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Abstract: The Apache Hadoop with cloud had become an emerging and popular service. Irrespective of its huge 

dominance in large scale data processing, it has challenges yet to be addressed. The primary challenges in yarn 

scheduler are the abilities to automate and control the resource allocation to different workloads in order to meet the 

deadline-based Service Level Agreement (SLA) in the cloud environment with optimal energy consumption. Our 

study with the Hadoop YARN addresses this problem in a controlled homogeneous environment. In cloud data-

centers, heterogeneity had become a normal phenomenon. Hence, this paper proposes the problem of energy-aware 

heterogeneous Hadoop Yarn cloud with deadline based SLA. We proposed a SLA-Aware Green Scheduling (SAGS), 

a Dynamic Voltage/Frequency Scaling (DVFS) based approach along with SLA-Aware scheduling algorithm in the 

heterogeneous environment. We evaluated SAGS by using benchmark datasets and, compared its performance with 

previously proposed solutions. Our observation with experimental results shows that, the proposed approach 

outperforms existing approaches. 

Keywords: Energy aware, Heterogeneous, Hadoop YARN, Resource allocation, DVFS, Task scheduling, Cloud 
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1. Introduction 

With the emergence of cloud computing 

paradigm, social media and Internet of Things (IoT), 

a huge amount of data is generated continuously. 

Thus, efficiently processing and extracting the 

required information (value) from such a huge 

amount of data is a tedious process. MapReduce was 

originally designed by Google [1], to address the 

scalability problem in their search system. 

MapReduce is a large scale distributed data 

processing framework which has become a De-facto 

platform for processing massive social and web 

graph (e.g. at Yahoo, and Google). The open source 

implementation of MapReduce was developed by 

Yahoo and released as apache Hadoop. Both 

industries and academia, have adopted Hadoop for 

performing large scale data processing. In order to 

address the scalability issues with respect to 

resources, users move to cloud for easy, faster, and 

pay-as-u-go solutions. Hence, Hadoop ecosystem in 

the cloud had become a common platform for the 

data engineers and industries for deploying their 

data pipeline with less time and cost effective 

manner. 

In cloud computing, the service providers like 

Amazon, Azure have to provide service level 

agreement (SLA) for their customers. The deadline 

has become an important metric in SLA which 

provides the strict time window for completing the 

given workload by the customers in order to meet 

their business requirement. The cloud service 

providers are primarily focused on SLA's, where the 

resources are underutilized. According to former 

CEO of Google, Eric Schmidt, “What matters most 

to the computer designers at Google is not speed, 



Received:  March 15, 2018                                                                                                                                                109 

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018           DOI: 10.22266/ijies2018.1231.11 

 

but power, low power, because data-centers can 

consume as much electricity as a city”[2]. In a 

survey, data-centers power consumption grows 4% 

every year which is higher than the worldwide 

electricity consumption in the same time frame [3]. 

A data-center with 50,000 nodes, can consume more 

than 100 million kWh/year [4] which is equivalent 

to 100,000 populations urban in one year. 

Dynamic voltage/frequency scaling (DVFS) [5] 

is a technique used to reduce the power consumption 

in computing node on the fly. This technique is 

supported by many modern processors (Intel and 

AMD). DVFS tunes the processor's core voltage 

depending on the computation needs. The DVFS 

processors can operate at multiple performance 

states which range from P0 to Pn. P0 is the highest of 

all and Pn is lowest performance state where the 

number of states (n+1) varies with respect to the 

processors. The modern operating systems provide 

support Advanced Configuration and Power 

Interface (ACPI), which provides better over the 

power management. 

This paper is focusing DVFS enabled machines 

in the cluster. In cloud computing environment, the 

nodes (machines) in the data-center clusters are 

heterogeneous since newly bought or upgraded 

system with old nodes co-exists in the cluster. In 

addition, Heterogeneity also comes from a variety of 

hardware and architectures of the cluster nodes. 

Although, previous efforts have been made for 

providing power-aware scheduling of Hadoop 

cluster nodes using DVFS, the heterogeneity in the 

Hadoop cluster nodes is not yet to be addressed. In 

this paper, we propose SAGS, a novel approach for 

handling power-awareness in heterogeneous Hadoop 

cluster along with deadline SLA. Our contributions 

are summarized below, 

 

1. Energy-Aware Eco-friendly SLA-Based 

scheduler for the heterogeneous environment in 

the cloud. 

2. SAGS is implemented in the Hadoop 2.x open 

source. 

3. Finally, we evaluated our approach with the 

naive approach and compare the performance 

improvement. 

 

The rest of the paper is organized as follows. We 

give a brief description about MapReduce 

framework and Hadoop in section 2. In section 3, 

we provide the motivation for designing SAGS. We 

discuss the proposed system architecture, job model, 

and its components in section 4.  In Section 5, gives 

elaborated details about the performance evaluation, 

which includes experimental settings, benchmark 

datasets & workload, and the performance metrics. 

In section 6 and 7, we discuss the related work and 

summarize our contributions respectively. 

2. Background 

This section discusses about MapReduce 

programming model and its open source 

implementation, Hadoop. We also discuss about the 

YARN (Yet Another Resource Negotiator), which 

does resource management in Hadoop. 

2.1 MapReduce 

The Hadoop is a load data first architecture 

which means before processing the data it has 

placed in the HDFS. Once we uploaded the dataset 

from the local or remote file system into HDFS. The 

HDFS split the complete dataset into the block (in 

our case 64 MB) and the block is replicated based 

on the replication factor (factor = 3). For instance, 

we have a dataset of 150 GB size, they are divided 

into 2400 blocks and replicated based on the 

replication factor which is 7200 blocks each of 64 

MB of size (totally of 450 GB storage space). The 

complete set of blocks is distributed evenly across 

the Worker or DataNodes and their references are 

maintained in the namespace of the NameNode 

which acts as directory or lookup for future 

reference. After the dataset is loaded into HDFS, the 

user writes an application to process them. The user 

application is referred as User Defined Operation 

(UDO) which is written by extending the mapper 

and reducer classes of MapReduce API. Each 

application time complexity varies with respect to 

UDO, the type of dataset and the performance of 

worker nodes. 

When the user submits the application to the 

Hadoop as a job, MapReduce API fetches the data 

blocks from HDFS as a <key, value> pairs, where 

keys refer to the offset of the file segment and 

values has the block of file content. Map tasks 

process the input    <key, value> pairs and store the 

intermediate <key, value> pairs in the local memory 

of the container (not in the HDFS). The MapReduce 

framework uses the hashing function to partition the 

intermediate keys to the reducer tasks based on the 

range of keys, which is illustrated in Fig. 1. In most 

of the cases, the number of reduce tasks will be less 

than map tasks. After receiving intermediate <key, 

value> pairs from the map, reduce tasks start 

processing them based on the threshold parameter, it 

is calculated by using the percentage of map task 

completed (for instance 33%). Finally, the output 

(<key, value> pairs) of reduce tasks are stored back 

to the HDFS. 
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Figure. 1 MapReduce architecture 

 

2.2 Hadoop 

Due to its simplicity, Hadoop was developed and 

released as open source version of MapReduce 

(MR) framework. The Hadoop 1.x has its own 

drawbacks, such as scalability, fault-tolerance and 

inefficient resource management where the 

resources are managed in a coarse-grained manner 

as computation slots in each node. At a given 

instance of time, Hadoop 1.x only support a 

dedicated MR application, hence, other types of 

applications cannot be deployed in the cluster. To 

address the issues in Hadoop 1.x, YARN (Yet 

Another Resource Negotiator) was proposed which 

is also known as Hadoop 2.x [6]. The YARN is a 

novel architecture which is completely different 

from Hadoop 1.x. YARN provides an abstraction 

layer to address the cluster resource management 

problem where each node resources are allocated as 

containers to the requested application in a fine-

grained manner. It also addresses the scalability, 

collaborative workspace for other application and 

provides higher fault-tolerance than its predecessor. 

YARN has a slow-start option which defines when 

the reducers should start. The Job Tracker 

functionality in MR is divided into Resource 

Manager (RM) per cluster, ApplicationsManager 

(AsM) for all applications and Application Master 

(AM) per application. RM is responsible for the 

allocation of the resource for a given application. 

3. Motivation 

Most of the energy-aware task scheduling 

algorithms with the deadline-based SLA uses the 

DVFS techniques [5] on homogeneous cloud 

environment.  Heterogeneity is common problem to 

be addressed in the cloud environment. The previous 

approaches [7, 15] does not consider the 

heterogeneity of the cloud, hence the proposed 

solutions are homogenous.  

Our proposed solution provides the energy-

aware resource provision and tuning based on the 

available workload with deadline-based SLA. In our 

approach, we primarily consider the heterogeneous 

aspect of the cloud environment and tune the 

frequency inside the container where the container 

has more than one vCore. 

4. SAGS 

This section discuss about the proposed 

architecture, its components, job model, SLA- aware 

scheduler, DVFS frequency tuner and its execution 

flow. In SAGS, users submit multiple jobs to the 

ResourceManager (RM), where W represent worker 

nodes. The components of our proposed architecture 

(refer Fig. 2) are explained below. 

4.1 Job profiler 

The job in MapReduce can be formalize by J 

(refer Eq. (1)), where I refers to input dataset, M 

refers to number of map tasks, R refers to number of 

reduce tasks, D refers to deadline of the MapReduce 

task based on the SLA. PM refers to the parallelism 

of map tasks, and PR refers to the parallelism of 

reduce tasks. 

 

, , , , ,M RJ I M R D P P                     (1) 

 

Where, Mj and Rj (refer Eq. (2) and (3)) represents 

set of map and reduce tasks for the given job (J). 
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MM m m m                      (2) 

 

 1 2 | |, , ,j j j j

RR r r r                            (3) 

 

In our proposed system, each job (J) is associated 

with a completion time goal (Dj). The job profilers 

tracks the related information of (J) from the past 

logs or sample run of the application. M and R can 

be calculated based on the block size and on-fly 

respectively or user specified. 

The performance metrics of MapReduce jobs are 

listed based on the relationship between the 

resources. Hence, we can categorize them in 

resource dependent and independent (Refer Table 1). 

 

 
Figure. 2 SAGS Architecture 

 

Table 1.  Performance metrics of MapReduce job lifecycle with resource dependencies 

Phase Category Metric Description 

Initialization Independent 
initT

 
Time taken to initialize the Job (J) 

Map Dependent 
avgM

 
Average duration of Map tasks (M). 

Dependent 
maxM

 
Maximum duration of Map tasks (M). 

Dependent 
ratioM

 
Ratio of Output and Input Map size (M) 

Shuffle Independent 1

maxS
 

Maximum duration of first Shuffle (S). 

Independent 
avgS

 
Average duration of typical Shuffle (S). 

Independent 
maxS

 
Maximum duration of typical Shuffle (S). 

Reduce Dependent 
avgR

 
Average duration of Reduce tasks (R). 

Dependent 
maxR

 
Maximum duration of Reduce tasks (R). 

Dependent 
ratioR

 
Ratio of Output and Input Reduce size (R) 
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The job lifecycle in MapReduce is split into 

multiple phases, they are, initialization, map, shuffle, 

and reduce phases. The sort operation falls into the 

shuffle phase of the job lifecycle. Map and reduce 

phase are dependent with respect to configured 

resources like vCore (v) and memory. 
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                               (5) 

 

The Eqs. (4) and (5), can calculate average duration 

of map tasks for job j. Similarly other variables 

related to Map and Reduce tasks in the Table 1 are 

calculated. 

4.2 Parallelizer 

It calculates the parallelism of map and reduce 

tasks, which can quantify the proposed job model. 

When a job (J) is submitted to the job queue from 

the users, the Resource Manager (RM) allocate the 

recourse based on the available resources and 

resource configuration provided by users for map 

and reduce tasks. The parallelism estimator can 

calculate the upper bound of the given job j ( j

upT ) by 

using the Make-span Theorem [7]. Refer Eqs. (6) 

and (7) for detail. 

 

j M R
up j j

M R

T T
T Q

P P
                        (6) 

 

M R

j j

M R

T T
C

P P
                               (7) 

 

             Where,  

1

max max max max

( 1)

( 1) ( )

( )

j

M avg

j

R avg avg

init avg

j

T M M

T R S R

Q T M R S S S

C D Q

  

   

     

 

 

We can calculate 
j

MP and 
j

RP by using Lagrange’s 

method. The parallelism of map and reduce tasks for 

a given job j, is shown Eqs. (8) and (9). 

 

 M M Rj

M

T T T
P

C

 
                    (8) 

 

 R M Rj

R

T T T
P

C

 
                    (9) 

4.3 SLA-Aware scheduler 

The SLA-Aware Scheduler uses parallel 

estimator to assign the map and reduce tasks of a 

given job J. The Worker nodes send heartbeat 

message to the ResourceManager to acknowledge its 

presence and work progress information, when the 

resource request was placed by ApplicationMaster 

(AM) to RM for providing the list of free containers 

to perform map and reduce operations. We use 

Earliest Deadline First (EDF) algorithm for optimal 

dynamic scheduling in cloud environment. For 

details refer, Algorithm 1. 

 

Algorithm 1: SLA-Aware Resource Allocation  

 

Input:  

 jobQueue: job queue. 

 freeContainers: number of empty 

containers 

Output: assignedTasks: assign task lists 

Precondition: Job j is added into the job Queue 

(jobQueue). 

ResourceSchedule(jobQueue, freeContainers) 

Sort the jobQueue in the order of earliest deadline 

from job model (equ 1) 

while (freeContainers> 0) 

foreachfreeContainer fc in freeContainers 

 foreachjob j in jobQueue 

   if  ( )j j

c MM P then 

     allocate fc to the AM for running the 

higher priority map task; 

     assignedTasks.add( ,

j

c im ); 

 elseif 

 ( ) ( ). & &j j j

f c Rcompleted m RpsM Pa  then 

      allocate fc to the AM for running reduce  

task; 

      assignedTasks.add( ,

j

c ir ); 

              endif 

            end for 

       end for 

  end while 

return assignedTasks; 
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Table 2. Parallelism for Tera-Sort and Inverted Index 

Deadline(s) Tera-Sort Inverted Index 

SAGS [15] Approach ARIA SAGS [15] approach ARIA 

240 (50, 64) (56,68) (48,62) (57, 43) (63, 50) (43,34) 

300 (39, 47) (43, 52) (38,47) (40, 32) (48,38) (32, 25) 

360 (27,38) (34,44) (30,41) (31, 23) (34,27) (25, 20) 

420 (21,30) (28,38) (25,33) (23, 17) (27, 21) (21,17) 
 

 

The mapred.reduce.slowstart.completed.maps 

(aka completed.maps) is a threshold (range from 0 

to 1), it tells when to start the reducer tasks. This 

range represents the percentage of overall map tasks 

get completed or finished.
j

cM and, 
j

cR represents 

running map and reduce tasks of job j. Similarly, 
j

fM and, j

fR represents finished map and reduce 

tasks of job j. 

4.4 Performance monitor 

The Performance Monitor resides in AM and 

keeps track of the task progress from each 

NodeManager (NM).The NM watches the task 

status of its containers present in the respective 

worker node. The performance monitor can 

calculate the execution time of the remaining reduce 

tasks (
j

ru ). 

 

( )j
j

r avgj j

r r

j

R

D T
u S

R U

P


 
 
 
 

             (10) 

 

Where,    

 
j

rR : Currently Running reduce tasks in job j 
j

rU : Yet to start reduce tasks in job j 

T – At the current time of Operation 

4.5 Frequency tracker 

The Frequency Tracker resides in Application 

master to collect overall frequency information from 

worker nodes (W). Frequency Tuner is the service 

which runs in each worker node and tunes or varies 

the frequencies of the cores in the container. In the 

recent version of Linux kernel are preloaded with 

DVFS support where users can dynamically change 

the frequency of the processors using RAPL 

(Running Average Power Limit) interface. The 

DVFS-enabled processors can run in multiple 

frequencies under different power supply. Our 

approach monitors the reducer dataset size (input 

dataset to each reducer).Based on the workload, 

finds the frequency and number of vCores [8, 9] can 

be used. If, we have more workload and deadline is 

less (Dj – T), then our approach spawns more vCores 

based on the dataset size and also increase the 

operating frequency. By tuning, the right 

combination of frequency and number of vCores, we 

can complete the task before the given deadline Dj. 

Due to heterogeneity, we have to find the right 

frequency for appropriate hardware. Some processor 

may not operate on specific frequencies. In addition, 

we can also change the frequency of vCore present 

in the same container, where a container may have 

more than one vCore. 

5. Evaluation 

This section discuss about the experimental 

setting, benchmark datasets used to evaluate SAGS 

and compared the performance of our proposed 

system with Hadoop 2.7.1. 

5.1 Benchmark dataset 

We used PUMA Hadoop benchmark dataset [10]. 

Refer Table 2, for our experimental datasets. 

The benchmark applications used in our evaluation 

are as follows:  

 

Tera-Sort : This application read the data from 

HDFS using map function and sort happens 

internally by using MapReduce inbuilt sort 

operation. And the Reduce function just store the 

results (<key, value> pairs) back in HDFS. 

 

InvertedIndex : This application is like Wordcount 

application. It takes a list of documents as input and 

generated <word, docId> pairs. 
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(a) 

 

 
(b) 

Figure. 3 Comparison of  execution time of ARIA, [15] and SAGS by using Tera-Sort and Inverted Index: (a) completion 

time of Tera-Sort and (b) completion time of Inverted Index 

 

 

5.3 Results and discussion 

We calculate the parallelism of jobs based on 

SAGS, [15], normal deadline and ARIA [7] 

approaches, where the deadline based approach is 

the baseline. For instance, Tera-Sort experiment 

with a deadline of 240 seconds consume (48, 62), 

(50, 64), and (56, 68) of (#map containers, #reduce 

containers) respectively. 

Fig. 3 (a), illustrates the completion time of Tera-

Sort benchmark experiment. In this experiment, we 

have Tera-sort job with different deadlines - 240, 

300, 360, and 420 seconds. Fig. 3 (b), illustrates the 

execution time of Inverted Index experiment with 

different deadlines. ARIA [7] violates the deadline 

SLA in both experiments which are due to its 

average bound used in the parallelism. Both [15] 

and SAGS designed for the worst case bound 

parallelism. During the higher priority jobs or less 

deadline remaining time the tasks are executed in 

the higher frequency with more power consumption. 

The frequency and power are fine tuned to meet the 

deadline SLA. In our approach, we use dynamic 

vCore in containers based on the load at reducers 

which can minimize the skew [9]. More specifically, 

SAGS can tune frequencies of multiple vCores 

present in the specific containers, where the 

intermediate data is high. By this approach, we can 

improve the performance of the container without 

our increasing the vCore and achieve the deadline in 

time than other approaches. 

The deadline based baseline approach have 

deadline which act as SLA. SAGS perform better 

than deadline based approach which never misses a 

deadline for the given workload. In some cases, 

ARIA is violates the given deadline. SAGS 

performs better than deadline, ARIA and [15] 

approaches. When the workload increases SAGS 

consumes 20% lesser map and reduce containers (or 

resources) than other approaches. 
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(a) 

 

 
(b) 

Figure. 4 Comparison  of energy consumption of ARIA, [15]  and SAGS by using Tera-Sort and Inverted Index: (a) 

induced energy of Tera-Sort and (b) induced energy of Inverted Index 

 

Our approach, consume less power than [7, 9, 

15] approach because, they have not considered the 

heterogeneity in the cloud environment (refer Figs. 4 

(a) and (b)). Overall, the deadline is 100% achieved 

by SAGS and energy consumption is relatively 

better than the previous approaches. The energy and 

achieving the deadline are important in large scale 

data processing applications. Based on the results, 

SAGS perform well in both ARIA and [15]. In case 

of Induced energy, ARIA is considered as a baseline 

experiment. On Average, SAGS consume 40% 

lesser energy compare to ARIA and 8% lesser than 

[15] approach. 

6. Related work 

Originally, DVFS has been designed for a 

specific processor [21]. DVFS is a technique used 

for tuning the operating frequency of a processor 

which vary the power consumption of processors. In 

general, more the operating frequency better the 

CPU performance that can also increase the power 

consumption. The resource management considers 

VMs consolidation and cluster re-configuration 

where the hot or highly used VMs grouped, and 

under-utilized VMs job aggregated to fewer and rest 

are decommissioned.  

 

Job scheduling, load balancing, and workload 

management is an emerging research area in the 

cloud-based MapReduce environment. The initial 

version of Hadoop has simple FIFO scheduler which 

is very efficient for single user and job processing 

environment. Capacity scheduler [12], was 

introduced to address the problem of multiple users 

sharing the same Hadoop environment. To provide 

fairness between users, the Fair Scheduler [13], was 

proposed which allocates the resources evenly 

across multiple users and maximize the data locality. 

Jockey [14], is the best fit for a single job with 

guaranteed latency, it may not fit for the multiple 

and shared the job at same environment. ARIA [7], 

estimate and allocate the appropriate resources for 

the map and reduce tasks of a given job which has 

not considered the SLA-based deadline and energy 

cost. Ping et al. [15], proposed the SLA-based 

deadline aware energy efficient scheduling approach 
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for the Hadoop environment. But, this approach 

does not address the heterogeneity issues in the 

cloud environment which is an important factor to 

be considered during the design. 

The operational expenditure (OPEX) keeps on 

increasing over the time, where the power 

consumption is an important factor to be considered. 

Power consumption has a dual effect - cost and 

environmental effect. It emits larger Cox gasses 

which heat up the greenhouse gasses and increases 

the global warming. To address, the power and 

energy related problem in an eco-friendly manner, a 

new flavour of research called green computing, 

starts evolving. Many energy-aware or optimization 

approaches have been developed to reduce the 

energy consumption in HPC clusters or cloud data 

centers. Originally, DVFS technique has been 

designed for a specific processor [16]. T. Wirstz et 

al. [17], proposed three DVFS scheduling polices 

for MapReduce framework. The results show the 

sign of improvement in energy efficiency over the 

proper utilization of DVFS scheduling. Modern 

DVFS processor is usually equipped with per-core 

DVFS technique, where each core can operate at 

multiple frequencies under different supply voltages. 

Kim et. al, [18], shows the dependency between 

heterogeneous workload characteristics Vs per-core 

DVFS. The effective utilization of per-core DVFS 

can outperform global DVFS. But, how to control 

and quantify the multiple cores in a DVFS cluster is 

a challenging problem.  

Shyamala L et al. [19] proposed an energy aware 

resource management technique for job scheduling 

in data center. This approach categorizes the job in 

to three different types and assigned based on 

preemption policy with the earliest available time of 

the resource (VM) which is attached to a host. In the 

proposed approach, Hadoop jobs are not considered 

for preemption. AEGEUS++ proposed an 

opportunistic frequency tuning algorithm for energy 

optimization in Hadoop cluster which focus on 

homogenous environment [20]. AEGEUS++ focus 

on optimizing the make-span and energy utilization 

problem. 

Our work differs from the previous studies. In 

this work, we consider both resource provision and 

energy conservation in heterogeneous cloud-based 

MapReduce environment. Heterogenous 

environment is most common in the cloud-based 

deployment. 

Conclusion  

In this paper, we present SAGS, energy efficient 

deadline-based SLA-aware scheduler in the 

heterogeneous cloud environment. Our approach 

uses per-core DVFS based technique to tune the 

frequency based on the given workload of a map or 

reduce tasks.  We evaluated SAGS by using 

different benchmark datasets and workload (or job). 

Based on our observation, SAGS outperform the 

previously proposed solutions. When the workload 

increases SAGS consumes 20% lesser map and 

reduce containers (or resources) than other 

approaches. It also never misses the SLA deadline. 

On Average, SAGS consume 40% lesser energy 

compare to ARIA and 8% lesser than [15] approach. 

This work can be extended by considering the 

per-core frequency techniques and GPU based 

energy optimization in the bigdata processing 

applications. 
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