THE OVERALL RATE OF RETURN TO AGRICULTURAL RESEARCH AND EXTENSION INVESTMENTS IN PAKISTAN: A Comment

Eshya MUJAHID-MUKHTAR and Hanid MUKHTAR

Nagy's estimation reveals a very high rate of return to research and extension in Pakistan's agriculture. This work demonstrates that this was due mainly to a misspecified model, with the research and extension variable picking up the effect of omitted variables, namely water and fertilizer. Due to their importance in agriculture, it was not surprising to note that the inclusion of water and fertilizer results in a considerably lower rate of return to research and extension than shown by Nagy, at times even pushing it to a negative value.

In the summer 1985 edition of this Journal, Joseph G. Nagy attempts to identify and establish the contribution of the major sources of overall productivity growth in Pakistan's agriculture. Using a distributed lag model, the paper concentrates on estimation of the effect of expenditure on agriculture research and extension on agricultural productivity, and concludes that the marginal rate of return is 65 per cent.

The study, however, suffers from a series of problems, ranging from

minor oversights to major conceptual drawbacks. 1

A major problem in the specification of the model is its functional form. The basic estimable model [Equation (2) in Nagy] expresses the weather variable (W_t) in the semi-log form, but percentage area under high yielding variety (HYV_t) and research and extension expenditure (RE_t) variables in a double-log form. The expression of the latter two variables in this form is conceptually incorrect as this implies that given a zero value of

¹For a discussion on the minor points, see Appendix.

any one², or both, variable(s), the value of the dependent variable i.e., productivity index (PI) will be zero.

An important omission in the specification of the model is that of some 'non-conventional' agricultural inputs, mainly fertilizer, which has been crucial to Pakistan's agricultural productivity in the last 20 years. Exclusion of fertilizer may have led to severe biases in the estimates of all the three models given in Nagy's work. The research and extension (RE) variable may be capturing the effect of fertilizer on agricultural productivity and therefore, the value of the marginal product and the internal rate of return to research and extension expenditures (MIRR) may be overstated.

The purpose of this exercise is to calculate the marginal product of, and the corresponding rate of return to, agricultural research and extension expenditures using Nagy's methodology and data but with improved specification of the model. To achieve this, all three of Nagy's models were reestimated with the following modifications:

$$Log(PI) = \beta_0 + \beta_1 HYV + \beta_2 W + \beta_3 D65 + b_2 Z$$
 (1)

$$Log(PI) = \beta_0 + \beta_1 HYV + \beta_2 HYVSQ + \beta_3 W + \beta_4 D65 + b_2 Z$$
 (2)

$$Log (PI) = \beta_o + \beta_1 HYV + \beta_2 HYVSQ + \beta_3 FERT +$$

$$\beta_4 FERTSQ + \beta_5 W + \beta_6 D65 + b_2 Z$$
(3)

where: $Z = \sum_{i=0}^{k} (i^2 - ki - k - 1) \text{ Log (RE)}$; HYVSQ = HYV squared; FERT =

fertilizer use; FERTSQ = FERT squared.

The estimated results of equations (1), (2) and (3) are given in Tables 1, 2, and 3 respectively.

Table 1 presents the results using Nagy's data but with the HYV variable expressed in non-log terms. Suprisingly, these results differ significantly from Nagy's estimates. The MIRR calculated from our estimates are much higher i.e., ranging between 81.8 per cent and 90.0 per cent, than that calculated by Nagy (64.5 per cent). A minor decline in these rates occurs as a consequence of including the HYV variable in quadratic form (Table 2). However, the most intersting result emerges with the inclusion of

²HVV variable has zero values for 9 out of 20 sample years.

³ Using HYV in log form, i.e., by adding one to the entire HYV series and then taking the logarthims, or by dropping the first 9 observations from the sample, yielded even more different results.

TABLE 1

Dependent variable, Log (PI)

Explanatory va	riables	Equation (1)	Equation (2)	Equation (3)
Constant	barres e	3,10100	3.104000	3,27300
		(6,89)	(7.38)	(11.03)
HYV		0,01560	0.014700	0.01530
		(4.05)	(4.04)	(4.42)
WILLS		0,00023	0.000157	-
		(0.79)	(0.58)	_
D65		19900.6 -	-0.163400	-0.17070
		(f, () () = -	(-1.82)	(-1.96)
Z 08 00-		-0,00243	-0.002480	-0,00230
-2.06		(-3.97)	(-4.33)	(-4.89)
Distributed lag	weights			
0	100.2 %	0.02430	0.02480	0,0230
install assut		0.04374	0,04464	0.0414
2		0.05832	0.05952	0.0552
3		0.06804	0,06944	0.0644
4		0.07290	0.07440	0.0690
184G.0 5		0.07290	0.07440	0,0690
6		0.06804	0.06944	0.0644
7000.0		0,05832	0.05952	0.0552
8		0.04374	0.04464	0.0414
9		0.02430	0.02480	0,0230
Sum of weights		0.53460	0.54560	0.5060
Adjusted R ²		0.69600	0.73500	0.7460
D.W. Statistic		0.43400	0.86900	0.9000
Degrees of freed	lon	16	15	16
Value of marginal product		6.21000	6.34000	5.8800
Present value of VMP (@ 10%)		4.16000	4.24000	3.9300
Present value of VMP (@ 15%)		3,51000	3.58000	3.3200
MIRR (%)	000483	87,70000	90.00000	81.8000

Figures in parentheses are the t-statistics, Z = the weighted research and extension variable, MIRR = marginal internal rate of return,

TABLE 2

Dependent variable, Log (PI)

Explanatory variables	Equation (1)	Equation (2)	Equation (3)	
Constant	3.24400	3.23700	3,40900	
	(10.00)	(10.81)	(15.85)	
HYV	0,04600	0.04300	0.04400	
	(5.71)	(5.70)	(5.85)	
HYVSQ	-0.00180	-0.00170	-0.00170	
	(-4.01)	(-3.99)	(-4.03)	
w	0.00021	0,00016	a ver ac	
	(1.03)	(0.83)	_	
D65 0.4- 588500.0-	14500.0	-0.12250	-0.13010	
(224-)	-	(-1.90)	(-2.06)	
Z STATE OF THE STA	-0.00216	-0.00220	-0,00200	
08454.0	(-4.86)	(-5.40)	(-5.93)	
2 kg s				
Distributed lag weights	0.02160	0.02220	0.0200	
0	0.03888	0.03996	0.0360	
1 2	0.05184	0.05328	0.0480	
3	0.06048	0.06216	0.0560	
4	0.06480	0.06660	0.0600	
	0.06480	0.06660	0.0600	
a phone 5	0.06048	0.06216	0.0560	
7	0.05184	0.05328	0.0480	
one of Plostes the	0.03888	0.03996	0.0360	
arrable 9 pressed in monday	0.02160	0.02220	0.0200	
Sum of weights	0.47520	0.48400	0.4400	
Adjusted R ²	0,84400	0.86700	0.8700	
D.W. Statistic	0.77000	1.32000	1.4100	
Degrees of freedom	15	14	15	
Value of marginal product	5.52000	5.68000	5.1100	
Present value of VMP (@ 10%)	3.69000	3.80000	3.4200	
Present value of VMP (@ 15%)	3.12000	3.20000	2.8900	
MIRR (%)	75.60000	78.20000	68.7000	

Figures in parentheses are the t-statistics, Z = the weighted research and extension variable, HYVSQ = HYV squared,

the fertilizer variable, expressed in quadratic form (Table 3). It is not surprising to note that the MIRRs slip into negative values (although the estimates of the Z variable, and therefore the partial elasticities, are not significantly diffrent from zero). This verifies the belief that, in Nagy's analysis, the research and extension variable was capturing the effect of fertilizer on agricultural productivity and, therefore, the value of the marginal product and the internal rate of return were overstated.

Further, it appears as if the author is confused about the assumption of inverted 'U' shape of the partial production coefficients. Beginning with the assumption that "expenditures on research and extension will have a small impact on productivity increase in the current year of their expenditure but that the impact increases to a peak over time but then decays", the author expresses the partial production coefficients (α_i) as the second degree polynomial, i.e.,

$$\alpha_{i} = b_{0} + b_{1} i + b_{2} i^{2}$$

However, the two assumptions are not necessarily the same or, that the latter is a specific form of the former, because, as given in Nagy's [equation (2)], α_i are the partial elasticities, whereas it is obvious that the former assumption concerns the marginal products rather than the elasticities. An inverted U-shaped distribution of MP_i does not necessarily imply that α_i would have the same, or even similar distribution, or vice-versa.

In this regard, equations (2) and (3) were re-specified as follows:

Log (PI) =
$$\beta_0 + \beta_1 \text{ HYV} + \beta_2 \text{HYVSQ} + \beta_3 \text{ W} + \beta_4 \text{ D } 65 + b_2 \text{ Z1}$$
 (4)

$$Log (PI) = \beta_0 + \beta_1 HYV + \beta_2 HYVSQ + \beta_3 FERT \beta_4 FERTSQ + (5)$$

$$\beta_5 W + \beta_6 D65 + b_2 Z1$$

where:
$$Z1 = \sum_{i=0}^{k} (i^2 - ki - k - 1)$$
 (RE).

The estimated results of equations (4) and (5) are given in Tables 4 and 5 respectively. It may be noted that with the research and extension variable stated in linear terms, the pattern of analysis remains the same.

In conclusion, one may reiterate that Nagy's model suffers from specification problems and the impact of investment in research and extension on agricultural productivity is grossly overstated.

Applied Economics Research Centre University of Karachi

TABLE 3

Filingia tout out and Dependent variable, Log (PI)

Explanatory variables	Equation (1)	Equation (2)	Equation (3)
Constant	4.366000	4.395000	4.579000
	(20.37)	(18.01)	(18.08)
HYV	-0.022800	-0.024100	-0.026200
	(-1.87)	(-1.79)	(-1.74)
HYVSQ	0.001800	0.001900	0.001500
	(2.88)	(2.64)	(1.99)
FERT	0.002100	0.002200	0.002000
	(6.72)	(5.70)	(4.83)
FERTSQ	-0.000002	-0.000002	-0.000002
	(-3.66)	(-3.41)	(-2.60)
w	0.000210	0.000220	-
	(2.10)	(2.05)	-
D65	ann ou annit <u>e</u> n	0.011500	-0.003100
	romatul eriz k u e	(0.29)	(-0.07)
Zir taib accivile și îr arecelve.	-0.000068	-0.000010	0.000140
	(-0.20)	(-0.02)	(0.31)
Distributed lag weights			
0	0.000680	0.0000960	-0.001430
1	0.001224	0.0001728	-0.002574
2	0.001632	0.0002304	-0.003432
ALL STYLE ALLEANS SERVE	0.001904	0.0002688	-0.004004
4	0.002040	0.0002880	-0.004290
es 5 imposta a marqua.	0.002040	0.0002880	-0.004290
6	0.001904	0.0002688	-0.004004
7	0.001632	0.0002304	-0.003432
8	0.001224	0.0001728	-0.002574
9	0:000680	0.0000960	-0.001430
Sum of weights	0.014960	0.0211200	-0.031460
Adjusted R ²	0.966000	0.9630000	0.954000
D.W. Statistic	2.080000	1.9900000	2,480000
Degrees of freedom	rate is a 113 mate	qod (12mlm)	13
Value of marginal product	0.170000	0.0200000	-0.370000
Present value of VMP (@ 10%)	0.116000	0.0160000	- 0.240000
Present value of VMP (@ 15%)	0.098000	0.0140000	-0.210000
MIRR (%)	-27.650000	-45.7400000	-18,000000

Figures in parentheses are the t-statistics, Z = the weighted research and extension variable. HYVSQ = HYV squared, FERTSQ = FERT squared,

TABLE 4

(13) gard and accompany of the company of

Explanatory variables		Equation (1)	Equation (2)	Equation (3)
Constant	(40.84)	4.02700	4.04500	4.15000
		000550 (26.37)	(28.92)	(50.43)
(-1.53)		0.04010	0.04550	0.04500
HYV		0.04810	0.04550	0.04580
		(6.50)	(6.60)	(6.68)
HYVSQ		-0.00190	-0.00180	-0.00180
		(-4.71)	(4.79)	(-4.78)
w		0.00022	0.00016	
		500022	(0.93)	
		166.000	(0.75)	FERTSO
D65		_	-0.11800	-0.12600
		_	(-1.99)	(-2.16)
Z1		-0.00014	-0.00014	-0.00013
		(-5.43)	(-6.05)	(-6.57
		(-3.43)	(-0.03)	(-0.57)
Distributed lag w				
		700000 00.001415	0.0014430	0.0013260
1 (0)		(85.0-) 0.002547	0.0025974	0.0023868
2		0.003396	0.0034632	0.0031824
8 1000031		0.003962	0.0040404	0.0037128
380000 4		0.004245	0.0043290	0.0039780
21100.5		0.004245	0.0043290	0.0039780
4.5		0.003962	0.0040404	0.0037128
4-4-3 OCTO 7		0.003396	0.0034632	0.0031824
-800004s		0.002547	0.0025974	0.0023868
1.5 (000.9)		0.001415	0.0014430	0.0013260
Sum of weights		0.030800	0.0308000	0.0286000
Adjusted R ²		000000000000000000000000000000000000000	0.8870000	0.8880000
D.W. Statistic		0.870000	1.4800000	1.5600000
Degrees of freed	om	043100.0 15	14	15
Value of marginal product		7.840000	8.0000000	7.3500000
Present value of VMP (@ 10%)		5.240000	5.3500000	4.9200000
Present value of VMP (@ 15%)		4.430000		
MIRR (%)	(000015.0		4.5100000	4.7700000
mirk (70)	2012/09/09 1964	119.700000	123.1000000	109.5000000

Figures in parentheses are the t-statistics, Z1 = the weighted research and extension variable (linear).

TABLE 5 Dependent variable, Log (PI)

Explanatory variables		Equation (1)	Equation (2)	Equation (3)
Constant	Programmes	4.382000	4.3890000	4.5140000
1002.1.3		(46.57)	(43.04)	(48.90)
		-0.022000	-0.0230000	-0.0250000
HYV		(-1.68)	(-1.57)	(-1.53)
		010000	1111111	0.0015000
HYVSQ		0.001700	0.0018000	0.0015000 (1.72)
		(2.61)	(2.33)	0.00
FERT		0.002100	0.0021000	0.0020000
, , , , ,		(6.26)	(5.20)	(4.34)
		-0.000002	-0.0000020	-0.0000020
FERTSQ		(-3.55)	(-3.25)	(+2.44)
		(-3.33)	(-3.23)	1365
W		0.000220	0.0002200	100 to 100 to
		(2.15)	(2.08)	- 1 2 2 2 -
		113 3 T T T T T T T T T T T T T T T T T	0.0093000	-0.0068000
D65		_	(0.23)	(-0.15)
				Dunchagestrag
Z1.		-0,000007	-0.0000037	0,0000048
		(-0.29)	(-0.13)	(0.15)
Distributed lag	weights			
0		0,000070	0.0000370	-0.0000480
1		0.000126	0.0000666	-0.0000864 -0.0001152
2		0.000168	0.0000888	-0.0001132
3		0.000196	0.0001036	-0.0001440
4		0.000210	0.0001110	-0.0001440
5		0.000210 0.000196	0.0001110	-0.0001344
6		0.000198	0.0000888	-0.0001152
8		0.000108	0,0000666	-0.0000864
8		0.000070	0,0000370	-0.0000480
include :				STANDARD OF THE
Sum of weights	5	0.001540	0.0008140	-0.0010600
Adjusted R ²		0.966000	0.9630000	0.9540000
D.W. Statistic		2.060000	1.9900000	2.4600000
Degrees of free	dom	13	12	13
Value of marginal product		0.390000	0.2100000	-0.2700000
Present value of VMP (@ 10%)		0.260000	0.1400000	-0.1800000
Present value of VMP (@ 15%)		0.220000	0.1200000	-0.1500000
MIRR (%)		-17.120000	-25.6900000	-22.4000000

Figures in parentheses are the t-statistics, Z 1 = the weighted research and extension variable (linear). HYVSQ = HYV squared, FERTSQ = FERT squared.

APPENDIX

Equation (1), specifying the productivity model, includes the term π , which, as is written, seems meaningless. If it is to denote the product of the lagged values of RSt and EXt, then the equation should be as follows:

$$P = A \pi RS_{t-i}^{\alpha_{li}} EX_{t-i}^{\alpha_{2i}} HYV_{t}^{\alpha_{3}} ED_{t}^{\alpha_{4}} e^{\alpha_{5}W_{t}}$$

Similarly the subscript for the term RE in equations (2) and (A.7)4 in

Nagy, should be t-i and not t-1 as is printed.

It is claimed that the data for the dependent variable, PI (productivity index) has been obtained from Wizarat (1981). However, a comparison of PI series of the two studies reveals different figures for the year 1969-70, i.e., 133. 6 in this study as opposed to 144.6 in Wizarat's study. 5

Editor's note:

⁴ The original draft also used t-1 in (A.7).

⁵ In our exercise, however, we will use 133.6 so as to remain consistent with Nagy's data.