
Received: March 15, 2018 108

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.11

SAGS: A SLA-Aware Green Scheduling in Heterogeneous Cloud Using Hadoop

YARN

Yadaiah Balagoni 1* Ramisetty Rajeswara Rao 2

1Department of Computer Science Engineering,

Mahatma Gandhi Institute of Technology, Hyderabad, India
2Department of Computer Science Engineering,

University College of Engineering, Vizianagaram, AndhraPradesh India

* Corresponding author’s Email: yadaiahbalagoni@mgit.ac.in

Abstract: The Apache Hadoop with cloud had become an emerging and popular service. Irrespective of its huge

dominance in large scale data processing, it has challenges yet to be addressed. The primary challenges in yarn

scheduler are the abilities to automate and control the resource allocation to different workloads in order to meet the

deadline-based Service Level Agreement (SLA) in the cloud environment with optimal energy consumption. Our

study with the Hadoop YARN addresses this problem in a controlled homogeneous environment. In cloud data-

centers, heterogeneity had become a normal phenomenon. Hence, this paper proposes the problem of energy-aware

heterogeneous Hadoop Yarn cloud with deadline based SLA. We proposed a SLA-Aware Green Scheduling (SAGS),

a Dynamic Voltage/Frequency Scaling (DVFS) based approach along with SLA-Aware scheduling algorithm in the

heterogeneous environment. We evaluated SAGS by using benchmark datasets and, compared its performance with

previously proposed solutions. Our observation with experimental results shows that, the proposed approach

outperforms existing approaches.

Keywords: Energy aware, Heterogeneous, Hadoop YARN, Resource allocation, DVFS, Task scheduling, Cloud

computing, Big data processing.

1. Introduction

With the emergence of cloud computing

paradigm, social media and Internet of Things (IoT),

a huge amount of data is generated continuously.

Thus, efficiently processing and extracting the

required information (value) from such a huge

amount of data is a tedious process. MapReduce was

originally designed by Google [1], to address the

scalability problem in their search system.

MapReduce is a large scale distributed data

processing framework which has become a De-facto

platform for processing massive social and web

graph (e.g. at Yahoo, and Google). The open source

implementation of MapReduce was developed by

Yahoo and released as apache Hadoop. Both

industries and academia, have adopted Hadoop for

performing large scale data processing. In order to

address the scalability issues with respect to

resources, users move to cloud for easy, faster, and

pay-as-u-go solutions. Hence, Hadoop ecosystem in

the cloud had become a common platform for the

data engineers and industries for deploying their

data pipeline with less time and cost effective

manner.

In cloud computing, the service providers like

Amazon, Azure have to provide service level

agreement (SLA) for their customers. The deadline

has become an important metric in SLA which

provides the strict time window for completing the

given workload by the customers in order to meet

their business requirement. The cloud service

providers are primarily focused on SLA's, where the

resources are underutilized. According to former

CEO of Google, Eric Schmidt, “What matters most

to the computer designers at Google is not speed,

Received: March 15, 2018 109

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.11

but power, low power, because data-centers can

consume as much electricity as a city”[2]. In a

survey, data-centers power consumption grows 4%

every year which is higher than the worldwide

electricity consumption in the same time frame [3].

A data-center with 50,000 nodes, can consume more

than 100 million kWh/year [4] which is equivalent

to 100,000 populations urban in one year.

Dynamic voltage/frequency scaling (DVFS) [5]

is a technique used to reduce the power consumption

in computing node on the fly. This technique is

supported by many modern processors (Intel and

AMD). DVFS tunes the processor's core voltage

depending on the computation needs. The DVFS

processors can operate at multiple performance

states which range from P0 to Pn. P0 is the highest of

all and Pn is lowest performance state where the

number of states (n+1) varies with respect to the

processors. The modern operating systems provide

support Advanced Configuration and Power

Interface (ACPI), which provides better over the

power management.

This paper is focusing DVFS enabled machines

in the cluster. In cloud computing environment, the

nodes (machines) in the data-center clusters are

heterogeneous since newly bought or upgraded

system with old nodes co-exists in the cluster. In

addition, Heterogeneity also comes from a variety of

hardware and architectures of the cluster nodes.

Although, previous efforts have been made for

providing power-aware scheduling of Hadoop

cluster nodes using DVFS, the heterogeneity in the

Hadoop cluster nodes is not yet to be addressed. In

this paper, we propose SAGS, a novel approach for

handling power-awareness in heterogeneous Hadoop

cluster along with deadline SLA. Our contributions

are summarized below,

1. Energy-Aware Eco-friendly SLA-Based

scheduler for the heterogeneous environment in

the cloud.

2. SAGS is implemented in the Hadoop 2.x open

source.

3. Finally, we evaluated our approach with the

naive approach and compare the performance

improvement.

The rest of the paper is organized as follows. We

give a brief description about MapReduce

framework and Hadoop in section 2. In section 3,

we provide the motivation for designing SAGS. We

discuss the proposed system architecture, job model,

and its components in section 4. In Section 5, gives

elaborated details about the performance evaluation,

which includes experimental settings, benchmark

datasets & workload, and the performance metrics.

In section 6 and 7, we discuss the related work and

summarize our contributions respectively.

2. Background

This section discusses about MapReduce

programming model and its open source

implementation, Hadoop. We also discuss about the

YARN (Yet Another Resource Negotiator), which

does resource management in Hadoop.

2.1 MapReduce

The Hadoop is a load data first architecture

which means before processing the data it has

placed in the HDFS. Once we uploaded the dataset

from the local or remote file system into HDFS. The

HDFS split the complete dataset into the block (in

our case 64 MB) and the block is replicated based

on the replication factor (factor = 3). For instance,

we have a dataset of 150 GB size, they are divided

into 2400 blocks and replicated based on the

replication factor which is 7200 blocks each of 64

MB of size (totally of 450 GB storage space). The

complete set of blocks is distributed evenly across

the Worker or DataNodes and their references are

maintained in the namespace of the NameNode

which acts as directory or lookup for future

reference. After the dataset is loaded into HDFS, the

user writes an application to process them. The user

application is referred as User Defined Operation

(UDO) which is written by extending the mapper

and reducer classes of MapReduce API. Each

application time complexity varies with respect to

UDO, the type of dataset and the performance of

worker nodes.

When the user submits the application to the

Hadoop as a job, MapReduce API fetches the data

blocks from HDFS as a <key, value> pairs, where

keys refer to the offset of the file segment and

values has the block of file content. Map tasks

process the input <key, value> pairs and store the

intermediate <key, value> pairs in the local memory

of the container (not in the HDFS). The MapReduce

framework uses the hashing function to partition the

intermediate keys to the reducer tasks based on the

range of keys, which is illustrated in Fig. 1. In most

of the cases, the number of reduce tasks will be less

than map tasks. After receiving intermediate <key,

value> pairs from the map, reduce tasks start

processing them based on the threshold parameter, it

is calculated by using the percentage of map task

completed (for instance 33%). Finally, the output

(<key, value> pairs) of reduce tasks are stored back

to the HDFS.

Received: March 15, 2018 110

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.11

Figure. 1 MapReduce architecture

2.2 Hadoop

Due to its simplicity, Hadoop was developed and

released as open source version of MapReduce

(MR) framework. The Hadoop 1.x has its own

drawbacks, such as scalability, fault-tolerance and

inefficient resource management where the

resources are managed in a coarse-grained manner

as computation slots in each node. At a given

instance of time, Hadoop 1.x only support a

dedicated MR application, hence, other types of

applications cannot be deployed in the cluster. To

address the issues in Hadoop 1.x, YARN (Yet

Another Resource Negotiator) was proposed which

is also known as Hadoop 2.x [6]. The YARN is a

novel architecture which is completely different

from Hadoop 1.x. YARN provides an abstraction

layer to address the cluster resource management

problem where each node resources are allocated as

containers to the requested application in a fine-

grained manner. It also addresses the scalability,

collaborative workspace for other application and

provides higher fault-tolerance than its predecessor.

YARN has a slow-start option which defines when

the reducers should start. The Job Tracker

functionality in MR is divided into Resource

Manager (RM) per cluster, ApplicationsManager

(AsM) for all applications and Application Master

(AM) per application. RM is responsible for the

allocation of the resource for a given application.

3. Motivation

Most of the energy-aware task scheduling

algorithms with the deadline-based SLA uses the

DVFS techniques [5] on homogeneous cloud

environment. Heterogeneity is common problem to

be addressed in the cloud environment. The previous

approaches [7, 15] does not consider the

heterogeneity of the cloud, hence the proposed

solutions are homogenous.

Our proposed solution provides the energy-

aware resource provision and tuning based on the

available workload with deadline-based SLA. In our

approach, we primarily consider the heterogeneous

aspect of the cloud environment and tune the

frequency inside the container where the container

has more than one vCore.

4. SAGS

This section discuss about the proposed

architecture, its components, job model, SLA- aware

scheduler, DVFS frequency tuner and its execution

flow. In SAGS, users submit multiple jobs to the

ResourceManager (RM), where W represent worker

nodes. The components of our proposed architecture

(refer Fig. 2) are explained below.

4.1 Job profiler

The job in MapReduce can be formalize by J

(refer Eq. (1)), where I refers to input dataset, M

refers to number of map tasks, R refers to number of

reduce tasks, D refers to deadline of the MapReduce

task based on the SLA. PM refers to the parallelism

of map tasks, and PR refers to the parallelism of

reduce tasks.

, , , , ,M RJ I M R D P P (1)

Where, Mj and Rj (refer Eq. (2) and (3)) represents

set of map and reduce tasks for the given job (J).

Received: March 15, 2018 111

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.11

 1 2 | |, , ,j j j j

MM m m m (2)

 1 2 | |, , ,j j j j

RR r r r (3)

In our proposed system, each job (J) is associated

with a completion time goal (Dj). The job profilers

tracks the related information of (J) from the past

logs or sample run of the application. M and R can

be calculated based on the block size and on-fly

respectively or user specified.

The performance metrics of MapReduce jobs are

listed based on the relationship between the

resources. Hence, we can categorize them in

resource dependent and independent (Refer Table 1).

Figure. 2 SAGS Architecture

Table 1. Performance metrics of MapReduce job lifecycle with resource dependencies

Phase Category Metric Description

Initialization Independent
initT

Time taken to initialize the Job (J)

Map Dependent
avgM

Average duration of Map tasks (M).

Dependent
maxM

Maximum duration of Map tasks (M).

Dependent
ratioM

Ratio of Output and Input Map size (M)

Shuffle Independent 1

maxS

Maximum duration of first Shuffle (S).

Independent
avgS

Average duration of typical Shuffle (S).

Independent
maxS

Maximum duration of typical Shuffle (S).

Reduce Dependent
avgR

Average duration of Reduce tasks (R).

Dependent
maxR

Maximum duration of Reduce tasks (R).

Dependent
ratioR

Ratio of Output and Input Reduce size (R)

Received: March 15, 2018 112

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.11

The job lifecycle in MapReduce is split into

multiple phases, they are, initialization, map, shuffle,

and reduce phases. The sort operation falls into the

shuffle phase of the job lifecycle. Map and reduce

phase are dependent with respect to configured

resources like vCore (v) and memory.

j

j

M
j

i
j i

avg M
j

i

i

m

M

v

 (4)

j

j

R
j

i
j i

avg R
j

i

i

r

R

v

 (5)

The Eqs. (4) and (5), can calculate average duration

of map tasks for job j. Similarly other variables

related to Map and Reduce tasks in the Table 1 are

calculated.

4.2 Parallelizer

It calculates the parallelism of map and reduce

tasks, which can quantify the proposed job model.

When a job (J) is submitted to the job queue from

the users, the Resource Manager (RM) allocate the

recourse based on the available resources and

resource configuration provided by users for map

and reduce tasks. The parallelism estimator can

calculate the upper bound of the given job j (j

upT) by

using the Make-span Theorem [7]. Refer Eqs. (6)

and (7) for detail.

j M R
up j j

M R

T T
T Q

P P
 (6)

M R

j j

M R

T T
C

P P
 (7)

 Where,

1

max max max max

(1)

(1) ()

()

j

M avg

j

R avg avg

init avg

j

T M M

T R S R

Q T M R S S S

C D Q

We can calculate
j

MP and
j

RP by using Lagrange’s

method. The parallelism of map and reduce tasks for

a given job j, is shown Eqs. (8) and (9).

 M M Rj

M

T T T
P

C

 (8)

 R M Rj

R

T T T
P

C

 (9)

4.3 SLA-Aware scheduler

The SLA-Aware Scheduler uses parallel

estimator to assign the map and reduce tasks of a

given job J. The Worker nodes send heartbeat

message to the ResourceManager to acknowledge its

presence and work progress information, when the

resource request was placed by ApplicationMaster

(AM) to RM for providing the list of free containers

to perform map and reduce operations. We use

Earliest Deadline First (EDF) algorithm for optimal

dynamic scheduling in cloud environment. For

details refer, Algorithm 1.

Algorithm 1: SLA-Aware Resource Allocation

Input:

 jobQueue: job queue.

 freeContainers: number of empty

containers

Output: assignedTasks: assign task lists

Precondition: Job j is added into the job Queue

(jobQueue).

ResourceSchedule(jobQueue, freeContainers)

Sort the jobQueue in the order of earliest deadline

from job model (equ 1)

while (freeContainers> 0)

foreachfreeContainer fc in freeContainers

 foreachjob j in jobQueue

 if ()j j

c MM P then

 allocate fc to the AM for running the

higher priority map task;

 assignedTasks.add(,

j

c im);

 elseif

 () (). & &j j j

f c Rcompleted m RpsM Pa then

 allocate fc to the AM for running reduce

task;

 assignedTasks.add(,

j

c ir);

 endif

 end for

 end for

 end while

return assignedTasks;

Received: March 15, 2018 113

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.11

Table 2. Parallelism for Tera-Sort and Inverted Index

Deadline(s) Tera-Sort Inverted Index

SAGS [15] Approach ARIA SAGS [15] approach ARIA

240 (50, 64) (56,68) (48,62) (57, 43) (63, 50) (43,34)

300 (39, 47) (43, 52) (38,47) (40, 32) (48,38) (32, 25)

360 (27,38) (34,44) (30,41) (31, 23) (34,27) (25, 20)

420 (21,30) (28,38) (25,33) (23, 17) (27, 21) (21,17)

The mapred.reduce.slowstart.completed.maps

(aka completed.maps) is a threshold (range from 0

to 1), it tells when to start the reducer tasks. This

range represents the percentage of overall map tasks

get completed or finished.
j

cM and,
j

cR represents

running map and reduce tasks of job j. Similarly,
j

fM and, j

fR represents finished map and reduce

tasks of job j.

4.4 Performance monitor

The Performance Monitor resides in AM and

keeps track of the task progress from each

NodeManager (NM).The NM watches the task

status of its containers present in the respective

worker node. The performance monitor can

calculate the execution time of the remaining reduce

tasks (
j

ru).

()j
j

r avgj j

r r

j

R

D T
u S

R U

P

 (10)

Where,

j

rR : Currently Running reduce tasks in job j
j

rU : Yet to start reduce tasks in job j

T – At the current time of Operation

4.5 Frequency tracker

The Frequency Tracker resides in Application

master to collect overall frequency information from

worker nodes (W). Frequency Tuner is the service

which runs in each worker node and tunes or varies

the frequencies of the cores in the container. In the

recent version of Linux kernel are preloaded with

DVFS support where users can dynamically change

the frequency of the processors using RAPL

(Running Average Power Limit) interface. The

DVFS-enabled processors can run in multiple

frequencies under different power supply. Our

approach monitors the reducer dataset size (input

dataset to each reducer).Based on the workload,

finds the frequency and number of vCores [8, 9] can

be used. If, we have more workload and deadline is

less (Dj – T), then our approach spawns more vCores

based on the dataset size and also increase the

operating frequency. By tuning, the right

combination of frequency and number of vCores, we

can complete the task before the given deadline Dj.

Due to heterogeneity, we have to find the right

frequency for appropriate hardware. Some processor

may not operate on specific frequencies. In addition,

we can also change the frequency of vCore present

in the same container, where a container may have

more than one vCore.

5. Evaluation

This section discuss about the experimental

setting, benchmark datasets used to evaluate SAGS

and compared the performance of our proposed

system with Hadoop 2.7.1.

5.1 Benchmark dataset

We used PUMA Hadoop benchmark dataset [10].

Refer Table 2, for our experimental datasets.

The benchmark applications used in our evaluation

are as follows:

Tera-Sort : This application read the data from

HDFS using map function and sort happens

internally by using MapReduce inbuilt sort

operation. And the Reduce function just store the

results (<key, value> pairs) back in HDFS.

InvertedIndex : This application is like Wordcount

application. It takes a list of documents as input and

generated <word, docId> pairs.

Received: March 15, 2018 114

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.11

(a)

(b)

Figure. 3 Comparison of execution time of ARIA, [15] and SAGS by using Tera-Sort and Inverted Index: (a) completion

time of Tera-Sort and (b) completion time of Inverted Index

5.3 Results and discussion

We calculate the parallelism of jobs based on

SAGS, [15], normal deadline and ARIA [7]

approaches, where the deadline based approach is

the baseline. For instance, Tera-Sort experiment

with a deadline of 240 seconds consume (48, 62),

(50, 64), and (56, 68) of (#map containers, #reduce

containers) respectively.

Fig. 3 (a), illustrates the completion time of Tera-

Sort benchmark experiment. In this experiment, we

have Tera-sort job with different deadlines - 240,

300, 360, and 420 seconds. Fig. 3 (b), illustrates the

execution time of Inverted Index experiment with

different deadlines. ARIA [7] violates the deadline

SLA in both experiments which are due to its

average bound used in the parallelism. Both [15]

and SAGS designed for the worst case bound

parallelism. During the higher priority jobs or less

deadline remaining time the tasks are executed in

the higher frequency with more power consumption.

The frequency and power are fine tuned to meet the

deadline SLA. In our approach, we use dynamic

vCore in containers based on the load at reducers

which can minimize the skew [9]. More specifically,

SAGS can tune frequencies of multiple vCores

present in the specific containers, where the

intermediate data is high. By this approach, we can

improve the performance of the container without

our increasing the vCore and achieve the deadline in

time than other approaches.

The deadline based baseline approach have

deadline which act as SLA. SAGS perform better

than deadline based approach which never misses a

deadline for the given workload. In some cases,

ARIA is violates the given deadline. SAGS

performs better than deadline, ARIA and [15]

approaches. When the workload increases SAGS

consumes 20% lesser map and reduce containers (or

resources) than other approaches.

Received: March 15, 2018 115

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.11

(a)

(b)

Figure. 4 Comparison of energy consumption of ARIA, [15] and SAGS by using Tera-Sort and Inverted Index: (a)

induced energy of Tera-Sort and (b) induced energy of Inverted Index

Our approach, consume less power than [7, 9,

15] approach because, they have not considered the

heterogeneity in the cloud environment (refer Figs. 4

(a) and (b)). Overall, the deadline is 100% achieved

by SAGS and energy consumption is relatively

better than the previous approaches. The energy and

achieving the deadline are important in large scale

data processing applications. Based on the results,

SAGS perform well in both ARIA and [15]. In case

of Induced energy, ARIA is considered as a baseline

experiment. On Average, SAGS consume 40%

lesser energy compare to ARIA and 8% lesser than

[15] approach.

6. Related work

Originally, DVFS has been designed for a

specific processor [21]. DVFS is a technique used

for tuning the operating frequency of a processor

which vary the power consumption of processors. In

general, more the operating frequency better the

CPU performance that can also increase the power

consumption. The resource management considers

VMs consolidation and cluster re-configuration

where the hot or highly used VMs grouped, and

under-utilized VMs job aggregated to fewer and rest

are decommissioned.

Job scheduling, load balancing, and workload

management is an emerging research area in the

cloud-based MapReduce environment. The initial

version of Hadoop has simple FIFO scheduler which

is very efficient for single user and job processing

environment. Capacity scheduler [12], was

introduced to address the problem of multiple users

sharing the same Hadoop environment. To provide

fairness between users, the Fair Scheduler [13], was

proposed which allocates the resources evenly

across multiple users and maximize the data locality.

Jockey [14], is the best fit for a single job with

guaranteed latency, it may not fit for the multiple

and shared the job at same environment. ARIA [7],

estimate and allocate the appropriate resources for

the map and reduce tasks of a given job which has

not considered the SLA-based deadline and energy

cost. Ping et al. [15], proposed the SLA-based

deadline aware energy efficient scheduling approach

Received: March 15, 2018 116

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.11

for the Hadoop environment. But, this approach

does not address the heterogeneity issues in the

cloud environment which is an important factor to

be considered during the design.

The operational expenditure (OPEX) keeps on

increasing over the time, where the power

consumption is an important factor to be considered.

Power consumption has a dual effect - cost and

environmental effect. It emits larger Cox gasses

which heat up the greenhouse gasses and increases

the global warming. To address, the power and

energy related problem in an eco-friendly manner, a

new flavour of research called green computing,

starts evolving. Many energy-aware or optimization

approaches have been developed to reduce the

energy consumption in HPC clusters or cloud data

centers. Originally, DVFS technique has been

designed for a specific processor [16]. T. Wirstz et

al. [17], proposed three DVFS scheduling polices

for MapReduce framework. The results show the

sign of improvement in energy efficiency over the

proper utilization of DVFS scheduling. Modern

DVFS processor is usually equipped with per-core

DVFS technique, where each core can operate at

multiple frequencies under different supply voltages.

Kim et. al, [18], shows the dependency between

heterogeneous workload characteristics Vs per-core

DVFS. The effective utilization of per-core DVFS

can outperform global DVFS. But, how to control

and quantify the multiple cores in a DVFS cluster is

a challenging problem.

Shyamala L et al. [19] proposed an energy aware

resource management technique for job scheduling

in data center. This approach categorizes the job in

to three different types and assigned based on

preemption policy with the earliest available time of

the resource (VM) which is attached to a host. In the

proposed approach, Hadoop jobs are not considered

for preemption. AEGEUS++ proposed an

opportunistic frequency tuning algorithm for energy

optimization in Hadoop cluster which focus on

homogenous environment [20]. AEGEUS++ focus

on optimizing the make-span and energy utilization

problem.

Our work differs from the previous studies. In

this work, we consider both resource provision and

energy conservation in heterogeneous cloud-based

MapReduce environment. Heterogenous

environment is most common in the cloud-based

deployment.

Conclusion

In this paper, we present SAGS, energy efficient

deadline-based SLA-aware scheduler in the

heterogeneous cloud environment. Our approach

uses per-core DVFS based technique to tune the

frequency based on the given workload of a map or

reduce tasks. We evaluated SAGS by using

different benchmark datasets and workload (or job).

Based on our observation, SAGS outperform the

previously proposed solutions. When the workload

increases SAGS consumes 20% lesser map and

reduce containers (or resources) than other

approaches. It also never misses the SLA deadline.

On Average, SAGS consume 40% lesser energy

compare to ARIA and 8% lesser than [15] approach.

This work can be extended by considering the

per-core frequency techniques and GPU based

energy optimization in the bigdata processing

applications.

References

[1] J. Dean and S. Ghemawat, "MapReduce:

Simplified data processing on large Clusters”,

Communications of the ACM, Vol. 51, No. 1,

pp.107-113, 2008.

[2] J. Markoff and S. Lohr, “Intel’s huge bet turns

iffy”, In: New York Times Technology, Section

3, p. 1, 2002.

[3] W.V. Heddeghem, S.Lambert, B.Lannoo, D.

Colle, M.Pickavet, and P.Demeester, "Trends in

worldwide ICT electricity consumption from

2007 to 2012", Computer Communications, Vol.

50, pp.64-76, 2014.

[4] A. Greenberg, J. Hamilton, D.A. Maltz, and P.

Patel, "The cost of a cloud: research problems

in data center networks", ACM SIGCOMM

computer communication review, Vol. 39, No.

1, pp. 68-73, 2009.

[5] M. Weiser, B. Welch, A. Demers, and S.

Shenker, "Scheduling for reduced CPU energy",

In: Proc. of USENIX Association Conference,

pp. 449-471, 1994.

[6] V.Vinodkumar, A.C. Murthy, C. Douglas, and

S. Agarwal, “Apache Hadoop YARN:Yet

Another Resource Negotiator”, In: Proc. of the

4th Annual Symposium on Cloud Computing,

2013.

[7] A. Verma, L. Cherkasova, and R.H.Campbell,

“ARIA: automatic resource inference and

allocation for MapReduce environments”, In:

Proc. of the 8th ACM international conference

on Autonomic Computing, pp. 235–244, 2011.

[8] Z. Liu, Q. Zhang, R. Boutaba, Y.Liu, and B.

Wang, "OPTIMA: on-line partitioning skew

mitigation for MapReduce with resource

adjustment", Journal of Network and Systems

Management, Vol. 24, No. 4, pp.859-883, 2016.

[9] V. Kumaresan and R.Baskaran, “Aegeus: An

online partition skew mitigation algorithm for

Received: March 15, 2018 117

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.11

mapreduce”, In: Proc. of the International

conference on Informatics and Analytics, 2016.

[10] F. Ahmad, S. Lee, M. Thottethodi, and T.N.

Vijaykumar, “Puma: Purdue mapreduce

benchmarks suite”, 2012.

(https://core.ac.uk/download/pdf/10238137.pdf

last accessed at 05-march-2017).

[11] Apache Hadoop. https://hadoop.apache.org.

[12] Apache. Capacity Scheduler:

http://hadoop.apache.org/docs/r1.2.1/capacity_

scheduler.html.

[13] M. Zaharia, D. Borthakur, J. Sen Sarma, K.

Elmeleegy, S. Shenker, and I. Stoica, “Delay

scheduling: A simple technique for achieving

locality and fairness in cluster scheduling”, In:

Proc. of the 5th European Conference on

Computer Systems, pp. 265–278, 2010.

[14] A.D. Ferguson, P. Bodik, S. Kandula, E. Boutin,

and R. Fonseca, “Jockey: guaranteed job

latency in data parallel clusters”, In: Proc. of

the 7th ACM European conference on

Computer Systems, pp. 99–112, 2012.

[15] P. Li, L. Ju, Z. Jia, and Z. Sun, “SLA-aware

energy-efficient scheduling scheme for Hadoop

YARN”, In: Proc. of the 2015 IEEE 17th

International conference on High Performance

Computing and Communications, and 2015

IEEE 12th International Conference on

Embedded Software and Systems, pp. 623-628,

2015.

[16] W. Kim, D. Shin, H.S.Yun, J. Kim, and S. L.

Min, “Performance comparison of dynamic

voltage scaling algorithms for hard real-time

systems”, In: Proc. of the Eighth IEEE Real-

Time and Embedded Technology and

Applications Symposium, pp. 219–228, 2002.

[17] T.Wirtz and R.Ge, “Improving mapreduce

energy efficiency for computation intensive

workloads”, In: Proc. of the 2011 International

Green Computing Conference and Workshops,

pp. 1–8, 2011.

[18] W. Kim, M.S. Gupta, G-Y. Wei, and D. Brooks,

“System level analysis of fast, per-core DVFS

using on-chip switching regulators”, In: Proc.

of the IEEE 14th International Symposium on

High-Performance Computer Architecture, pp.

123–134, 2008.

[19] S. Loganathan, R.D. Saravanan, and S.

Mukherjee, "Energy aware resource

management and job scheduling in Cloud

Datacenter", International Journal of

Intelligent Engineering and Systems, Vol. 10,

No. 4, pp.175-184, 2017.

[20] V. Kumaresan, R. Baskaran, and P.

Dhavachelvan, "AEGEUS++: an energy-aware

online partition skew mitigation algorithm for

MapReduce in cloud”, In: Proc. of the IEEE

International conference on Cluster Computing,

pp.1-18, 2017.

[21] W. Kim, D. Shin, H-S. Yun, J. Kim, and S.L.

Min, “Performance comparison of dynamic

voltage scaling algorithms for hard real-time

systems”, In: Proc. of the Eighth IEEE Real-

Time and Embedded Technology and

Applications Symposium, pp. 219–228, 2002.

https://core.ac.uk/download/pdf/10238137.pdf
http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html

