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Abstract: The research proposed a method that combined non-deep learning detector that called Aggregated Channel 

Features (ACF) detector and Convolutional Neural Network (CNN) that named Faster R-CNN detector to extract a 

cross-sectional area of the fetal limb in an ultrasound image. This combination is appropriate to solve the problem of 

object detection where the object has no clear characteristic, it has shape variation, blurred, and no clear boundaries, 

which is difficult to solve using the common thresholding or the edge detection method. This method also deals with 

the ultrasound image analysis which the training set is small. The pre-trained CNN can establish the classification 

model from the small annotated training data. ACF detector provides the region proposals of the non-cross-sectional 

area as an input of pre-trained CNN. The proposed method could improve the average precision of detection result 

when it was compared with Faster R-CNN and ACF detector alone. Also, the combination method could reduce the 

elapsed time of the Faster R-CNN training phase significantly. 

Keywords: Object detection, Faster R-CNN, Aggregated channel features (ACF), Ultrasound images. 

 

 

1. Introduction 

A cross-sectional area of the fetal limb is the 

sagittal view cross-section of the fetal arm or thigh in 

an ultrasound image. This area can be an indicator of 

the nutritional adequacy of the fetus during the 

pregnancy, by measuring the dispose part [1]. 

Additionally, the vast size of this area is used as a 

measurement to predict fetal weights on 3D 

ultrasound images [2-5]. Measuring fetal weight by 

using limb volume takes considerable time. An 

ultrasonographer must mark and calculate the area of 

each cross-section used in the calculation. Therefore 

we need a method to detect and segment the area 

automatically. Feng et al. [2] proposed a method for 

obtaining limb volume automatically by applying 

hierarchical marginal space learning method to detect 

the cross-sectional area of the fetal arm or fetal thigh. 

A key challenge in detecting and segmenting the 

cross-sectional area of the fetal limb is the lack of 

clarity of boundaries and shapes of the region. The 

difficulty of determining the characteristics of the 

cross-sectional region and the nature of the 

ultrasound images containing the speckle noise and 

the artefacts led to the necessity of a convolutional 

neural network (CNN). CNN extracts the features 

directly from the annotated data at the training phase. 

The development of CNN research is increasing 

rapidly in this last era. This revolution is supported 

by the rapid growth of parallel processing devices and 

by the higher the number of datasets. The use of CNN 

in the medical imaging field is also increasing. In [6],  

vessels were detected in ultrasound images using 

CNN. In [7], CNN was used to identify edges on 

musculoskeletal ultrasound images. A compute 

unified device architecture (CUDA) CNN was 

implemented to detect diabetic retinopathy in retinal 

images [8]. In [9], the lesion was recognized in the 

breast ultrasound image. In [10] and [11], the 

researches  applied CNN to diagnose and segment the 

thyroid nodule. Also, classification of the abdominal 

ultrasound images was done with CNN [12]. In [13],  

CNN was used to detect papillary thyroid cancer in 

ultrasound images. All of these studies have 
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successfully applied the CNN method to identify and 

perform other image processing such as edge 

detection and segmentation in medical images, 

especially on ultrasound images.  

The problem solved in this study is how to extract 

or detect cross-sectional areas of fetal ultrasound 

images. The techniques used to identify objects in an 

image can be divided into two categories, i.e. the non-

deep learning object detector and the deep learning 

method that implements CNN [14].  The Aggregate 

Channel Features (ACF) [15], Locally Decorrelated 

Channel Features (LDCF) [16], Spatial pooling+ [17] 

and also Viola Jones [18,19] are the non-deep 

learning methods. In a deep learning object detector, 

there is the Faster R-CNN [20] which is an updated 

version of Fast R-CNN [21] and R-CNN [22]. The 

problem in detecting the object in an image is to get 

the region proposal and test it according to the class 

of object. If the R-CNN method and faster R-CNN 

use an external region proposal method, such as 

selective search, the Faster R-CNN introduces a 

novel Region Proposal Network (RPN) that is scale-

invariant in dividing the convolutional layer. The 

recognition phase of the Faster R-CNN method is 250 

times faster than R-CNN and 100 times faster than 

Fast R-CNN. However, the time required for the RPN 

training phase in the Faster R-CNN becomes much 

longer than the previous two methods. 

The layer model used in CNN dramatically 

determines the accuracy of the detection results. 

According to Tajbakhsh et al. [23], the preparation of 

layers in medical image analysis can use two 

techniques, i.e. the fine-tuning from the pre-trained 

network and the full-trained from scratch. Fine-

tuning has advantages from the proven network 

reliability, such as the AlexNet and the googleNet. 

Moreover, the transfer learning of the pre-trained 

network is useful if the amount of training data is 

small. Tajbakhsh et al. [23] conclude that the use of 

pre-trained CNN such as AlexNet is superior in 

medical image analysis compared to full-trained 

CNN. The implementation of the pre-trained network 

in the medical image is also adopted by Ma et al. in 

[10] and Cheng & Malhi in [12].  

In CNN training, we need annotated data input 

that distinguishes the object class and non-objects 

class. Determining of the non-object class requires 

high accuracy related to scale and size. To resolve the 

issue, Ribeiro et al. [24] implemented non-deep 

learning such as ACF and LDCF in the pedestrian 

detection problem to generate region proposals as the 

input of CNN methods.  The question is whether the 

combination of ACF detector and Faster R-CNN able 

to provide excellent performance in recognising the 

cross-sectional area of fetal ultrasound images.  

In this study, we propose a method that combines 

the ACF detector and Faster R-CNN to detect a cross-

sectional area of the fetal limb in an ultrasound image. 

Firstly, we apply a preprocessing step to reduce the 

speckle noise in the ultrasound image using the 

method proposed by Hermawati et al. [25]. Then, we 

implement ACF detector to process the training 

images with annotation bounding box. The ACF 

detector results that are not cross-sectional areas, 

become negative training images in the Faster R-

CNN stage. We use the annotated positive training 

images and the negative images as the inputs of the 

CNN method. We apply the pre-trained AlexNet 

network model in CNN architecture. In this research, 

to show the increase of the performance in object 

recognition, we compare the proposed method with 

the Faster R-CNN and the ACF detector alone. This 

study also examines the elapsed time of the RPN 

network training phase in the proposed approach and 

the Faster R-CNN detector.  

The paper is organized in four sections. After the 

first section, section 2 explains the proposed method 

that includes the preprocessing step in section 2.1, the 

ACF detector in section 2.2, the CNN architecture in 

section 2.3, the Faster R-CNN in section 2.4 and the 

performance measurement in section 2.5. Section 3 

that consists of two subsections, presents the 

experimental results. In section 3.1, we show the time 

reduction in the CNN training phase. Section 3.2 

illustrates the object detector experiments. The 

conclusion is presented in section 4. 

2. Methods 

The scheme of the proposed method is shown in 

Fig.1. Firstly, the ACF detector processes the 

annotated training images that contain the bounding 

box of object ground truth. The result of ACF object 

detector is separated into two types, i.e. the positive 

images and the negative images. The positive images 

are the bounding box regions that have a significant 

overlapping with the ground truth area, and on the 

other hand, the rests are negative images. The 

negative images from the ACF detector output and 

the cross-sectional ground truth images are used as 

input of the pre-trained AlexNet CNN. Furthermore, 

the re-trained CNN model was used to build the 

Region Proposal Network (RPN) on the R-CNN 

Faster and then to train it as many as four stages using 

the annotated training data. 



Received:  June 11, 2018                                                                                                                                                      67 

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018           DOI: 10.22266/ijies2018.1231.07 

 

Final Result

Input Image

ACF Detector

Pretrained CNN

Faster R-CNN

Extracted 

Non Cross 

Section 

Region 

Ground Truth of

Cross Section 

Region

ACF 

Detected 

Result

 
Figure.1 Proposed method scheme      

2.1 Preprocessing 

Preprocessing step aims to remove the speckle 

noise on the ultrasound image. We implement the 

hybrid speckle reduction method that is proposed in 

[25]. The speckle reduction approach combines the 

spatial filtering, i.e. bilateral filtering and anisotropic 

diffusion with the multiresolution wavelet.  The 

advantage of this method, it can eliminate the speckle 

noise while maintaining the edges. Fig. 2(a) and 2(b) 

show the image results before and after the 

preprocessing process. Fig. 3(a) and 3(b) present the 

edge detection results with Canny edge detector, 

which show the decrease in detail or noise in the non- 

edge area while there is no reduction in the edge area. 

 

  
(a)                                         (b) 

Figure.2 Ultrasound image: (a) before noise reduction and 

(b) after noise reduction 

 

 
(a)                                         (b) 

Figure.3 Binary edge image: (a) before noise reduction 

and (b) after noise reduction 

2.2 Aggregated channel features (ACF) detector 

Aggregated Channel Features (ACF) detector 

proposed in [15] used a combined feature which 

consisting of three channels of LUV colour space, a 

normalized gradient channel and a six-channel 

histogram of oriented gradient (HoG) and then 

arranged in a boosted tree.  The block diagram of the 

ACF detector method to detect the cross-sectional 

areas in the ultrasound images is presented in Fig.4. 

ACF detector will extract the proposal region 

consisting of the positive area and negative region. 

Positive proposal regions are obtained from training 

data containing the bounding box of the ground truth 

area. Meanwhile, the negative proposal region is 

extracted automatically by the sliding window in all 

image area except the bounding box of ground truth 

area.  

Let I(x,y) be the RGB image of mxn size 

consisting of three channels. Firstly,  the image is 

transformed into the LUV colour space, and then the 

gradient magnitude of the image I is calculated using 

the following formula. 

 

𝑀(𝑖, 𝑗) = √(
𝜕𝐼(𝑖,𝑗)

𝜕𝑥
)

2
+ (

𝜕𝐼(𝑖,𝑗)

𝜕𝑦
)

2
                     (1) 

 

Also, the gradient orientation of image I is expressed 

by the following equation. 

 

𝑂(𝑖, 𝑗) = tan−1 (

𝜕𝐼(𝑖,𝑗)

𝜕𝑦

𝜕𝐼(𝑖,𝑗)

𝜕𝑥

)                                      (2) 
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Figure.4 Block diagram of Aggregated Channel Features (ACF) detector 

 

where  
𝜕𝐼(𝑖,𝑗)

𝜕𝑥
 is the derivative I at the coordinates (i,j) 

in the x-direction and  
𝜕𝐼(𝑖,𝑗)

𝜕𝑦
 is the derivative I at the 

coordinates (i,j) in the y-direction. The gradient 

image is smoothed using a convolution operation 

between the gradient image and a triangular filter [1 

2 1] / 4. After that, the smoothed image is normalized 

to get the details of the gradient scale by the following 

equation. 

 

�̃�(𝑖, 𝑗) =
𝑀(𝑖,𝑗)

𝑆(𝑖,𝑗)+𝑐
                                                    (3) 

 

where S(i,j) is the smoothed image and c is a small 

normalization constant, e.g. c = 0.005.  

The steps to compute the histogram of the 

gradient (HoG) with the bin number = 6 and the cell 

size = 4 are as follows. For each subwindow called a 

cell with 4x4 size, the normalised gradient,  �̃�(𝑖, 𝑗), 

is quantized into six bin histograms, q1,q2,...q6, with 

the orientation range 0-180, based on the value of 

O(i,j). The assignment of the gradient in the q-

oriented bin uses the linear interpolation. The HoG 

feature size is 
𝑚

 𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒
 ×

 𝑛

𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒
×  𝑏𝑖𝑛_𝑛𝑢𝑚𝑏𝑒𝑟.  

The aggregate features obtained are arranged in a 

decision tree and trained using bootstrapping and 

AdaBoost classifier alternately and repeatedly as 

many N stages [15]. At each step, the negative 

examples are extracted and accumulated with the 

previous ones.  

2.3  CNN architecture 

The pre-trained AlexNet CNN architecture 

consists of five convolutional layers, three max-

pooling and three fully-connected layers. The 

complete CNN architecture can be seen in Table 1. 

The first layer with the name 'data' is the input 

layer with the same size as the input image size. The 

size of the cross-sectional dataset image is changed 

to the image size used in AlexNet, i.e. 227x227x3. 

The middle layer consists of two repeating blocks 

including the convolutional layer, reLU, cross-

channel normalization and max-pooling layer. The 

first block consists of the convolutional layer 

('conv1') with 11x11 kernel size of 96 channels, 

followed by reLU and channel normalization of 5 

channels per element, then ends max pooling ('pool1') 

with 3x3 layer size. The second block is the same as 

the first block consisting of the convolutional layer 

('conv2') with kernel size 5x5, reLU, channel norm 

and max-pooling ('pool2') with 3x3 kernel size. Two 

repetitive blocks consist of the convolutional layer, 

i.e. 'conv3', 'conv4' which each kernel is 3x3 and 

reLU. One block consists of convolution layer, reLU 

and max pooling. The last layer includes a fully 

connected layer and softmax layer. In this AlexNet 

architecture, there are three fully connected layers 

and one softmax layer. 
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Table 1. CNN architecture 

Name channel size kernel 

‘data’ 3 227x227  

‘conv1’ 3 227x227 11x11 

‘pool1’ 96 55x55 3x3 

‘conv2’ 96 27x27 5x5 

‘pool2’ 256 27x27 3x3 

‘conv3’ 256 13x13 3x3 

‘conv4’ 384 13x13 3x3 

‘conv5’ 384 13x13 3x3 

‘pool5’ 256 13x13 3x3 

‘fc6’ 256 6x6 6x6 

‘fc7’ 4094 1 1x1 

‘fc8’ 4096 1 1x1 

     

For the transfer learning of the AlexNet, the last 

three layers of AlexNet are tuned to the new data 

classification that is cross-sectional thigh data sets. 

Fully connected layer 'fc8' is set in two classes: a 

cross-sectional region class and non-cross-sectional 

class. The weighting factor of learning rate is set to 

20, and the bias factor of the learning rate is increased 

to 20 to speed up the training process. 

2.4 Faster R-CNN 

The Faster R-CNN method which proposed in 

[22] has two main steps: to extract and train 

approximately 200 region proposals using the Region 

Proposal Network (RPN) and to classify based on the 

features obtained. In the training process, there are 

four stages: training a Region Proposal Network 

(RPN), training a Fast R-CNN Network using the 

RPN from step 1, re-training RPN using weight 

sharing with Fast R-CNN and re-training Fast R-

CNN using updated RPN.  

To get the region proposals, in every position of 

the sliding windows, extracted several region 

proposals based on a reference box called anchors 

that have nine shapes with three different scales: 1282, 

2562 and 5122 as well as three aspect ratio, i.e. 1:1, 

1:2 and 2:1. A region proposal is extracted if IoU (Eq. 

(8)) between ground truth and the anchor is greater 

than 0.7. The number of region proposals is reduced 

by eliminating areas located on the edges of the 

image. 

The RPN consists of two networks. The first one 

is the CNN. The last five layers of the CNN are 

replaced with 3x3 convolution layer followed by 

ReLU layer, 1x1 layer followed by Reshape for RPN 

layer, softmax layer and RPN classification layer. 

The second network consists of two layers: 1x1 

convolutional layer for regression box (RPN) 

Convolution and smooth-l1 Box Regression Output 

Layer. 

RPN training process aims to minimize total loss 

function which is the aggregate of the data loss 

function at the classification stage and the 

regularization loss function. The formula of the 

aggregate loss function is as follows. 

 

𝐿 =
1

𝑁𝑐
�̂�𝑐 + 𝜆 

1

𝑁𝑟𝑒𝑔
 �̂�𝑟𝑒𝑔                                    (4) 

 

The data loss function is normalized by dividing it by 

Nc which is the size of a mini batch. Moreover, 

regularization function is standardized by dividing 

Nreg which is the number of anchor locations and 

multiplied by the balancing parameter λ.  

Total data loss function is a log loss function of 

two prediction classes that are objects and not objects 

that are formulated as follows. 

 

�̂�𝑐 = ∑ 𝐿𝑐(𝑝𝑖, 𝑝𝑖
∗)𝑁

𝑖                                             (5) 

 

where pi is the probability of predicting an i-th anchor 

on a mini batch and pi* is the ground truth of the i-th 

anchor which is set to 1 if positive and 0 if negative.  

The regularization loss function that also called 

the regression function is a function that calculates 

the difference of a bounding box of ground truth 

object (𝑡𝑖
∗) with the bounding box of the predicted 

object (𝑡𝑖), which is formulated as follows. 

 

�̂�𝑟𝑒𝑔 = ∑ 𝑝𝑖
∗𝑅(𝑡𝑖 − 𝑡𝑖

∗)𝑁
𝑖                                     (6) 

 

The regression function is multiplied by 𝑝𝑖
∗  which 

means that the function will be activated if the anchor 

is positive.  

2.5 Performance measurement 

The performance measures in this study is the 

average precision (AP). The following equation 

defines average precision (AP) which is a summary 

of the precision/recall curve. 

 

𝐴𝑃 =
1

11
∑ max

�̂�:�̂�≥𝑟
𝑝(�̂�)1

𝑟=0                                          (7) 

 

where r is a recall level with range between 

0,0.1,0.2,0.3, ..., 1. p(r) is precision level of the 

certain r value. Precision is the ratio of the number of 

detected cross-sectional areas and the number of total 

cross-sectional areas. The recall is the ratio of the 

number of detected area and total number of cases. 

In object detection problem, Everingham et al. 

[26] determine the number of detected area using the 
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Intersection over Union (IoU). IoU is the ratio of the 

intersection between detected region (Rd) and ground 

truth region (RGT), and the combination (union) of 

two areas which is formulated by the following 

equation. 

 

𝐼𝑜𝑈 =
𝑅𝑑∩𝑅𝐺𝑇

𝑅𝑑∪𝑅𝐺𝑇
                                                         (8) 

 

3. Results and discussion 

The experiments were done using three scenarios. 

The first scenario was to implement the ACF detector 

method. The second one was to use the Faster R-CNN 

and the third scenario was to combine both the ACF 

detector and Faster R-CNN, as our proposed method. 

The comparation was performed to see the influence 

of ACF detector on Faster R-CNN performance. We 

conducted two evaluations, i.e. the time performance 

of the training process on Faster R-CNN detector, and 

the detection performance of the fetal cross-sectional 

area. The tests were done using a computer with the 

following specifications: processor Intel Core i7 with 

4GB memory and GPU 3.0 745M. 

3.1 Evaluating of training process 

The first experiment aims to determine the 

influence of the use of training data extracted from 

the ACF detector in the proposed method, to the 

decrease of training time on each phase in the Faster 

R-CNN detector.  

The training process in the Faster R-CNN 

detector consists of the pre-trained CNN and the RPN 

training. The CNN training process requires two 

categories of input data, that is the cross-sectional 

area as positive images and non-cross-sectional area 

as negative images. The training data used in this 

research is divided into two kinds. The first training 

data is consist of 362 cross-sectional images and 362 

non-cross sectional images that are created manually. 

The second one is comprising 77 cross-sectional 

objects and 31 non-cross-sectional objects that 

obtained from ACF detector. 

Table 2 shows the comparison of the CNN training 

process using first training data and second training 

data. It can be seen that the training process of the 

first training data takes longer and the number of 

iterations is more significant with smaller epoch 

number. Although the average mini batch loss of the 

first training data is smaller than the second one, the 

classification accuracy of the testing data shows 

lower results than the second training data. 

 
 

Table 2. CNN training comparation. 
 1st Training Data  2nd Training Data 

Epoch 10 20 

Iteration 1300 60 

Time (second) 944.45 78.97 

Mini-batch 

loss average 

0.125 0.289 

Classification 

accuracy 

0.9306 1 

 
Table 3. Comparation of RPN training in Faster R-CNN  

 1st Training Data  2nd Training Data 

Stage 1   

Iteration 610 610 

Time (second) 2113.97 1127.48 

Mini-batch 

loss average 

0.183 

 

0.184 

Stage 2   

Iteration 550 570 

Time (second) 2490.28 1519.84 

Mini-batch 

loss average 

0.289 0.389 

Stage 3   

Iteration 610 610 

Time (second) 2062.55 1379.76 

Mini-batch 

loss average 

0.384 0.402 

Stage 4   

Iteration 590 600 

Time (second) 2332 1619.34 

Mini-batch 

loss average 

0.637 0.584 

 

The pre-trained CNN is used to model the RPN 

network, as described in Section 2.4. The RPN 

network is trained using the Faster R-CNN object 

detector consisting of four stages. The object detector 

training uses the stochastic gradient descent 

momentum method with a maximum epoch 10, initial 

learning rate 0.00001 for phase 1 and 2 and 0.000001 

for step 3 and 4. Comparison of training process 

between the trained CNN network which using the 

first training data and the second training data  can be 

seen in Table 3. In stage 1 to stage 3, the mini batch 

loss average of the first RPN training is smaller than 

the second one. However, at the end of the stage, the 

second RPN training has an average loss lower than 

the first one. In all stages, the training time of the 

second RPN training is much smaller than the first 

one. 

In the first experiment, we show the time required 

for the CNN and the RPN training phase in the Faster 

R-CNN method by using manually-created training 

images compared to the training data extracted from 

the ACF detector. From the experiment, there is a 

decrease in time during the training process both in 
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the CNN training phase and in the RPN training 

phase. As presented in Table 2, with a smaller amount 

of training data, then the number of iterations in the 

CNN training phase is reduced. However, the 

accuracy of the classification increases. This means 

that the use of training data obtained from the ACF 

detector can improve the accuracy of the 

classification and reduce time required for CNN 

training. In Table 3, we can see that the time required 

for each phase of the RPN training step also 

decreased by an average of 37%. 

3.2 Evaluating of detection performance 

The second trial aims to show the performance of 

the combination of Faster R-CNN and ACF detector 

when identifying the cross-sectional object in the 

ultrasound image. We compare the proposed 

combination method with the ACF detector alone and 

the Faster R-CNN alone. To see the performance of 

the cross-sectional object detection in the ultrasound 

images, we present some examples of the detected 

results with the highest IoU scores (Fig. 5) and the 

lowest IoU scores (Fig. 6) and some undetected 

object by several methods (Fig. 7).  

 

  
(a)                                         (b) 

  
(c)                                         (d) 

  
 (e)                                         (f) 

Figure.5 Detection results with highest IoU: (a) and (b) 

ACF detector, (c) and (d) Faster-RCNN, and (e) and (f) 

Faster RCNN+ACF detector 

 

ACF detector is capable of providing the highest 

IoU for a small cross-sectional area, as shown in Fig. 

5 (a) and Fig. 5 (b). However, the ACF detector does 

not recognize cross-sectional regions that have a low 

contrast to the background as shown in Fig. 6 (a), and 

only identify the partial areas as in Fig. 6 (b). The 

ACF detector cannot detect the object located on the 

edge of the scanning area with the incomplete shape 

as in Fig. 7 (a). 

The Faster R-CNN method can recognize the 

sizeable cross-sectional object and the high contrast 

area as shown in Fig.5 (c) as well as the low contrast 

area as in Fig.5(d). But the Faster R-CNN method 

cannot identify the small object that surrounded by 

the other object with similar brightness, as in Fig. 7 

(b).  The Faster R-CNN can identify the objects as in 

Fig. 6 (c) and Fig.6 (d) even though not precisely. The 

combination method, Faster R-CNN+ACF, can 

recognize all of the cross-sectional objects from the 

given images including the object that cannot be 

identified by the two previous methods (Fig. 7 (a) and 

Fig. 7 (b). 

 

  
 

 

(a)                                         (b) 

  
(c)                                         (d) 

  
   (e)                                         (f) 

Figure.6 Detection results with lowest IoU: (a) and (b) 

ACF detector, (c) and (d) Faster-RCNN, and (e) and (f) 

Faster RCNN+ACF detector 
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(a)                                         (b) 

Figure.7  Detected objects by the proposed method that is 

undetected by: (a) ACF detector and (b) Faster R-CNN  

 

To evaluate the method quantitatively, Fig. 8 

presents the average precision curve for each 

threshold value of IoU. The average precision of each 

approach begins to fall when the threshold value is 

0.5. Even the ACF detector starts dropping at 

threshold value equals to 0.4. Thus, the best threshold 

value of this cross-sectional object detection is 0.5.       

 

 
Figure. 8 Average precision per threshold of IoU 

 

 

 
Figure.9 Precision recall curve 

 

 

Table 4. Average precision comparation 

Method for Each 

Scenario 

Average 

Precision 

ACF Detector  0.894 

Faster R-CNN  0.791 

ACF+Faster R-CNN 0.928 

 

Fig. 9 shows a precision / recall (PR) curve for the 

threshold value 0.5. The precision level of the 

combination of Faster R-CNN+ACF detector has the 

precision of 1 when the recall is 0.7, whereas the 

precision of  ACF detector starts to decrease when 

recall is larger than 0.4. The lowest precision is the 

Faster R-CNN method alone which begins to 

decrease its precision when recall is less than 0.1. 

Table 4 summarises the comparison of average 

precision (AP) performance of each experiment 

scenario for the same threshold value of 0.5. The first 

scenario using ACF detector gives the AP of 0.894. 

The second scenario implementing Faster R-CNN 

has the AP of 0.791. The third one applying the 

combination of ACF detector and Faster R-CNN 

results in the best average precision of 0.928. 

In the second experiment, we can see that the 

cross-sectional object has various shapes such as 

small circle (Fig. 5 (a) and Fig. 5 (b)) and a rather big 

one (Fig. 6 (c)), has no clear boundaries (Fig. 5 (d)), 

has low contrast to its background (Fig. 6 (a)), 

attached to another similar object (Fig. 6 (d)) and the 

incomplete object in the edge of image (Fig. 7 (a)). It 

is difficult to recognize the cross-sectional objects 

using common thresholding methods or edge-based 

segmentation methods. The object detector methods 

both non-deep learning such as the ACF detector and 

deep-learning such as the Faster R-CNN can identify 

the cross-sectional objects as shown in Fig. 5 and Fig. 

6. But both the ACF detector and the Faster R-CNN 

cannot recognize the cross-sectional area in Fig.7. 

The combination method, ACF+Faster R-CNN, can 

identify all cross-sectional objects in ultrasound 

image even those that are unsuccessfully recognized 

by both approaches alone, as shown in Fig.7. The 

combination method also can increase the average 

precision when compared with ACF detector or 

Faster R-CNN alone. So, the combination of Faster 

R-CNN and ACF detector can improve the ability to 

recognize the cross-sectional area in fetal ultrasound 

images. This capability will facilitate further cross-

sectional object analysis, such as to calculate the size 

of the region. 

4. Conclusion 

In this research, a method that combines the non-

deep learning method of ACF Detector and the Faster 

R-CNN deep-learning method can recognize the 
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cross-sectional objects that have shape variation, 

have no clear boundaries, have incomplete shape, 

attached to the similar object, and have a low contrast 

to its background. The non-deep learning method is 

used to extract non-cross-sectional regions as the 

input of pre-trained CNN processes. The combination 

of Faster R-CNN and ACF detector methods can 

increase the average precision of cross-sectional 

objects detection in ultrasound images and can 

decrease the training time of Faster R-CNN object 

detector. This method can be developed to recognize 

other objects in fetal ultrasound images such as 

abdominal or head circumference. 
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