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Abstract: In this paper, the predator-prey problem is studied with the assumptions that interaction of a predation leads to a 

little or no effect on growth of the prey population by relaxing the classical assumptions and the prey growth rate parameter is 

a positive valued function of time. The prey population is assumed to follow Richard’s model. Then the respective predator 

growth model is constructed and studied by simulation. Further analysis shows that for this model, the predator population 

size either converges to a finite positive limit or to 0 or diverges to  +∞. It is shown algebraically and illustrated pictorially 

that there is a condition at which both the predator and prey population models converge to the same finite limit. Moreover, 

equilibrium points are identified and stability analysis is made and the details are included. 
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1. Introduction 

Mathematics and Biology have a strong relationship. 

Biology produces interesting problems, Mathematics 

provides models to understand those problems and Biology 

returns to test the Mathematical models. Several interesting 

problems are available in biology that can be modeled 

mathematically. Interesting features of the biological 

processes such as population growths and interaction can be 

revealed through mathematical modeling. This paper 

attempts to study some theoretical and mathematical aspects 

of the well-known predator-prey problem. In this paper, we 

apply growth functions to predator –prey population 

growths. We consider the prey population size follows 

known growth model Viz., Richards and construct the 

corresponding growth model for the predator [1-6].A 

generalized mathematical model for biological growth is 

studied in [7-9].  

The model generalizes the commonly known models such as 

Generalized Logistic, Particular Case of Logistic, Richards, 

Von Bertalanffy, Brody, Logistic, Gompertz, Generalized 

Weibull, Weibull, Monomolecular, Mitscherlich and many 

more new models and includes many more new models.  

The growth models are so flexible to be useful in 

modeling problems.  

In this paper, we apply some of these growth models to 

the predator-prey population dynamics. We consider that the 

growth of prey population size or density follows biological 

growth models and construct the corresponding growth 

models for the predator. The same authors [10] applied 

Logistic and Von Bertalanffy models to the prey model and 

derived the model equation to describe the population growth 

of the corresponding predator. 

In the next sections, the Lotka–Volterra predator-prey 

model and the newly proposed approach are presented in 

Section 2. The case of Richards prey model is considered in 

Section 4. The paper ends in Section 5 with concluding 

remarks. 

2. Prey-predator Models: Classical and 

Modified 

The mathematical models describing two – species 

interactions are, in general, first order nonlinear ordinary 
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differential equations. The well-known model named as 

Lotka – Volterra is given as   

                               
𝑑𝑉

𝑑𝑡
= 𝑎 𝑉 − 𝑏 𝑉𝑃                     (1a) 

                        
𝑑𝑃

𝑑𝑡
= −𝑐𝑃 + 𝑑 𝑉𝑃                   (1b) 

Here 𝑎, 𝑏, 𝑐 and  𝑑  are assumed to be positive 

constants. 

The model (1) assumes the following: (i) In absence of 

predator, prey population would grow at a natural rate, (ii) In 

absence of prey, predator population would decline or grow 

at a natural rate, (iii) When both the predator and prey are 

present, there occur, in combination with these natural rates 

of growth and decline, a decline in the prey population and a 

growth in the predator population each at a rate proportional 

to the frequency of encounters between individuals of the 

two populations. We often assume further that the frequency 

of such encounters is proportional to the product of the 

populations. 

Other assumptions available in the literature include [11-

13] and are as follows: (i) The prey population finds ample 

food at all times, (ii) The food supply of the predator 

population depends entirely on the size of the prey 

population, (iii) The rate of change of population is 

proportional to its size, (iv) During the process, the 

environment does not change in favor of one species and the 

genetic adaptation is sufficiently slow and (v) Predators have 

limitless appetite. 

It is suggested in literature [10, 11, and 14] that the 

assumption that the parameters a, b, c, d are constants will 

lead to oversimplification of the system and that be not 

realistic. Thus it is recommended in [14] that these 

parameters can be functions of time.  

Some studies indicate that predation may have no effect 

on prey coexistence [15-18]. According to the authors, 

predators have very little effect on the competitive 

interactions. 

This means the ecosystem is so that the prey and 

predator interactions can lead to various outcomes. The 

present paper considers the case when the interaction leads to 

a little or no effect predator population on growth of the prey 

population.  

In this paper we assume that presence of predator 

population has a little or no effect on growth of the prey 

population, that is   𝑏 ≈ 0. Further it is assumed that the 

parameter 𝑎 is positive valued function of time. Thus the 

classical assumptions are relaxed and the proposed predator-

prey model is defined as follows:   

𝑑𝑥

𝑑𝑡
= 𝑟(𝑡) 𝑥                     (2a) 

𝑑𝑦

𝑑𝑡
= −𝑣 𝑥 + 𝑠 𝑥𝑦    (2b) 

Here 𝑥 denotes population size or density of prey; 𝑦 

denotes population size or density of predator in the two-

species system. Here 𝑟(𝑡) is a relative growth rate function 

and is a positive valued function of its time 𝑡. The other 

parameters 𝑠, 𝑢, 𝑣 are all positive constants.  

The prey equation (2a) is a first order differential 

equation whose solutions are studied to be biological growth 

models in [8]. This helps us to select the prey growth model 

from the large family of growth functions and solve the 

corresponding predator equation. This procedure provides 

more options for researchers and practitioners those are 

working in field of population dynamics.  

The steps for the general approach include: (i) assume 

that there is prior information about the prey population that 

𝑥(𝑡) is a known growth function, (ii) Assume that the impact 

of predator on prey population growth is negligible, (iii) 

Predator population declines in absence of prey (iv) The 

predator population grows with a rate proportional to a 

function of both 𝑥 and  𝑦, i.e.,   �̇� = −𝑣 𝑦 +  𝑠 𝑥𝑦 (v) Solve 

for predator’s population size  𝑦.  

This proposed model is also considered by the same 

authors [10] and they assumed that the prey population 

𝑥(𝑡) follows Logistic and Von Bertalanffy growth functions 

and constructed corresponding growth functions to describe 

the predator population  𝑦(𝑡). 

The idea is to consider the prey population to follow a 

known growth model among the family of Koya-Goshu 

models, and then construct the corresponding growth model 

for the predator population. This is can be helpful, for 

example, for managing the ecosystem. Here we consider 

Gompertz and Richards growth models for prey population 

and solve for the respective predator population sizes.  

3. Richards prey and the corresponding 

predator 

 In this section, we assume that the growth of prey 

follow Richards biological growth function and construct the 

corresponding predator growth model. 

 Thus, the prey population growth is assumed to be 

described by Richards [19] (Richards 1959) as  
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𝑥(𝑡) = 𝐴 (1 − 𝐵 𝑒−𝑘𝑡)𝑚               (3) 

Here   𝐵 = 1 − (𝐴0 𝐴⁄ )1 𝑚⁄   ,  𝐴0 =  𝑥(0)  is the initial 

prey population, 𝐴 is asymptotic growth value of the prey 

population, and   𝑘 is absolute growth rate parameter. A 

single point of inflection occurs when the growth reaches the 

weight   𝑓(𝑎) = [(𝑚 − 1) 𝑚⁄ ]𝑚  𝐴   at time  𝑎 =
(1 𝑘⁄ ) log{𝑚[1 − (𝐴0 𝐴⁄ )1 𝑚⁄ ]}  . Its relative growth rate 

function is given by  𝑟𝑡 = 𝑚𝑘[     (𝐴 𝑥(𝑡)⁄ )1/𝑚 − 1]. Further 

analyses are available in [7, 8, and 9]. 

Now, by substituting (3) in (2b), we determine the 

corresponding predator population growth function  𝑦(𝑡) as 

       log 𝑦 = −𝑣𝑡 + 𝑠𝐴 ∫(1 − 𝐵 𝑒−𝑘𝑡)𝑚  𝑑𝑡        (4) 

The integral (4) can’t be evaluated analytically easily. 

However, here the solution is suggested to consider in three 

different ways Viz., (1) Taylor series method, and (2) Hyper-

geometric function solution. These solutions are mentioned 

and discussed below: 

3.1. Taylor series solution to the predator population 

Here we consider for simplicity and as a special case 

that the Richards  𝑚 as a positive integer. Other cases of 

 𝑚 (that is other than positive integer case) can be considered 

to evaluate the integral (4). Further, for 𝑚 any positive 

integer the integral in (4) can be evaluated using Taylor 

series expansion of the integrand and the predator function 

  𝑦(𝑡) can be expressed as 

𝑦(𝑡) = 𝑌0 𝑒
(𝐴𝑠−𝑣)𝑡  . 𝑒− (𝐴𝑠 𝑘⁄ )  ∑ 𝑃(𝑚)𝑚−1

𝑖=0                           
(5) 

Or equivalently   

  𝑦(𝑡) = 𝑌0 [
1−(𝐴0 𝐴⁄ )1 𝑚⁄

1−(𝑥 𝐴⁄ )1 𝑚⁄ ]
(𝐴𝑠−𝑣)𝑡

. 𝑒− (𝐴𝑠 𝑘⁄ )∑ 𝑃(𝑚)𝑚−1
𝑖=0      

(6)                      

Here in the equations (5), (6) and (7) and in the text 

what follows we denote 𝑃(𝑚) to represent the following 

expression: 

𝑃(𝑚) = (1 (𝑚 − 𝑖)⁄ )[(𝑥 𝐴⁄ )(𝑚−𝑖) 𝑚⁄ − (𝐴0 𝐴⁄ )(𝑚−𝑖) 𝑚⁄ ] 

Here  𝑌0 = 𝑦(0) is the initial predator population size. It 

is interesting to observe that both population growth 

functions of prey and predator are related as (7):      

𝑦 = 𝑦0 [
1−(𝑥 𝐴⁄ )1 𝑚⁄

1−(𝐴0 𝐴⁄ )1 𝑚⁄ ]
(𝑣−𝐴𝑠) 𝑘⁄

𝑒− (𝐴𝑠 𝑘⁄ )∑ 𝑃(𝑚)𝑚−1
𝑖=0           (7) 

Further, it is to be mentioned here that all the three 

equations (5), (6) and (7) represent the same, i.e., expression 

for the predator population growth function  𝑦(𝑡) , except 

that they are expressed differently as these versions of 

expression are useful to use directly in different occasions to 

draw some useful conclusions. Detailed derivations of the 

equations (5), (6) and (7) are given in Appendix. 

It is found that the predator model either declines and 

converges to   0  or converges to a finite positive limit or 

diverges to +∞ depending on the values set to the birth 

parameter 𝑠 and death parameter 𝑣 of the predator. The three 

cases are presented below: 

Case I  (𝑨𝒔 = 𝒗): In this case, the predator growth 

function given by (6) takes the form 

𝑦(𝑡) = 𝑌0. 𝑒
− (𝐴𝑠 𝑘⁄ )∑ 𝑃(𝑚)𝑚−1

𝑖=0                                         (8) 

The limit of the predator growth function given in (8), as 

time goes to infinity, is computed to be 

    lim𝑡→∞ 𝑦(𝑡)  =  𝑌0  . 𝑒
−( 

𝐴𝑠

𝑘
)∑ (

1

𝑚−𝑖
)𝑚−1

𝑖=0 {1−(
𝐴0
𝐴

)

𝑚−𝑖
𝑚

} 

 (9) 

It can be interpreted, considering the equations (3) and 

(9), that the predator population decays with an exponential 

rate of (𝐴𝑠 𝑘⁄ ) and converges to a lower asymptote of 

   𝑦0    𝑒
− 

𝐴𝑠

𝑘
∑ (

1

𝑚−𝑖
)𝑚−1

𝑖=0 {1−(
𝐴0
𝐴

)

𝑚−𝑖
𝑚

} 

   while the prey population 

grows following Richards model and reaches the upper 

asymptote  𝐴. The situation at which the prey population 

upper asymptote and the predator population lower 

asymptote coincide at 𝐴 and continue to maintain the same 

population sizes is found to be: 

𝑠 = (𝑘 𝐴⁄ ) 
log 𝑦0−log𝐴

∑ (1 (𝑚−𝑖)⁄ )[1−(𝐴0 𝐴⁄ )(𝑚−𝑖) 𝑚⁄ ]𝑚−1
𝑖=0

      (10) 

The equation (10) is arrived at by equating the 

population sizes of both the prey (3) and Predator (8). Also 

Figure 1(a) illustrates the occasion where both the 

populations converge to a same asymptote. When initial size 

of the predator is smaller than A, then there is an increment 

of its growth to converge to the same size of prey. See Figure 

4(c) – 4(d).   
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Case II (𝑨𝒔 < 𝒗):  In this case, the predator population 

decays and eventually dies down to 0 ,while the prey 

population follows Richards, as assumed, and reaches an 

upper asymptote  𝐴 (see Figure 1b ). 

Case III (𝑨𝒔 > 𝒗): In this case, the predator population 

grows higher and higher and eventually diverges to +∞ , 
while the prey population grows according to the Richards 

curve with an upper asymptote of 𝐴 (see Figure 1c) ).The 

predator population growth has minimum value at time point 

𝑡𝑚𝑖𝑛 that is a function of the parameters.  It is given by 

𝑡𝑚𝑖𝑛 = (
1

𝑘
) {𝑙𝑜𝑔 (

1− (
𝐴0
𝐴

)
1/𝑚

1− (
𝜈

𝐴𝑠
)
1/3 )}                        (11)     

Then the values of prey and predator populations are 

respectively 

 𝑥(𝑡𝑚𝑖𝑛) = 𝑣/𝑠                                                       (12) 

and   

𝑦(𝑡𝑚𝑖𝑛) =

𝑦0   [
1−(

𝐴0
𝐴

)

1
𝑚

1−(
𝑣

𝐴 𝑠
)

1
𝑚

]

𝐴 𝑠−𝑣

𝑘

𝑒

−  
𝐴 𝑠

𝑘
 ∑ (

1

𝑚−𝑖
)[

𝑣
𝑚−𝑖
𝑚  

−(𝐴0 𝑠) 
𝑚−𝑖
𝑚

(𝐴 𝑠) 
𝑚−𝑖
𝑚

]𝑚−1
𝑖=0

     (13) 

Note that Brody and Von Bertalanffy functions are 

special case of Richards with 𝑚 = 1 & 3 [20-21]. 

3.2. Hypergeometric function solution to the predator 

population  

For any real number 𝑚 , the predator population 

function   𝑦(𝑡)  in equation (4) can be expressed in terms of 

hypergeometric function as follows: 

𝑦(𝑡) =  𝑒−𝑣𝑡+𝐶𝑒

−𝐴𝑠

[
 
 
  (1−𝐵 𝑒−𝑘𝑡)

𝑚
2𝐹1(−𝑚,−𝑚;1−𝑚; 

𝑒𝑘𝑡

𝐵 )

𝑘 𝑚 (1−(𝑒𝑘𝑡 𝐵⁄ ))
𝑚

]
 
 
 

     
(14) 

 

Here 2F1 is a Hypergeometric function and is defined as 

follows [22]: Here it is appropriate to introduce briefly the 

definition and description of the hypergeometric function. A 

hypergeometric function is the sum of a hypergeometric 

series, which is defined as follows: 

Definition-1 A series  ∑ 𝑐𝑛 is called hypergeometric if 

the ratio   
𝑐𝑛+1

𝑐𝑛
  is a rational function of  𝑛  . By factorization 

this means that, for all  𝑛 = 0, 1, 2, … ..      

𝑐𝑛+1

𝑐𝑛
 =  

(𝑛+𝑎1) (𝑛+𝑎2)… (𝑛+𝑎𝑝) 𝑧

(𝑛+𝑏1) (𝑛+𝑏2)… (𝑛+𝑏𝑝) (𝑛+1)
                            (15) 

Definition-2 The hypergeometric function 

  pFq (a1, a2, … , ap;  b1, b2, … , bq ; z) is defined by means of 

a hypergeometric series as   

  pFq (
a1, a2, … , ap

b1, b2, … , bq
 ; z) = ∑

(a1)n (a2)n…  (ap)
n

(b1)n (b2)n…  (bq)
n

.
zn

n!

∞
n=0  

(16) 

Sometimes the most general hypergeometric function 

  pFq   is called a generalized hypergeometric function. Then 

the words “hypergeometric function” refer to the special case 

2F1(𝑎, 𝑏; 𝑐; 𝑧) =2F1(
𝑎, 𝑏
𝑐

; 𝑧) = ∑
(𝑎)𝑛 (𝑏)𝑛 

(𝑐)𝑛

𝑧𝑛

𝑛!
 ∞

𝑛=0            

(17) 

Note that if   𝑎 =  −𝑁  with  𝑁 ∈ {0, 1, 2, … } , then we 

have  

(𝑎)𝑛 = (−𝑁)𝑛 = (−𝑁) (–𝑁 + 1) (–𝑁 + 2) … (−𝑁 +

𝑛 − 1) = 0                                                         (18) 

Here  𝑛 =  𝑁 + 1, 𝑁 + 2, 𝑁 + 3,…  . Hence, for all 

𝑁 ∈ {0, 1, 2, … . } we will have 

2F1(
−𝑁, 𝑏

𝑐
 ; 𝑧) = ∑

(−𝑁)𝑛 (𝑏)𝑛

(𝑐)𝑛

∞
𝑛=0  .

𝑧𝑛

𝑛!
                 (19) 

Otherwise, the series (19) converges for  |𝑧| < 1 and 

also converges for  |𝑧| > 1  whenever  𝑅𝑒 (𝑐 − 𝑎 − 𝑏) > 0 .  

4. Simulation Study 

The simulation study is designed in by varying the 

model parameters: 𝐴0 , 𝐴, 𝑘 for prey and 𝑦0, 𝑠, 𝑣 for 

predator population; and the Richards model with three 

cases.  
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Model:  Richards 

Prey’s parameters: 𝐴 = 100 ,𝐴0 = 20 , 𝑘 = 0.1 𝑜𝑟 0.01 

Predator’s parameters: 𝑦0 = 1.5𝐴 𝑜𝑟 0.5𝐴 𝑜𝑟 0.5𝐴0  

Cases Case I: (𝐴 𝑠 = 𝑣) Case II:  (𝐴 𝑠 < 𝑣) Case III: 

(𝐴 𝑠 > 𝑣)  

Case I:  𝑠 = 0.00005  & 𝑣 = 0.005; 𝑠 = 0.0001  & 

𝑣 = 0.01 ; 𝑠 =  0.01 & 𝑣 =   1.0; 𝑠 =  10𝐸 − 10 & 

𝑣 =  10𝐸 − 8  

Case II:  𝑠 = 0.001 & 𝑣 = 0.105; 𝑠 = 0.001 & 𝑣 = 0.130; 

𝑠 = 0.001 & 𝑣 = 0.140;   𝑠 = 0.001 & 𝑣 = 0.160 

Case III:  𝑠 = 0.001 & 𝑣 = 0.08; 𝑠 = 0.001 & 𝑣 = 0.07; 𝑠 = 

0.001 & 𝑣 = 0.06;   𝑠 = 0.001 & 𝑣 = 0.04 

The specifications are as follows: k_seq   = 0.01, 0.04, 0.07, 

and 0.1.  

 

Figure (1a) Plots of predator population dynamics with prey 

population growth following Richards’s model representing 

the Case I. 

 

Figure (1b) Plots of predator population dynamics with prey 

population growth following Richards’s model representing 

the Case II. 

 

Figure (1c) Plots of predator population dynamics with prey 

population growth following Richards’s model representing 

the Case III. 

In Case III, see Figure 1c), the death/birth of predator is 

less than A.  As shown by simulations plotted in Figure 1 

&2, the predator population declines for some time and then 

increases to infinity. The minimal point at which the curve 

turns or gets minimum value is found to be: 𝑡𝑚𝑖𝑛 =

1

𝑘
𝑙𝑜𝑔 (

𝐴

𝐴0
−1

𝐴 𝑠

𝑣
−1

). Then the values of prey and predator 

populations are 𝑥(𝑡𝑚𝑖𝑛) = 𝑣/𝑠 and    𝑦(𝑡𝑚𝑖𝑛) =

𝑦0   (
𝐴−𝐴0

𝐴𝑠−𝑣
)

𝐴𝑠−𝑣

𝑘
(

𝐴0

𝑣
)

𝑣

𝑘 (𝑠)
𝐴 𝑠

𝑘 , respectively. 
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Figure (2a) Plots of all three cases for the predator 

population dynamics with prey population growth following 

Richards model where  𝑘 = 0.1, 𝑌0 =  1.5𝐴  

 

 

Figure (2b) Plots of all three cases for the predator 

population dynamics with prey population growth following 

Richards model with 𝑘 = 0.01, 𝑌0 =  1.5𝐴  

 

Figure (2c) Plots of all three cases for the predator 

population dynamics with prey population growth following 

Richards model with 𝑘 = 0.01, 𝑌0 =  1.5𝐴  

 

 

Figure (2d) Plots of all three cases for the predator 

population dynamics with prey population growth following 

Richards model with  𝑘 = 0.1, 𝑌0 =  0.5𝐴  
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Figure (2e) Plots of all three cases for the predator 

population dynamics with prey population growth following 

Richards model with 𝑘 = 0.1, 𝑌0  =  0.5𝐴0 

 

P 

 

Figure (2f) Plots of all three cases for the predator 

population dynamics with prey population growth following 

Richards model with 𝑘 = 0.1, 𝑌0  =  0.5𝐴0 

In summary, it is observed that the predator population either 

converges to a finite limit or converges to 0 or diverges to 

 +∞  depending on the selection of the parameters. We show 

by simulation study that for a particular value of the birth 

parameter 𝑠, the population sizes of both the prey and 

predator will converge to the same asymptote. 

5. Analysis of phase diagram and Equilibrium 

points  

 The newly proposed predator – prey model (2) in its 

full form can be expressed, in case of Richards prey, as the 

system of equations (𝑑𝑥 𝑑𝑡⁄ )  = 𝑚𝑘[ (𝐴 𝑥⁄ )1 𝑚⁄ − 1]𝑥 

and   (𝑑𝑦 𝑑𝑡⁄ ) = −𝑣𝑦 + 𝑠𝑥𝑦 . The two equilibrium points of 

this system are found to be   (𝑥1
∗, 𝑦1

∗) = (0,0) and  (𝑥2
∗, 𝑦2

∗) =
(𝐴, 0) since at both these points the necessary and sufficient 

conditions  
𝑑𝑥

𝑑𝑡
= 0  and  

𝑑𝑦

   𝑑𝑡
= 0  are satisfied. Also the 

Jacobian matrix of the system of equations is  𝐽(𝑥, 𝑦) =

[
𝑎11 0
𝑠𝑦 −𝑣 + 𝑠𝑥

] 

where  𝑎11 =  𝑚𝑘[(1 − (1 𝑚⁄ )) (𝐴 𝑥⁄ )1 𝑚⁄  ]. We now 

analyze the nature of the equilibrium points below and the 

summery is tabulated in Table 1: 

 

 Nature of the equilibrium point (𝒙𝟏
∗ , 𝒚𝟏

∗) =
(𝟎, 𝟎) : The Jacobean matrix at this point takes the 

form  𝐽(𝑥1
∗, 𝑦1

∗) = 𝐽(0,0) = [
𝑏11 0
0 −𝑣

]  where 𝑏11 =

𝑚𝑘[(1 − (1 𝑚⁄ )) (𝐴 𝐴0⁄ )1 𝑚⁄ − 1 ]  and the corresponding 

eigenvalues are  𝜆11
∗ = 𝑏11  and  𝜆12

∗ = −𝑣  . Recall that the 

parameters  𝑘, 𝐴, 𝐴0 and  𝑣  are all positive quantities and 

thus here arises two cases.  

Case I.  𝒎 < 0 𝒂𝒏𝒅 (𝟏 − (𝟏 𝒎⁄ ))
𝒎

< (𝑨 𝑨𝟎⁄ )  : 

In this case, both the eigenvalues  𝜆11
∗  and   𝜆12

∗  are real and 

negative and hence the equilibrium point is stable.  

Case II.  𝒎 > 𝟎 𝒂𝒏𝒅 (𝟏 − (𝟏 𝒎⁄ ))
𝒎

< (𝑨 𝑨𝟎⁄ ) ∶ 

In this case, both the eigenvalue  𝜆11
∗  and   𝜆12

∗  are real but 

opposite in sign and hence the equilibrium point is unstable.  

 

Nature of the equilibrium point (𝒙𝟐
∗ , 𝒚𝟐

∗) =
(𝑨, 𝟎) : The Jacobean matrix at this point takes the 

form  𝐽(𝑥2
∗, 𝑦2

∗) = 𝐽(𝐴, 0) = (
−𝑘 0
0 −𝑣 + 𝑠𝐴

) and the 

corresponding eigenvalues are  𝜆21
∗ = 𝑚𝑘 − 𝑚 −

𝑘   and  𝜆22
∗ = −𝑣 + 𝑠𝐴  . Recall that the parameters 

 𝑘, 𝑣, 𝑠  and 𝐴 are all positive quantities and thus here arises 

nine cases. 

Case I.  𝒌 = (𝒎 (𝒎 − 𝟏)⁄ )  and  (𝐀𝐬 = 𝐯) : In this 

case both the eigenvalues  𝜆21
∗   and   𝜆22

∗   are zero and hence 

the equilibrium point (𝑥2
∗, 𝑦2

∗) = (𝐴, 0) is stable.  

Case II.  𝒌 = (𝒎 (𝒎 − 𝟏)⁄ )  and  (𝐀𝐬 < 𝑣) : In 

this case the eigenvalue  𝜆21
∗   is zero while   𝜆22

∗   is negative 

and hence the equilibrium point (𝑥2
∗, 𝑦2

∗) = (𝐴, 0) is stable. 

Here we note that, 𝑋(𝑡) = 𝑐1 𝑉1(𝑡) 𝑒
0𝑡 + 𝑐2 𝑉2(𝑡) 𝑒

𝜆22
∗  𝑡 

where 𝑉1(𝑡) and 𝑉2(𝑡)  are eigenvectors corresponding to the 

eigenvalues 𝜆21
∗ = 0 and 𝜆22

∗ = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 . Since 

𝜆22
∗  is a negative   𝑋(𝑡) → 𝑐1 𝑉1(𝑡) 𝑒

0𝑡   as  𝑡 →  ∞. 

Case III.  𝒌 = (𝒎 (𝒎 − 𝟏)⁄ )  and  (𝐀𝐬 > 𝑣) : In 

this case the eigenvalue  𝜆21
∗   is zero while   𝜆22

∗   is positive 

and hence the equilibrium point (𝑥2
∗, 𝑦2

∗) = (𝐴, 0) is unstable.  

Case IV.  𝒌 < (𝒎 (𝒎 − 𝟏)⁄ ) 𝒂𝒏𝒅  (𝐀𝐬 = 𝐯) : In 

this case the eigenvalue  𝜆21
∗   is negative while   𝜆22

∗   is zero 

and hence the equilibrium point (𝑥2
∗, 𝑦2

∗) = (𝐴, 0) is stable.  

Case V.  𝒌 < (𝒎 (𝒎 − 𝟏)⁄ ) 𝒂𝒏𝒅  (𝐀𝐬 < 𝑣) : In 

this case both the eigenvalues  𝜆21
∗   and  𝜆22

∗   are negative and 

hence the equilibrium point (𝑥2
∗, 𝑦2

∗) = (𝐴, 0) is stable.  

Case VI.  𝒌 < (𝒎 (𝒎 − 𝟏)⁄ ) 𝒂𝒏𝒅  (𝐀𝐬 > 𝑣) : In 

this case the eigenvalue  𝜆21
∗   is negative while   𝜆22

∗   is 

0 50 100 150

0
5

0
1

0
0

1
5

0

Time

G
ro

w
th

0 50 100 150

0
5

0
1

0
0

1
5

0

Time

G
ro

w
th



European Journal of Academic Essays 1(9): 42-51, 2014 

49 
 

positive and hence the equilibrium point (𝑥2
∗, 𝑦2

∗) = (𝐴, 0) is 

unstable.  

Case VII.  𝒌 > (𝒎 (𝒎 − 𝟏)⁄ ) 𝒂𝒏𝒅  (𝐀𝐬 = 𝐯) : In 

this case the eigenvalue  𝜆21
∗   is positive while   𝜆22

∗   is zero 

and hence the equilibrium point (𝑥2
∗, 𝑦2

∗) = (𝐴, 0) is unstable.  

Case VIII.  𝒌 > (𝒎 (𝒎 − 𝟏)⁄ ) 𝒂𝒏𝒅  (𝐀𝐬 < 𝑣) : In 

this the eigenvalue  𝜆21
∗   is positive while   𝜆22

∗   is negative 

and hence the equilibrium point (𝑥2
∗, 𝑦2

∗) = (𝐴, 0) is unstable.  

Case IX.  𝒌 > (𝒎 (𝒎 − 𝟏)⁄ ) 𝒂𝒏𝒅  (𝐀𝐬 > 𝑣) : In 

this case both the eigenvalues  𝜆21
∗   and   𝜆22

∗   are positive and 

hence the equilibrium point (𝑥2
∗, 𝑦2

∗) = (𝐴, 0) is unstable. 

 

 

 

Table 1. Summary of Stability of the equilibrium points – the case of Richards prey 

Equilibrium 

Point 
Eigenvalues Cases 

Sign of the 

eigenvalues 

Nature of 

the point 

 

(𝑥1
∗, 𝑦1

∗) 

= (0,0) 

 

 𝜆11
∗ = 

𝑘[(𝑚 − 1)(𝐴 𝐴0⁄ )1 𝑚⁄ − 𝑚] 
 

  𝜆12
∗ = −𝑣 

Case I. 

𝑚 < 0  and 

(1 − (1 𝑚⁄ ))
𝑚

< (𝐴 𝐴0⁄ ) 

Both 𝜆11
∗  and 

  𝜆12
∗  are real 

and negative in 

sign 

 

Stable 

Case II. 

𝑚 > 0  and 

(1 − (1 𝑚⁄ ))
𝑚

< (𝐴 𝐴0⁄ ) 

 𝜆11
∗  and   𝜆12

∗  

are real but 

opposite in sign 

 

Unstable 

 

(𝑥2
∗, 𝑦2

∗)
= (𝐴, 0) 

 𝜆21
∗ = 𝑚𝑘 − 𝑚 − 𝑘    

 

  𝜆22
∗ = −𝑣 + 𝑠𝐴   

Case I. 

𝑘 = (𝑚 (𝑚 − 1)⁄ )  
and  (As = v) 

Both  𝜆21
∗  and 

  𝜆22
∗  are zero 

Stable 

Case II. 

𝑘 = (𝑚 (𝑚 − 1)⁄ )  
and  (As < v) 

 𝜆21
∗ is zero 

while   𝜆22
∗  is 

negative 

Stable 

Case III. 

𝑘 = (𝑚 (𝑚 − 1)⁄ )  
and  (As > v) 

 𝜆21
∗ is zero 

while   𝜆22
∗  is 

positive 

Unstable 

Case IV. 

𝑘 < (𝑚 (𝑚 − 1)⁄ )  
and  (As = v) 

 𝜆21
∗  is negative 

while   𝜆22
∗  is 

zero 

Stable 

Case V. 

𝑘 < (𝑚 (𝑚 − 1)⁄ )  
and  (As < v) 

Both 𝜆21
∗  

and  𝜆22
∗  are 

negative 

Stable 

Case VI. 

𝑘 < (𝑚 (𝑚 − 1)⁄ )  
and  (As > v) 

 𝜆21
∗  is negative 

while  𝜆22
∗  is 

positive 

Unstable 

Case VII. 

𝑘 > (𝑚 (𝑚 − 1)⁄ )  
and  (As = v) 

 𝜆21
∗  is positive 

and   𝜆22
∗  is zero 

Unstable 

Case VIII. 

𝑘 > (𝑚 (𝑚 − 1)⁄ )  
and  (As < v) 

 𝜆21
∗  is positive 

and   𝜆22
∗  is 

negative 

Unstable 

Case IX. 

𝑘 > (𝑚 (𝑚 − 1)⁄ )  
and  (As > v) 

Both 𝜆21
∗  

and  𝜆22
∗  are 

positive 

Unstable 

 

 

6. Conclusions 

In this paper, we studied the some theoretical 

mathematical aspects of the known predator-prey problem 

by relaxing the classical assumptions as:  the interaction of 

the predator-prey populations leads to a little or no effect 

on growth of the prey population and that the prey growth 

rate parameter is a positive valued function of time. We 

have constructed predator growth models considering that 

the prey follows biological growth model viz., Richards’s 

model. It is observed that the predator population either 

converges to a finite limit or  0  or diverges to  +∞ 

irrespective of the fact that the prey population 

continuously g 

rows and eventually converges to upper asymptote. There 

is a situation at which both prey and predator populations 

converge to the same amount, irrespective of their initial 

population sizes. There is also a situation where the 

predator population declines for some time and then start 
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to increase and diverge to infinity. In general, the analytic 

and simulation studies have revealed some insights to the 

problem addressed in this paper so that it can be applied to 

the real-world situations. The authors are working on 

applying other Biological models to be followed by prey 

population and trying to construct the corresponding 

growth models of predator populations and the results will 

be published soon.  
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Appendix 

Derivation of predator model given that prey follows 

Richards growth model 

Consider the predator equation 

𝑑𝑦

𝑑𝑡
= −𝑣𝑦 + 𝑠 𝑥𝑦     

 ⇒
𝑑𝑦

𝑦
= [−𝑣 + 𝑠 𝑥]𝑑𝑡      

 ⇒ log 𝑦 = −𝑣𝑡 + 𝑠 ∫𝑥 𝑑𝑡                    (i) 

 

We now substitute the Richards function for the prey 

growth. That is,  𝑥(𝑡) = 𝐴 (1 − 𝐵 𝑒−𝑘𝑡)𝑚 and   𝐵 = 1 −

(𝐴0 𝐴⁄ )1 𝑚⁄ . Thus, (i) take the form   

log 𝑦 = −𝑣𝑡 + 𝐴𝑠 ∫(1 − 𝐵 𝑒−𝑘𝑡)𝑚 𝑑𝑡              (ii) 

 

Now, put   𝑤 = 1 − 𝐵 𝑒−𝑘𝑡     ⇒    𝑑𝑤 = 𝐵𝑘 𝑒−𝑘𝑡 =

𝑘(1 − 𝑤)𝑑𝑡 ⇒  − 
𝑑𝑤

𝑘(𝑤−1)
= 𝑑𝑡 in (ii), to get 

log 𝑦 = −𝑣𝑡 −
𝐴𝑠

𝑘
∫

𝑤𝑚

𝑤−1
𝑑𝑡                              (iii) 

For 𝑚 positive integer and applying long division, the 

expansion for   [𝑤𝑚 (𝑤 − 1)⁄ ]  reduces to 

  [𝑤𝑚 (𝑤 − 1)⁄ ] =  [ ∑ 𝑤𝑖𝑚−1
𝑖=0    +

1

𝑤−1
] .  

Hence, (iii) reduces to 

http://dx.doi.org/10.4236/ojmsi.2014.24013
http://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equation
http://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equation
http://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html
http://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html
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𝑙𝑜𝑔 𝑦 = −𝑣𝑡 −
𝐴𝑠

𝑘
∫ [∑ 𝑤𝑖

𝑚−1

𝑖=0

+
1

𝑤 − 1
] 𝑑𝑡 

          = −𝑣𝑡 −
𝐴𝑠

𝑘
[∑

𝑤𝑖

𝑖

𝑚
𝑖=1  + log(𝑤 − 1)] + 𝐶       (iv) 

Now, put in (iv) the initial condition 𝑦 = 𝑌0 , 𝑤 = 1 −

𝐵 = (𝐴0 𝐴⁄ )1 𝑚⁄  at 𝑡 = 0 to fix the integral constant  𝐶. 

Thus, 𝑙𝑜𝑔 𝑦0 = −(𝐴𝑠 𝑘⁄ ) [∑ (1 𝑖⁄ ) (𝐴0 𝐴⁄ )𝑖 𝑚⁄𝑚
𝑖=1 +

log((𝐴0 𝐴⁄ )1 𝑚⁄ − 1)]+C     Now, (vi) takes the form, 

 

𝑙𝑜𝑔(𝑦 𝑦0⁄ ) = −𝑣𝑡 − 𝐼1 − 𝐼2           (v) 

Where 𝐼1 = (𝐴𝑠 𝑘⁄ )∑ [(𝑤𝑖 − (𝐴0 𝐴⁄ )𝑖 𝑚⁄ ) 𝑖⁄ ]𝑚
𝑖=1  and 

𝐼2 = (𝐴𝑠 𝑘⁄ ) log[(𝑤 − 1) ((𝐴0 𝐴⁄ )1 𝑚⁄ − 1)⁄ ]. But recall 

the simplifications that 

log[(𝑤 − 1) ((𝐴0 𝐴⁄ )1 𝑚⁄ − 1)⁄ ] = −𝑘𝑡 and also  𝑤 =

(𝑥 𝐴⁄ )1 𝑚⁄ .  Thus, (v) takes the form  

𝑙𝑜𝑔(𝑦 𝑦0⁄ ) = −𝑣𝑡 − 𝐼1 + 𝑠𝐴𝑡 

 

𝑦 = 𝑦0  𝑒
(𝑠𝐴−𝑣)𝑡    𝑒−𝐼1    (vi) 

But, 𝑥 = 𝐴 (1 − 𝐵 𝑒−𝑘𝑡)𝑚  

⇒ 𝑒−𝑘𝑡 = [ (1 − (𝑥 𝐴⁄ )1 𝑚⁄ ) 𝐵⁄ ] 

= [ (1 − (𝑥 𝐴⁄ )1 𝑚⁄ ) (1 − (𝐴0 𝐴⁄ )1 𝑚⁄ )⁄ ] 

⇒ 𝑒−(𝑣−𝑠𝐴)𝑡 = 

[ (1 − (𝑥 𝐴⁄ )1 𝑚⁄ ) (1 − (𝐴0 𝐴⁄ )1 𝑚⁄ )⁄ ]
(𝑣−𝐴𝑠) 𝑘⁄

 

Thus, (vi) takes the required form as 

𝑦 = 𝑦0

[
 
 
 
 1 − (

𝑥
𝐴
)

1
𝑚

1 − (
𝐴0

𝐴
)

1
𝑚

]
 
 
 
 

𝑣−𝐴𝑠
𝑘

. 

𝑒

−
𝐴𝑠

𝑘

[
 
 
 
 

(
(
𝑥
𝐴)−(

𝐴0
𝐴 )

𝑚
)+

(

 
 (

𝑥
𝐴)

𝑚−1
𝑚 −(

𝐴0
𝐴 )

𝑚−1
𝑚

𝑚−1

)

 
 

+ …+

(

 (
𝑥

𝐴
)

1
𝑚−(

𝐴0
𝐴

)

1
𝑚

)

 

]
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