
Received: July 25, 2018 300

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

Software Development Effort Estimation Using Random Forests: An Empirical

Study and Evaluation

Abdelali Zakrani 1* Mustapha Hain 1 Abdelwahed Namir 2

1ENSAM, Hassan II University, Casablanca, Morocco

2Faculte des Sciences Ben M’sik, Casablanca, Morocco
* Corresponding author’s Email: abdelali.zakrani@univh2c.ma

Abstract: There is evidence that Software Development Effort Estimation (SDEE) plays a crucial role in managing

the software project and controlling its whole lifecycle; an accurate effort estimate allows an effective monitoring and

efficient scheduling of tasks and resources. Although extensive research has been carried out on SDEE techniques, no

single technique has been shown to be superior to other in all situation. Recently, there has been an increasing amount

of literature on predicting software effort using Machine Learning (ML) methods. Among these ML techniques,

regression tree-based models have gained a considerable attention due to their generalization ability and

understandability. So far, very few studies have investigated the potential of Random Forests (RF) in software effort

estimation. In this paper, a RF model is designed and adjusted empirically by varying the values of its key parameters.

Prior to the parameters adjustment, we analysed their impact on RF model accuracy which allows an efficient tuning

of the model during the training stage. The performance of the RF is then evaluated and compared with that of classical

Regression Trees (RT). The evaluation was performed through the 30% hold-out validation method using five datasets:

ISBSG R8, Tukutuku, COCOMO, Desharnais and Albrecht. To identify the most accurate technique, we employed

three widely known accuracy measures: Pred(0.25), MMRE and MdMRE. The results obtained show that the adjusted

random forest outperforms the regression trees model on all evaluation criteria. Moreover, the proposed model

performs better than some recent techniques reported in the literature for software effort estimation.

Keywords: Software development effort estimation, Random forest, Regression trees, Accuracy evaluation.

1. Introduction

The issue of software development effort

estimation has received considerable critical attention

so that numerous estimation methods have been

proposed by the researchers in order to help software

project managers to make informed and rational

decisions about the project under development [1]. In

fact, an accurate and reliable estimate can play a vital

role for the project managers insofar it allows them to

plan, monitor and staff more effectively and

efficiently the software project and hence they will be

able to carry out projects on time and within budget.

Whereas, managing the software project without

accurate estimate makes their mission more

challenging and stressful. As a result, the software

project may run several risks such as: delayed

deliveries, financial losses, poor quality of the

deliverables, dissatisfied customers, and frustrated

developers [2].

In order to provide a basis for the improvement of

software estimation research. Jorgensen and

Shepperd conducted a comprehensive and systematic

literature review (SLR) in which they identified up to

11 estimation approaches proposed in 304 selected

journal papers [3]. These approaches are based on

different techniques varying from expert judgment [4,

5] and statistical analysis of historical project data [6-

9] to artificial intelligence tools [10-13].

Recently, there has been growing interest in using

machine learning (ML) techniques to model the

complex relationship between effort and software

attributes, especially when this relationship is not

linear and doesn’t seem to have any predetermined

form. Within this context, Wen et al. carried out an

Received: July 25, 2018 301

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

extensive literature search for relevant studies

published in the period 1991–2010 and selected 84

primary empirical studies [14]. They found that eight

types of ML techniques have been employed in

SDEE: Case-Based Reasoning (CBR), Artificial

Neural Networks (ANN), Decision Trees (DT),

Bayesian Networks (BN), Support Vector Regression

(SVR), Genetic Algorithms (GA), Genetic

Programming (GP), and Association Rules (AR).

Among them, CBR, ANN, and DT are most

frequently used. Their review also showed that the

overall estimation accuracy of most ML models is

close to the acceptable level in terms of MMRE and

Pred(0.25) and better than that of non-ML models.

Nevertheless, each ML technique has its own strength

and weakness and the performance of any model

depends mainly on the characteristics of the dataset

used to construct the model (dataset size, outliers,

categorical features and missing values).

MacDonell and Shepperd [15] claimed that

combining two or more ML techniques can improve

estimation accuracy if no dominant technique can be

found. This point of view was approved later by the

review done in [16] where it has been revealed that

combined model usually generates better estimate

than individual model does. These findings were also

confirmed by Idri et al in their recent review of

ensemble effort estimation in which they analysed 25

studies [17]. However, it has been noted that the

number of comparative studies is still insufficient and

recommend that researchers should conduct more

experiments on ensemble effort estimation

techniques and should develop a uniform

experimental design [17].

With respect to model combination, regression

trees are revealed to be the most used technique to

build an ensemble effort estimation model [17].

Actually, regression trees have become very popular,

thanks to their ease of use and interpretability [18] as

well as their ability to deal with both numerical and

categorical variables. However, traditional decision

trees techniques also have their drawbacks. For

instance, they are prone to overfitting on small

training dataset and suboptimal performance.

Fortunately, many of these disadvantages have been

dealt with by some researchers who optimized the DT

technique [19-21].

In response to the limitations of conventional

decision tree, the current work presents a further

investigation of random forest in SDEE. To the best

of our knowledge, only a few implementations of

random forests in a software effort estimation have

been published [22]. This empirical study contributes

to the existing literature not only by investigating the

effectiveness of the random forests approach in

predicting software effort but also by illustrating the

impact of the parameters of RF model on the

accuracy of the estimates and comparing the

performance of the proposed model with traditional

regression trees using 30% hold-out method (70%

training, 30% testing). The empirical study uses

historical projects from five datasets namely ISBSG,

Tukutuku, COCOMO, Desharnais and Albrecht.

The present paper starts with a review of the

related work on the regression tree-based software

effort estimation models. It is followed in Section 3

by a description of historical projects datasets and

evaluation criteria employed to evaluate the accuracy

of the proposed models. In Section 4, we present the

experimental design including the validation method

used. Section 5 presents and discusses the results.

Finally, the conclusions and future work are

presented in Section 6.

2. Related work

Since its introduction, decision trees have been

enjoying increased popularity. The number of

applications in the fields of empirical software

engineering is growing. In software effort estimation,

Selby and Porter generated automatically a large

number of decision trees using ID3 algorithm to

classify the software modules that had high

development effort or faults [23, 24]. The decision

trees correctly identified 79.3% of the software

modules on the average of across all 9600 trees

generated. In [25], the authors compared CARTX, a

partial implementation of CART, and

backpropagation learning methods to traditional

regression approaches. They found that the CARTX

was competitive with SLIM, COCOMO and

Function Points. However, their experiments showed

the sensitivity of learning to various aspects of data

selection and representation.

In [26], the authors applied fuzzy decision tree on

1000 selected projects data from ISBSG repository

R8. Then they extracted a set of association rules to

produce mean effort value ranges. The authors

claimed that the proposed approach provides accurate

effort estimation and there is strong evidence that the

fuzzy transformation of cost drivers contribute to

enhancing the estimation process. The authors in [27]

applied a fuzzy version of ID3 on two datasets:

COCOMO and Tukutuku. The results obtained

indicate the performance of fuzzy ID3 over the crisp

version of ID3 in terms of MMRE and Pred(0.25).

In another study [28], Azzeh developed an

optimized model tree based on M5P with optimal

parameters identified by the Bees algorithm to

construct software effort estimation model. The

Received: July 25, 2018 302

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

optimized model tree has been validated over eight

datasets and evaluated by 3-fold cross-validation

method. The results have shown the performance of

the optimized model tree over Stepwise Regression,

Case-Based Reasoning and Multi-Layer Perceptron

techniques. In [29], the authors employed an

evolutionary algorithm to generate a decision tree

tailored to a private software effort dataset. The

evolutionarily-induced DT statistically outperform

greedily-induced ones (J48, CART and BFTree), as

well as traditional logistic regression.

To improve the accuracy of single tree-based

model, Elish investigated the use Multiple Additive

Regression Trees (MART) in software effort

estimation and compared their performance with that

of Linear Regression, Radial Basis Function and

SVR models on NASA dataset [30]. The MART

model outperforms the others in terms of MMRE and

Pred(0.25). In other work [31], the authors designed

a Treeboost, also called Stochastic Gradient Boosting,

model to predict software effort based on the Use

Case Point method. It is to note that the main

difference between the Treeboost model and a single

decision tree is that the Treeboost model consists of a

series of trees. Results showed that the Treeboost

model outperformed the Multiple Linear Regression

(MLR) model as well as the Use Case Point model in

all evaluation criteria adopted in the empirical study.

Despite these promising results, very few studies

have assessed the performance of random forest

technique in the field of software effort estimation

[17] and the only works found in the literature are

those of [22, 32]. In [22], a comparative study is

performed between Multiple Linear Regression

(MLR), Decision Trees (DT) and Decision Tree

Forest (DTF). The authors used ISBSG R10 and

Desharnais datasets and 10-fold cross-validation

method to develop the DTF. The results demonstrate

that DTF performs better than MLR and DT in terms

of MMRE, MdMRE and Pred(0.25) and the

robustness of DTF was confirmed by the non-

parametric Mann-Whitney U Test.

3. Data description and evaluation criteria

This section describes the datasets used to

perform the empirical study and presents the

evaluation criteria adopted to compare the estimating

capability of the SDEE models.

3.1 Data description

The data used in the present study come from five

datasets namely Tukutuku, ISBSG R8 and

COCOMO, Desharnais and Albrecht. Table 1

displays the summary statistics for these datasets.

The Tukutuku dataset contains 53 Web projects

[33]. Each Web application is described using 9

numerical attributes such as: the number of html or

shtml files used, the number of media files and team

experience (for more details see Table 1). However,

each project volunteered to the Tukutuku database

was initially characterized using more than 9

software attributes, but some of them were grouped

together. For example, we grouped together the

following three attributes: number of new Web pages

developed by the team, number of Web pages

provided by the customer and the number of Web

pages developed by a third party (outsourced) in one

attribute reflecting the total number of Web pages in

the application (Webpages).
The ISBSG Release 8 repository is a multi-

organizational dataset containing more than 2,000

projects gathered from different organizations in

different countries [34]. Major contributors are in

Australia (21%), Japan (20%), and the United States

(18%). To decide on the number of software projects,

and their descriptions, a data pre-processing study

was already conducted by [11], the objective of

which was to select data (projects and attributes), in

order to retain projects with high quality. The first

step of this study was to select only the new

development projects with high quality data and

using IFPUG counting approach. The second step

was concerned by selecting an optimal subset of

numerical attributes that are relevant to effort

estimation and most appropriate to use as effort

drivers in empirical studies.
The original COCOMO' 81 dataset contains 63

software projects [35]. Each project is described by

14 attributes: the software size measured in KDSI

(Kilo Delivered Source Instructions) and the

remaining 12 attributes are measured on a scale

composed of six linguistic values: 'very low', 'low',

'nominal', 'high', 'very high' and 'extra high'. These 13

attributes are related to the software development

environment such as the experience of the personnel

involved in the software project, the method used in

the development and the time and storage constraints

imposed on the software. Because the original

COCOMO'81 dataset contains only 63 historical

software projects and in order to have a robust

empirical study, we have artificially generated, from

the original COCOMO'81 dataset, three other

datasets each one contains 63 software projects (see

[36] for more details). The union of the four datasets

constitutes the artificial COCOMO'81 dataset that is

used in this study.

The Albrecht dataset [37] is a popular dataset

used by many recent studies[38-40]. This dataset

Received: July 25, 2018 303

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

Table 1. Description statistics of the selected datasets

Dataset
of

software
project

of
attributes

Effort

Min Max Mean Median Skewness Kurtosis

ISBSG (Release 8) 151 6 24 60 270 5 039 2 449 4.17 21.10

COCOMO 252 13 6 11 400 683.4 98 4.39 20.50

TUKUTUKU 53 9 6 5 000 414.85 105 4.21 20.17

DESHARNAIS 77 8 546 23 940 4 834 3 542 2.04 5.30

ALBRECHT 24 7 0.5 105.20 21.88 11.45 2.30 4.67

includes 24 projects developed by third generation

languages. Eighteen out of 24 projects were written

in COBOL, four were written in PL1, and two were

written in DMS languages. There are five

independent features: ‘Inpcout’, ‘Outcount’,

‘Quecount’, ‘Filcount’, and ‘SLOC’. The two

dependent features are ‘Fp’ and ‘Effort’ which is

recorded in 1,000-person hours.

The Desharnais dataset was collected by [41].

Despite the fact that Desharnais dataset is relatively

old, it is one of the large and publicly available

datasets. Therefore, it still has been employed by

many recent empirical studies, such as [22, 39, 40].

This dataset includes 81 projects (with nine features)

from one Canadian software company. Four of 81

projects contain missing values, so they have been

excluded from further investigation. The eight

independent features are ‘TeamExp’, ‘ManagerExp’,

‘Length’, ‘Language’, ‘Transactions’, ‘Entities’,

‘Envergure’, and ‘PointsAdjust’. The dependent

feature ‘Effort’ is recorded in 1,000 h.

The descriptive statistics of these datasets are

presented in Table 1. Among these statistics, the

‘Skewness’ and ‘Kurtosis’ measures. As it can be

seen, the effort exhibits a fairly high skewness

and kurtosis. When the absolute value of

skewness is lower than 2, and the absolute value

of kurtosis is lower than 7, the distribution is

assumed to be normal enough not to distort

statistical estimation [42]. However, most values,

in Table 1, exceeded these criteria. Positive, high

skewness indicates high outliers, which explains

the disparity between the mean value and the

median value. Positive kurtosis suggests that

most effort values were concentrated around the

mean value, creating a sharp, high curve. In sum,

the skewness and kurtosis of effort distribution

implies that most software development efforts

are relatively similar each other, except for

several high outliers. Thus, this poses a challenge

for challenge for developing accurate estimation

methods [43].

3.2 Evaluation criteria

We employ the following criteria to assess and

compare the accuracy of the effort estimation models.

A common criterion for the evaluation of effort

estimation models is Magnitude of Relative Error

(MRE), which is defined as

 𝑀𝑅𝐸 = |(
𝐸𝑓𝑓𝑜𝑟𝑡𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐸𝑓𝑓𝑜𝑟𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝐸𝑓𝑓𝑜𝑟𝑡𝑎𝑐𝑡𝑢𝑎𝑙
)| (1)

The MRE values are calculated for each project in the

dataset, while Mean Magnitude of Relative Error

(MMRE) computes the average over N projects as

follows:

 𝑀𝑀𝑅𝐸 =
1

𝑁
∑ 𝑀𝑅𝐸𝑖

𝑁

𝑖=1

 (2)

Generally, the acceptable target value for MMRE

is 25%. This indicates that on the average, the

accuracy of the established estimation models would

be less than 25%.

Another widely used criterion is the Pred(l) which

represents the percentage of MRE that is less than or

equal to the value l among all projects. This measure

is often used in the literature and is the proportion of

the projects for a given level of accuracy. The

definition of Pred(l) is given as follows:

 𝑃𝑟𝑒𝑑(𝑙) =
𝑘

𝑁
 (3)

Where N is the total number of observations and

k is the number of observations whose MRE is less or

equal to l.

 A common value for l is 0.25, which is also used

in the present study. The Pred(0.25) represents the

percentage of projects whose MRE is less or equal to

0.25. The Pred(0.25) value identifies the effort

estimates that are generally accurate whereas the

MMRE is fairly conservative with a bias against

overestimates [44, 45]. For this reason, MdMRE has

Received: July 25, 2018 304

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

been also used as another criterion since it is less

sensitive to outliers (Eq. (4)).

 𝑀𝑑𝑀𝑅𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑅𝐸𝑖) 𝑖 ∈ {1 … 𝑁} (4)

3.3 Statistical testing

Although the performance measures can show if

any SDEE techniques are better than others in a

descriptive and graphical manner, the remaining

question is whether the observed differences are

statistically significant [46]. We used the Mann-

Whitney test at the significance level of 0.05 to check

the significance difference between absolute errors of

the SDEE techniques. This statistical test has been

used because the absolute errors are not normally

distributed.

4. Experimental design

In this section, we configure random forests

models to predict software development effort and

we examine the impact of the key parameters of RF

model on the estimates accuracy. Therefore, the

developed RF model is compared to decision tree

model. In the first subsection, we present the

methodological underpinnings of the random forests

techniques and the tuning strategy used to find

empirically an optimal model. In the second

subsection, we present the configuration of

Regression Tree used to generate the effort estimates.

4.1 Configuration of random forests model

The random forests method, introduced by

Breiman [47] adds an additional layer of randomness

to bootstrap aggregating (‘‘bagging”) and is found to

perform very well compared to many other classifiers.

In addition, it is robust against overfitting and very

user-friendly [48].

The strategy of random forests is to select

randomly subsets of mtry features to grow trees, each

tree being grown on a bootstrap sample of the training

set. This number, mtry, is used to split the nodes and

is much smaller than the total number of features

available for analysis [49] because each tree depends

on the values of an independently sampled random

vector and standard random forests are a combination

of single tree predictors with the same distribution for

all trees in the forest [47].

The use of random forest in software

development effort estimation needs the

determination of a set of parameters like: the number

of trees constituting the forest (ntree), the number of

features chosen randomly at the level of each node

Table 2. Experimental design of RF models

Datasets

Random Forest parameterization

Empirical

study 1

varying mtry

Empirical

study 2

varying ntree

ISBSG (R8)
From 1 to 5

ntree=300

From 100 to 2000

mtry=5

COCOMO
From 1 to 10

ntree=100

From 100 to 2000

mtry=7

TUKUTUKU
From 1 to 9

ntree=500

From 100 to 1000

mtry=5

DESHARNAIS
From 1 to 8

ntree=500

From 100 to 1000

mtry=5

ALBRECHT
From 1 to 7

ntree=500

From 100 to 1000

mtry=5

(mtry), the size of the sample 'in bag' (sampsize) and

the maximum number of nodes of each tree

(maxnodes). In this paper, a hyperparameter tuning

approach is implemented. This latter relies more on

experimental results than theory, and thus the best

method to determine the optimal settings is to try

many different combinations and evaluate the

performance of each model.

In order to perform a robust empirical study, we

focus on two important hyperparameters for the

induction of these forests namely the number of

decision trees, ntree, and the number of features, mtry,

considered by each tree when splitting a node. It

should be noted that the software, R, used to perform

this experimental study, implements a set of default

hyperparameters for all models, but these are not

guaranteed to be optimal for all cases, whereas the

best hyperparameters are usually data-dependent.

Hence, we conducted a series of experiments each

time varying the parameter mtry and ntree to get the

best estimates. Table 2 provides an overview of the

followed experiment design.

4.2 Configuration of regression tree models

The parameters of the RT model were chosen in

such a way that the error is minimal with one

exception which is tree pruning. To avoid overfitting,

the regression tree was built using 10-fold cross-

validation and it was pruned to minimum cross-

validation error. The minimum size of the node to

split was set at 20 and the maximum depth of tree was

set at 30. The splitting function chosen is ANOVA

since it is a regression tree. The Minimum rows

allowed in a node was set at 7 as recommended by

Breiman [50]. It must be noted that the complexity

parameter was set so that any split that does not

decrease the overall lack of fit by a factor of 0.01 is

Received: July 25, 2018 305

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

not attempted. We used this configuration to generate

the five regression tree models from the five datasets.

5. Results of the experimental Studies

The following section presents and discusses the

results obtained when performing the aforementioned

experimental design. The dataset was divided into

two subsets: 70% of the historical projects as training

set and 30% of the projects as test set. The training

set is used to obtain the model without the

participation of the test set, which is employed to

assess the accuracy of the estimation model. Thus,

RT and RF models were trained using 70% of the

historical projects and 30% of remaining projects

were maintained in order to perform a final

validation/test of these models (see Table 3)

We performed our experiments with a 10-fold

cross-validation approach in order to train our models

with the training data and to ensure that our findings

will generalize adequately with the independent test

set and to avoid overfitting problem. It shall be noted

that the internal 10-fold cross-validation process was

performed using the abovementioned 70% of the

training set.

5.1 Impact of the mtry and ntree on the accuracy of

Random Forest Estimates

The objective of this subsection is to illustrate the

impact of the ntree and mtry on the accuracy of

estimates produced by RF models. The empirical

studies were performed employing ISBSG,

COCOMO and Tukutuku datasets and following the

experimental design outlined in Table 3.

 COCOMO dataset:
In the first empirical study, the value of ntree was

kept equal to 100 and 10 random forest models were

generated by varying the value of mtry from 1 to 10.

After that we have compared the performance of

these models using COCOMO testing set. As it can

be seen from the results obtained in Fig. 1-a, the

accuracy of RF model is increasing, in general, with

value of mtry in terms of Pred(0.25) until a certain

value. The RF model with mtry=8 yields to better

accuracy estimates (MMRE=1.07 and

Pred(0.25)=33.33%).

In the second empirical study, we generated a

series of Random forest models with mtry=7 and a

number of trees varying from 100 to 2000. After that,

the power of generalization of these models was

compared using COCOMO testing set. Looking at

the results showed in the Fig. 1-b, it is apparent that

the accuracy is not monotonically increasing as the

number of trees, ntree, increases. The best estimates

were obtained when the value ntree is not too large

(ntree=100 and when ntree=700).

 ISBSG dataset:
Similarly, to the first empirical study for

COCOMO, we can see from the Fig. 2-a that the

accuracy of RF model is increasing, in general, with

value of mtry in terms of Pred(0.25) until a certain

value. The RF model with mtry=5 leads to better

accuracy estimates (MMRE=1.29 and

Pred(0.25)=40%).

Looking at results of the second study shown in

the Fig. 1-b, it is apparent that the accuracy of the

estimates is not monotonically increasing as the

number of trees, ntree, increases. For example, the

best estimates were achieved when the value ntree is

not too large (ntree=100 and when ntree=1100).

Table 3. Training and testing datasets

Datasets # of projects in

training

dataset

of projects

in testing

dataset

ISBSG (R8) 106 45

COCOMO 176 76

TUKUTUKU 37 16

DESHARNAIS 77 24

ALBRECHT 24 8

(a) (b)

Figure. 1 Variation of the accuracy measures, MMRE and Pred(0.25), according to mtry and ntree values using

COCOMO dataset: (a) Variation of MMRE and Pred(0.25) with respect to mtry and (b) Variation of MMRE and

Pred(0.25) with respect to ntree

Received: July 25, 2018 306

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

(a) (b)

Figure. 2 Variation of the accuracy measures, MMRE and Pred(0.25), according to mtry and ntree values using ISBSG

dataset: (a) Variation of MMRE and Pred(0.25) with respect to mtry and (b) Variation of MMRE and Pred(0.25) with

respect to ntree

(a) (b)

Figure. 3 Variation of the accuracy measures, MMRE and Pred(0.25), according to mtry and ntree values using Tukutuku

dataset: (a) Variation of MMRE and Pred(0.25) with respect to mtry and (b) Variation of MMRE and Pred(0.25) with

respect to ntree

 Tukutuku dataset:
As it can be seen from the results obtained in Fig.

2-a, the accuracy of RF model is increasing, in

general, with value of mtry in terms of Pred(0.25) until

a certain value. The RF model with mtry=5 yields to

better accuracy estimates (MMRE=1.5 and

Pred(0.25)=25%).

Regarding the second study, the results in Fig. 1-

b show obviously that the accuracy of the estimates

is not monotonically increasing as the number of trees,

ntree, increases. As case in point, the best estimates

were obtained when the value ntree is relatively small

(ntree=100).

5.2 Comparison between random forest model

and regression tree

Once the RF models were trained using the best

values found for mtry and ntree. We compared the

generalization capability of these developed models

with regression trees using the testing sets. The

evaluation was based on the MMRE, MdMRE and

Pred(0.25) criteria. The results obtained are shown in

Table 4.

It can be seen from the data in Table 4 that the

random forest model outperforms the regression tree-

based model in terms of all evaluation criteria when

using ISBSG R8, COCOMO, Tukutuku and Albrecht

datasets. For Desharnais dataset, the results obtained

are similar in terms of Pred(0.25). Nevertheless, the

RF model made a lower MMRE (0.42) and

MdMRE(0.32) than RT model which generated 0.52

and 0.34 respectively.

From the chart in Fig. 5, we observed that both

models yielded high values of MMREs especially for

ISBSG, COCOMO and Tukutuku datasets. This is

due to the fact that MMRE measure is extremely

sensitive to individual predictions with excessively

large MREs [44], which is, in turn, a result of the

presence of outliers in these datasets (kurtosis >20

and MdMREs are much lower than MMRE as shown

in Fig. 6).

The results, reported in Fig. 4, show that the best

Pred(0.25) obtained is 51.31% when using RF model

COCOMO dataset whereas the MMRE obtained is

large 0.97. Therefore, it confirms again completely

our assumptions about values of MMRE obtained.

To statistically check the results obtained, we

Received: July 25, 2018 307

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

Table 4. Evaluation of the Regression Tree and Random Forest models in terms of MMRE, MdMRE and Pred(0.25)

over three datasets using testing sets 30%

Datasets

Regression Trees Random Forests

MMRE MdMRE Pred(0.25) (%)
MMR

E
MdMRE Pred(0.25) (%)

ISBSG (R8) 3.71 0,56 26.67 1,17 0,51 33.33

COCOMO 2.74 0.74 15.79 0.97 0.24 51.31

TUKUTUKU 1,81 0,89 18.75 0.98 0.60 31.25

DESHARNAIS 0.52 0.34 43.48 0.42 0.32 43.48

ALBRECHT 0.97 0.85 28.57 0.73 0.60 42.86

Figure. 4 Comparison of Pred(0.25) values expressed in

(%) for the two SDEE models

Figure. 5 Comparison of MMRE values for the two

SDEE models

Figure. 6 Comparison of MdMRE values for the two

SDEE models

Table 5. Statistical significance (Mann-Whitney U Test)

over all datasets

SDEE Models Datasets

Mann-

Whitney

U Test

Random Forest

vs

Regression Tree

ISBSG (R8) 0.486

COCOMO 0.000

TUKUTUKU 0.012

DESHARNAIS 0.026

ALBRECHT 0.039

used the Mann-Whitney statistical test based on

absolute residuals, at the significance level of 0.05.

The results of the statistical test are shown in Table 5.

As it can be seen from Table 5:

 For COCOMO, Tukutuku, Desharnais and

Albrecht datasets: Random forest statistically

outperformed regression tree.
 For ISBSG dataset: the p-value indicate that the

difference Random Forest performance

compared with the Regression Tree is not

significant (p-value larger than 0.05).

5.3 Comparison between random forest models

and other SDEE techniques

To further investigate the efficiency of random

forest models in SDEE, we want to compare them

against results reported in scientific articles: [11, 51-

53]. Unfortunately, these papers’ results used

different validation methods and datasets version. In

addition, they didn’t describe results in terms of

MdMRE. Nevertheless, we performed several

empirical experiment designs employing the same

validation methods and datasets, used in

aforementioned papers, in order to make a fair

comparison. We also noted that we used Kemerer

dataset, which is a company-specific data from

Kemerer’s empirical work. This dataset contains data

from 15 large completed business data-processing

Received: July 25, 2018 308

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

Table 6. Comparison of random forest method with other methods on different datasets

projects of the same company. Each project is

described by six input features: (i) programming

language, (ii) hardware, (iii) duration, (iv) KSLOC,

(v) AdjFP (adjusted function points), and (vi)

RAWFP (raw function points).

Table 6 shows the results of the comparison of the

RF models with other techniques on different

employed datasets. As it can be seen, the proposed

random forest model performed better than the four

other techniques on Desharnais dataset in terms of

Pred(0.25) and MMRE. Also, it outperformed Fuzzy

Analogy on ISBSG R8 and Tukutuku datasets while

it generated comparable results as Genetic Algorithm

based Analogy on ISBSG dataset. Regarding the

results obtained when using Kemerer dataset, the

proposed random forest method generated the same

results obtained by GA based SVR-RBF (support

vector regression with RBF kernel optimized by

genetic algorithm). Whereas, it outperformed the

genetically optimized SVR-linear, MLP and M5P

methods in terms of Pred(0.25). It worth noting that,

using Kemerer dataset, RF generated a higher MMRE

with respect to other techniques which is due mostly

to the fact that the MMRE is sensitive to individual

predictions with excessively large MREs (outliers).

Finally, according to these results, we can conclude

that random forest is very competitive method to the

existing SDEE techniques and it can be used

successfully to estimate software development effort.

6. Conclusion and perspectives

In this paper, we have empirically studied the use

of random forest technique for software effort

estimation. We first have investigated the impact of

the number of trees and the number of attributes

chosen to grow the tree on the estimation model. The

results showed that the accuracy of RF model is

sensitive to these parameters. In addition, this

investigation has allowed us to optimize the RF

model by choosing the best values for these two

parameters. Next, the designed RF model was

compared to the regression tree model using 30%

hold-out validation method and via five datasets:

COCOMO, ISBSG, Tukutuku, Desharnais and

Albrecht. The evaluation criteria used were MMRE,

MdMRE and Pred(0.25).

The results showed that the random forest model

surpasses the regression tree-based model on all

evaluation criteria. The robustness of the RF model

was confirmed using the non-parametric Mann-

Whitney U Test. In addition, the proposed model

outperformed the genetically optimized version of

MLP, M5P, Analogy, and SVR based methods. In the

light of these results, we conclude that the random

forest is a promising technique for software

development effort estimation.

For future work, it would be interesting to

improve further the accuracy of RF model using a

powerful optimization method such as particle swarm

optimization or genetic algorithm. Besides, further

research might investigate the use of random forest as

feature selection method in SDEE models.

References

[1] S. K. Sehra, Y. S. Brar, N. Kaur, and S. S. Sehra,

“Research patterns and trends in software effort

estimation”, Information & Software

Technology, Vol. 91, pp. 1-21, 2017.

[2] M. Jorgensen, “The influence of selection bias

on effort overruns in software development

projects”, Information & Software Technology,

Vol. 55, No. 9, pp. 1640-1650, 2013.

Dataset Technique Validation Method Pred (0.25) MMRE

Desharnais

PSO based CBR [52] LOOCV 37,2 0,69

GA based SVR-RBF [51] 22%holdout (18 out of 81) 72,22 0,4

GA based MLP [51] 22%holdout (18 out of 81) 72,22 0,31

GA based M5P [51] 22%holdout (18 out of 81) 61,11 0,59

Random Forest 22%holdout (17 out of 77) 76,47 0,237

ISBSG R8

Fuzzy Analogy [11] LOOCV 24,32 (Pred(0.20) 1,77

GA based Analogy [53] 3-folds CV 30 0,74

Random Forest LOOCV 30.46 / 25.16 (Pred(0.20)) 1.14

Kemerer

GA based SVR-RBF [51] LOOCV 66,67 0,37

GA based MLP [51] LOOCV 64,00 0,33

GA based SVR-Linear [51] LOOCV 60 0,44

GA based M5P [51] LOOCV 46,67 0,52

Random Forest LOOCV 66,67 0,57

Tukutuku
Fuzzy Analogy [11] LOOCV 23,15 (Pred(0.20) 2,22

Random Forest LOOCV 24.53 (Pred(0.20)) 1.99

Received: July 25, 2018 309

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

[3] M. Jorgensen and M. Shepperd, “A systematic

review of software development cost estimation

studies”, IEEE Transactions on Software

Engineering, Vol. 33, No. 1, pp. 33-53, 2007.

[4] M. Jorgensen and T. Halkjelsvik, “The effects of

request formats on judgment-based effort

estimation”, Journal of Systems and Software,

Vol. 83, No. 1, pp. 29-36, 2010.

[5] M. Jorgensen, “Practical guidelines for expert-

judgment-based software effort estimation",

IEEE Software, Vol.22, No.3, pp.57-63, 2005.

[6] B. W. Boehm Clark, Horowitz, Brown, Reifer,

Chulani, R. Madachy, and B. Steece, Software

Cost Estimation with Cocomo II with Cdrom.

Prentice Hall PTR, NJ, 2000.

[7] C. F. Kemerer, “An Empirical Validation of

Software Cost Estimation Models”,
Communications of the ACM, Vol.30, No.5,

pp.416-429, 1987.

[8] S. Basri, N. Kama, H. M. Sarkan, S. Adli, and F.

Haneem, “An Algorithmic-Based Change Effort

Estimation Model for Software Development”,
In: Proc. of the 23rd Asia-Pacific Software

Engineering Conf., Hamilton, New Zealand,

pp.177-184, 2016.

[9] D. Nandal and O. P. Sangwan, “Software cost

estimation by optimizing COCOMO model

using hybrid BATGSA algorithm”,
International Journal of Intelligent Engineering

and Systems, Vol.11, No.4, pp.250-263, 2018.

[10] A. Zakrani and A. Idri, "Applying radial basis

function neural networks based on fuzzy

clustering to estimate web applications effort”,
International Review on Computers and

Software, Vol.5, No.5, pp.516-524, 2010.

[11] F. A. Amazal, A. Idri, and A. Abran, “Software

development effort estimation using classical

and fuzzy analogy: A cross-validation

comparative study”, International Journal of

Computational Intelligence and Applications,

Vol.13, No.3, 2014.

[12] A. Idri, A. Zakrani, M. Elkoutbi, and A. Abran,

“Fuzzy radial basis function neural networks for

web applications cost estimation”, In: Proc. of

the 4th International Conf. on Innovations in

Information Technology, Dubai, UAE, pp.576-

580, 2008.

[13] T. R. Benala and R. Mall, “DABE: Differential

evolution in analogy-based software

development effort estimation”, Swarm and

Evolutionary Computation, Vol.38, pp.158-172,

2018.

[14] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang,

“Systematic literature review of machine

learning based software development effort

estimation models”, Information and Software

Technology, Vol.54, No.1, pp.41-59, 2012.

[15] S. G. MacDonell and M. J. Shepperd,

“Combining techniques to optimize effort

predictions in software project management”,
Journal of Systems and Software, Vol.66, No.2,

pp.91-98, 2003.

[16] M. Jorgensen and M. J. Shepperd, “A Systematic

Review of Software Development Cost

Estimation Studies", IEEE Trans. Software Eng.,

Vol.33, No.1, pp.33-53, 2007.

[17] A. Idri, M. Hosni, and A. Abran, “Systematic

literature review of ensemble effort estimation”,
Journal of Systems and Software, Vol.118,

pp.151-175, 2016.

[18] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern

classification, 2nd Edition. Wiley, 2001.

[19] W. Pedrycz and Z. A. Sosnowski, “Genetically

optimized fuzzy decision trees”, IEEE Trans.

Systems, Man, and Cybernetics, Part B, Vol. 35,

No.3, pp.633-641, 2005.

[20] F. E. B. Otero, A. A. Freitas, and C. G. Johnson,

“Inducing decision trees with an ant colony

optimization algorithm", Appl. Soft Comput.,

Vol.12, No.11, pp.3615-3626, 2012.

[21] S. K. Shukla and M. K. Tiwari, “Soft decision

trees: A genetically optimized cluster oriented

approach”, Expert Syst. Appl., Vol.36, No.1,

pp.551-563, 2009.

[22] A. B. Nassif, M. Azzeh, L. F. Capretz, and D.

Ho, “A comparison between decision trees and

decision tree forest models for software

development effort estimation”, In: Proc. of the

3rd Int. Conf. on Communications and

Information Technology, Beirut, pp.220-224,

2013.

[23] R. W. Selby and A. A. Porter, “Learning from

Examples: Generation and Evaluation of

Decision Trees for Software Resource Analysis”,
IEEE Trans. Software Eng., Vol.14, No.12,

pp.1743-1757, 1988.

[24] A. A. Porter and R. W. Selby, “Evaluating

techniques for generating metric-based

classification trees”, Journal of Systems and

Software, Vol.12, No.3, pp.209-218, 1990.

[25] K. Srinivasan and D. Fisher, “Machine Learning

Approaches to Estimating Software

Development Effort”, IEEE Trans. Softw. Eng.,

Vol.21, No.2, pp.126-137, 1995.

[26] A. S. Andreou and E. Papatheocharous,

“Software cost estimation using fuzzy decision

trees”, In: Proc. of the 23rd IEEE/ACM

International Conf. on Automated Software

Engineering, pp.371-374, 2008.

[27] S. Elyassami and A. Idri, “Applying Fuzzy ID3

Received: July 25, 2018 310

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

Decision Tree for Software Effort Estimation”,
International Journal of Computer Science

Issues, Vol.8, No.1, pp.131-138, 2011.

[28] M. Azzeh, “Software effort estimation based on

optimized model tree”, In: Proc. of the 7th

International Conf. on Predictive Models in

Software Engineering, pp.1-8, 2011.

[29] M. P. Basgalupp, R. C. Barros, T. S. Da Silva,

and A. C. P. L. F. De Carvalho, “Software effort

prediction: A hyper-heuristic decision-tree

based approach”, In: Proc. of the 28th Annual

ACM Symposium on Applied Computing,

pp.1109-1116, 2013.

[30] M. O. Elish, “Improved estimation of software

project effort using multiple additive regression

trees”, Expert Systems with Applications, Vol.36,

No.7, pp.10774-10778, 2009.

[31] A. B. Nassif, L. F. Capretz, D. Ho, and M. Azzeh,

“A treeboost model for software effort

estimation based on use case points”, In: Proc.

of the 11th IEEE International Conf. on Machine

Learning and Applications, Vol. 2, pp.314-319,

2012.

[32] S. M. Satapathy, B. P. Acharya, and S. K. Rath,

“Early stage software effort estimation using

random forest technique based on use case

points”, IET Software, Vol.10, No.1, pp.10-17,

2016.

[33] E. Mendes and B. A. Kitchenham, “Further

Comparison of Cross-Company and Within-

Company Effort Estimation Models for Web

Applications”, In: Proc. of the 10th International

Symposium on Software Metrics, pp.348-357,

2004.

[34] ISBSG, International Software Benchmarking

Standards Group, Data Release 8 Repository,

http://www.isbsg.org. , 2003.

[35] B. W. Boehm, Software Engineering Economics.

Prentice Hall PTR, pp.768, 1981.

[36] A. Idri, A. Abran, and T. M. Khoshgoftaar,

“Estimating software project effort by analogy

based on linguistic values”, In: Proc. of the 8th

IEEE Symposium on Software Metrics, pp.21-30,

2002.

[37] A. J. Albrecht and J. E. Gaffney, Jr., “Software

Function, Source Lines of Code, and

Development Effort Prediction: A Software

Science Validation”, IEEE Transactions on

Softw. Eng., Vol. SE-9, No.6, pp.639-648, 1983.

[38] Y. F. Li, M. Xie, and T. N. Goh, “A study of the

non-linear adjustment for analogy based

software cost estimation”, Empirical Software

Engineering, Vol.14, No.6, pp.603-643, 2009.

[39] A. Idri and I. Abnane, “Fuzzy Analogy Based

Effort Estimation: An Empirical Comparative

Study”, In: Proc. of the 17th IEEE International

Conf. on Computer and Information Technology,

pp.114-121, 2017.

[40] E. Kocaguneli and T. Menzies, “Software effort

models should be assessed via leave-one-out

validation”, Journal of Systems and Software,

Vol.86, Vo.7, pp.1879-1890, 2013.

[41] J.-M. Desharnais, Analyse statistique de la

productivitie des projets informatique a partie

de la technique des point des fonction, Master

thesis, University of Montreal, 1989.

[42] P. J. Curran, S. G. West, and J. F. Finch, "The

robustness of test statistics to non-normality and

specification error in confirmatory factor

analysis”, Psychological Methods, pp.16-29,

1996.

[43] M. Azzeh, A. B. Nassif, and L. L. Minku, “An

empirical evaluation of ensemble adjustment

methods for analogy-based effort estimation”,
Journal of Systems and Software, Vol.103,

pp.36-52, 2015.

[44] T. Foss, E. Stensrud, B. Kitchenham, and I.

Myrtveit, “A Simulation Study of the Model

Evaluation Criterion MMRE”, IEEE Trans.

Softw. Eng., Vol.29, No.11, pp.985-995, 2003.

[45] A. Idri, I. Abnane, and A. Abran, “Evaluating

Pred(p) and standardized accuracy criteria in

software development effort estimation”,
Journal of Software: Evolution and Process, Vol.

30, No. 4, 2018.

[46] J. Demsar, “Statistical Comparisons of

Classifiers over Multiple Data Sets”, Journal of

Machine Learning Research, Vol.7, pp.1-30,

2006.

[47] L. Breiman, “Random Forests”, Machine

Learning, Vol.45, No.1, pp.5-32, 2001.

[48] A. Liaw and M. Wiener, “Classification and

Regression by randomForest”, R News, Vol. 2,

No.3, pp.18-22, 2002.

[49] B. Larivière and D. V. d. Poel, “Predicting

customer retention and profitability by using

random forests and regression forests

techniques”, Expert Syst. Appl., Vol.29, No.2,

pp.472-484, 2005.

[50] L. Breiman, J. H. Friedman, R. A. Olshen, and

C. J. Stone, Classification and Regression Trees.

Wadsworth, 1984.

[51] A. L. I. Oliveira, P. L. Braga, R. M. F. Lima, and

M. L. Cornélio, “GA-based method for feature

selection and parameters optimization for

machine learning regression applied to software

effort estimation”, Information & Software

Technol., Vol.52, No.11, pp.1155-1166, 2010.

[52] D. Wu, J. Li, and C. Bao, “Case-based reasoning

with optimized weight derived by particle

http://www.isbsg.org/

Received: July 25, 2018 311

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.30

swarm optimization for software effort

estimation”, Soft Computing, pp.1-12, 2017.

[53] S. J. Huang and N. H. Chiu, "Optimization of

analogy weights by genetic algorithm for

software effort estimation”, Inf. and Softw.

Technol., Vol. 48, No. 11, pp. 1034-1045, 2006.

