement procedure could be performed in a way which satisfies incoherence 

condition (by randomly acquiring signal samples).  

The number of acquired signal samples (i.e. measurements) can be much smaller than the 

signal length N, i.e. M<<N.  Measurement vector y is obtained by multiplication of the 

measurement matrix φ  by signal vector x, which could be described as [1], [11], [12]: 

 y x= φ . (2) 

Combining the relations (1) and (2) the following equation is obtained: 
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 y x s s= = =φ φψ θ . (3) 

Matrix θ = φψ  denotes M×N Compressive Sensing matrix. The procedure for samples 

acquisition is simple, while the reconstruction procedure requires complex mathematical 

algorithms. System of equations (3) is undetermined system and has infinite number of 

solutions. In order to obtain unique solution, the optimization algorithms are used. One of 

the commonly used is optimization based on the 
1

l -norm minimization: 

 

 
1

 min || ||         
l

s s subject to y sθ= = . (4) 

3. ALGORITHMS FOR CS IMAGE RECONSTRUCTION 

Traditional way of signal acquisition is based on Shannon-Nyquist sampling theorem. 

According to this theorem, signal will be reconstructed with high accuracy if it is sampled 

at frequency which is twice the maximal signal frequency. Sampling in such way results in 

large number of signal samples. Therefore, signal has to be compressed in order to be 

further processed. CS is a method that performs acquisition and compression at the same 

time. This  saves memory and shortens signal acquisition time. Additionally, CS enables 

reconstruction and processing of the signals in the cases when missing samples occur 

(which is common case in the real applications).  

As it was mentioned before, the signal can be reconstructed from its measurement using 

complex optimization algorithms. Commonly used optimization is based on 
1

l  

minimization. Generally speaking, image is not sparse in any transform domain and hence 

the reconstruction quality obtained with 
1

l  minimization will not produce satisfactory 

results. Therefore,  
1

l  minimization of the signal gradient (TV minimization) is used for 

the 2D signal reconstruction [1], [12], [13]. 

TV of the signal s is sum of the gradient amplitudes in the point (i,j). It can be described 

as: 

 
,

( ) ,ijTV i j
s s= ∇∑  (5) 

where ∇ represents differentiation operator, i.e. approximate value of the gradient, for pixel 

(i,j): 

 
,

( 1, ) ( , )

( , 1) ( , )
i j

s i j s i j
s

s i j s i j

+ − 
∇ =  + − 

 (6) 

Discrete form of the TV could be described as: 

 2 2
1, , , 1 ,,

( ) ( ) ( )i j i j i j i ji j
TV s s s s s

+ +
= − + −∑  (7) 

TV minimization problem is given by equation (8): 
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  min  ( )   TV s subject to y sθ=  (8) 

TV minimization provides a reliable reconstruction of the signal and gives satisfactory 

results in the cases of noisy signals also. In the sequel, the algorithms that are used for the 

2D signals reconstruction in this paper are described. All of the described algorithms take 

measurements from the frequency domain of signal, and obtain solution by using TV 

minimization. 

 

Algorithm 1:  

The first algorithm described in the paper takes measurements form the 2D Fourier 

transform of the signal. The samples are taken by using radial line mask (Fig. 1) [13]. The 

number of radial lines in the mask could be changed and consequently, the number of taken 

measurements is changed. Samples taken from the mask form measurement vector which is 

used in the TV based reconstruction procedure. 
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Fig. 1: Radial line mask (L=10, L=22 and L=50, from left to right) 

 

Algorithm 2:  

The second algorithm for image reconstruction is based on taking measurements from the 

2D Discrete Cosine Transform (2D DCT), in a random manner. The image could be treated 

as a whole, or can be divided into blocks. Measurements are randomly taken from image or 

from each image block separately, in order to form measurement vector. In the case of 

block-separated image, the reconstruction is performed block by block. The reconstruction 

quality depends on the block size, as well as on the number of samples taken form the block 

(or from the whole image). 

  

Algorithm 3:  

Third algorithm deals with the 2D DCT coefficients taken as measurements. This 

algorithm takes certain number of low frequency (LF) coefficients in measurement 

procedure, to assure good reconstruction quality. This number LF coefficients could be 

changed, depending on required reconstruction quality. The algorithm requires that all of 

2D DCT image coefficients are known, in order to choose the LF ones. This could be 

limiting factor for the algorithm application in cases when there is no information about all 

image coefficients.  

Beside LF coefficients, the algorithm takes certain number of middle or high frequency 

coefficients (MF, HF), as well [11]. The image (or image block) is firstly converted into a 

vector by zigzag rearrangement. Then the measurement vector is formed of K1 LF 

coefficients and K2 randomly selected MF or HF coefficients.  
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The measurement vector is described with the relation y=y1+y2, where y1 denotes LF 

coefficients vector and y2 denotes MF and/or HF coefficients vector. The 2D signal is 

reconstructed from its measurements, by using relation (7). 

 In all considered cases, the reconstruction quality is measured by peak signal to noise ratio  

(PSNR), defined as: 

 

 max

10
1 1

2

0 0

20log ,
1

[ ( , ) ( , )]
M N

orig rec

i j

O
PSNR

S i j S i j
MN

− −

= =

=

−∑ ∑

 (9) 

 

where Omax denotes maximum luminance in the image, M  and N are image size, Sorig  and 

Srec denote original and reconstructed image. 

4. EXPERIMENTAL RESULTS 

The experimental results for the reconstruction of the several test images are given in this 

section. The „Cameraman“ image as well as two medical images („Brain“ and „Phantom“) 

are considered. The images are of 256x256 size and their original versions are shown in 

Fig. 2.  

 

   
Fig. 2: Original Cameraman, MRI Brain and Phantom images 

 

A. Algorithm 1 reconstruction 

 

The measurements are taken from the DFT domain by using radial line mask. The 

number of lines in the mask is user defined.  

 

Table 1: Simulation results for the Algorithm 1 

Phantom image Cameraman image 

Number of 

lines in radial 

line mask 

Time (s) PSNR (dB) 

Number of 

lines in radial 

line mask 

Time (s) PSNR (dB) 

100 163.94 121.48 100 1078.8 33.21 

22 577.69 48.80 22 1123.2 22.68 

15 578.28 34.47 15 1046,8 21.56 

10 505.45 20.14 10 1102.9 19.85 
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Fig. 3: “Phantom” and “Cameraman” reconstruction using different number of lines in DFT 

domain 
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Fig. 4: PSNR for different number of radial lines in DFT domain; solid line is for 

“Cameraman” image and solid-star line is for “Phantom” image 

 
In the simulations, the number of lines is changed and PSNR is calculated for each mask.  

 

   
 

   
Fig. 5: Reconstruction results using Algorithm 2, with block sizes 16x16, 32x32 and 64x64, 

respectively (from left to right). Results are given for 35% of measurements per block 

 

Fig. 3 shows reconstructed images, using number of measurements defined in the Table 1 

(for number of radial lines L=10, L=22, L=100, respectively).The medical images, like 
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“Brain” and “Phantom”, require smaller number of lines to be used when defining the 

mask. It is shown that L=22 provides reconstruction with PSNR=48.8031 dB, which 

indicates good image quality. Smaller number of lines means smaller number of samples 

used for reconstruction, and thus lower reconstruction time. Low reconstruction time is 

especially important in medicine (e.g. Magnetic Resonance Imaging), where patient is 

exposed to dangerous waves for certain amount of time. Fig. 4 shows PSNR values, using 

different number of radial lines in the mask, for two different types of images – natural and 

medical image. For real, natural images reconstruction (like “Cameraman” image), the 

number of lines has to be much larger (L=100), in order to obtain satisfactory 

reconstruction, i.e. PSNR>30 dB. 

 

B. Algorithm 2 reconstruction 

 

The satisfactory reconstruction quality can be obtained by taking samples from the 2D 

DCT domain and using TV minimization. In order to improve reconstruction quality, the 

image is divided into blocks. Different block sizes are considered. Also, the number of 

measurements per block, for the fixed block size, is also changed, in order to test 

reconstruction quality. The 16x16, 32x32, 64x64 block sizes are observed. The 35% and 

70% of measurements from each block are taken (and for each block size). Algorithm 

execution time is measured, as well as PSNR between original and reconstructed image. 

The results are given in Table 2. Fig. 5 shows reconstructed images, using three different 

block sizes: 16x16, 32x32 and 64x64. The larger block size provides better reconstruction 

results (for the same percentage of measurements as in smaller blocks). This can be 

explained with the fact that longer signals have better sparsity compared to the short ones. 

Fig. 6 shows PSNR-number of measurements graph, for different block sizes and for 

different images. As it can be seen, PSNR is larger for medical image, in all considered 

cases. 

 

Table 2: Simulation results for the Algorithm 2 

Block 

size 

Number of 

measurement 

(%) 

Time  

(s) 

PSNR 

(dB) 
Block size 

Number of 

measurement 

(%) 

Time  

(s) 

PSNR 

(dB) 

Cameraman image MRI Brain image 

16x16 235.09 26.9894 16x16 233.76 32.5143 

32x32 115.17 28.2634 32x32 108.16 34.4819 

64x64 

35 

80.33 30.1655 64x64 

35 

83.50 35.6922 

16x16 154.20 33.8066 16x16 185.03 40.3012 

32x32 72.74 35.2401 32x32 93.33 41.9663 

64x64 

70 

63.82 37.1667 64x64 

70 

71.29 43.4082 
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Fig. 6: PSNR dependence on the number of measurement. Solid line is for the 

“Cameraman” image and solid-star line is for the “Brain” image. Results are for 16x16, 

32x32 and 64x64 block sizes (from left to right) 

 

C. Algorithm 3 reconstruction 

 

Table 3 shows parameters used in reconstruction with Algorithm 3, where K1 denotes 

number of LF coefficients and K2 denotes number of HF coefficients. Percentage of taken 

measurements, reconstruction quality measure – PSNR and algorithm execution time are 

given in the Table 3, as well. The test images are of 64x64 size. In all considered cases, 

reconstruction using 20%, 30%, 40% and 50% measurements is tested. Different number of 

LF coefficients is used: K1=100, K1=500 and K1=800. For each number K1, the number K2 

of HF coefficients is chosen such that the sum K1+K2 is equal to : a) 20%, b) 30%, c) 40% 

and d) 50% of the total number of coefficients. Higher number of LF coefficients requires 

higher execution time, for the same total number of measurements (see Table 3). Also, the 

more LF coefficients is used (for the same total number of measurements), the better PSNR 

is achieved. The natural, „Cameraman“ image, requires 50% of coefficients to be used for 

the reconstruction with PSNR=30 dB. The same reconstruction quality in the case of 

medical image can be obtained using 20% of the coefficients.  

 

Table 3: Simulation results obtained by using Algorithm 3 
Image 

(64x64) 

Meas. 

(%) 

K1 

LF 

K2 

HF 

Time 

(s) 

PSNR 

(dB) 

Image 

(64x64) 

Meas. 

(%) 

K1 

LF 

K2 

HF 

Time 

(s) 

PSNR 

(dB) 

100  720 6.10 20.2051 100  720 4.71 28.3956 

500 320 6.36 21.4185 500 320 5.14 29.6162 20% 

800 20 6.06 21.8561 

20% 

800 20 6.46 30.1297 

100 1130 8.12 22.6839 100 1130 4.19 31.1564 

500 730 9.09 23.1146 500 730 5.23 32.3775 30% 

800 430 11.24 23.7023 

30% 

800 430 5.42 32.7475 

100 1530 7.9 24.9610 100 1530 4.22 33.4567 

500 1130 9.26 26.2603 500 1130 5.11 34.2337 40% 

800 730 10.73 25.67 

40% 

800 730 6.15 34.1546 

100 1950 7.08 28.5986 100 1950 3.87 35.8391 

500 1550 10.99 30.1110 500 1550 5.32 36.3860 

C
a
m

e
ra

m
a
n
 

50% 

800 1250 11.48 30.2483 

B
ra

in
 

50% 

800 1250 6.99 37.4498 
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Fig. 7: „Cameraman“ reconstruction using different LF-HF ratios. The percentage of 

measurements from the total number of image coefficients is: 20% for the first row, 30% 

for the second row, 40% for the third row and 50% for the forth row. The LF=100, 500 and 

800 is used for the pictures in one row, from left to right 

 

 

 

 

 
Fig. 8: „Cameraman“ reconstruction using different LF-HF ratios. The percentage of 

measurements from the total number of image coefficients is: 20% for the first row, 30% 

for the second row, 40% for the third row and 50% for the forth row. The LF=100, 500 and 

800 is used for the pictures in one row, from left to right 
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Figs 7 and 8 show reconstructed images with the parameters in accordance with the Table 

3. The lack of the algorithm is the necessity of LF coefficients presence in the measurement 

vector. This means that, during signal acquisition, these coefficients must be recorded and 

stored. 

5. CONCLUSION 

Different algorithms for CS image reconstruction are considered, analysed and discussed 

in this paper.  Due to the specific nature of images, the method based on gradient 

minimization, i.e. Total Variation minimization, is used for reconstruction in all considered 

cases. The measurements are taken from the frequency domain in each observed algorithm, 

but the way of coefficient selection is different for considered approaches. The 

reconstruction quality, as well as execution time, is compared for different algorithms and 

different number of measurements. It is shown that the medical images can be 

reconstructed with smaller number of measurements, for all described algorithms. This type 

of images are more sparse in the certain transform domain. Therefore, good reconstruction 

quality could be obtained with less measurements, compared to the natural images. The best 

results are obtained in cases when we can chose certain number of LF coefficients in 

measurement vector, as it was done in the last described algorithm. However, this could be 

limiting factor, for example, in the cases when the missing pixels occurs. In the cases when 

the complete information about the image is available, this algorithm gives satisfactory 

reconstruction results and decreases the processing time (compared with the case when we 

deal with the full set of image samples). 
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