
Received: March 15, 2018 1

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.01

A New Similarity-Based Greedy Approach for Generating Effective Test Suite

Shilpi Singh 1* Raj Shree 1

 1Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, India

*Corresponding author’s Email: shilpi.singh.it@gmail.com

Abstract: Software regression testing is one of the most critical phases of software development life cycle, used by

developers with the intent of detecting new faults to validate modified software prior to delivery to the customer. To

validate updated features, new test cases are generated by the testers which increment the test suite size

automatically. The resulting test suite may contain obsolete, redundant, and ambiguous test cases. Therefore, there is

a strong requirement of an intelligent testing approach to reduce the test suite size by removing those unessential test

cases economically. This paper proposed an interesting approach, which involves the combination of regression

testing techniques: minimization, and prioritization both. The main focus is on multiple regression activities with

multiple criteria rather than using only single activity to produce an optimal solution. In this paper clustering

approach is also considered, which could simplify and enhance the minimization and prioritization task. To evaluate

the effectiveness of the strategy, we performed an experimental investigation together with an eminent heuristic

Harrold Gupta and Soffa (HGS), considering the testing measures of the minimized test suite size and fault coverage.

The results show that, similarity-based greedy approach with multiple coverage criteria can be quite effective in

terms of fault detection loss of reduced test suite without much affecting the percentage of suite size reduction.

Keywords: Regression testing, Test suite, Test cases, Test suite reduction, Test case prioritization, Clustering.

1. Introduction

Software testing is the most commonly used but

expensive method for developing quality software

by validating the software program [1]. The goal of

software testing is to execute the software system,

identify the faults that cause failures, and improve

the software quality by removing the identified

faults. It is a very expensive process as well as the

important task of the software development life

cycle (SDLC), through which we add some value to

the software program [2].

Inadequate testing is one of the major cost

factors. Testing efforts, often consume more than

half of the overall development resources. Early

detection of faults and failure reduces maintenance

costs as well as requires fewer corrections [3].

According to the IEEE definition [4], a test case is a

collection of input data given to the program and

expected output results created to evaluate a

software function or test requirement. It is hard for a

single test case to satisfy the coverage of entirely

given test requirements. That is why; a number of

test cases are generated and collected in a test suite

[5]. Because of the extensive use of testing to

measure the quality of the software, one of the

challenges faced by organizations is the test suite

optimization [6].

Software regression testing processed

continuously during the software development and

maintenance of evolving software. Maintenance

requires some modifications, which leads to growth

in software and it results in an increment in test suite

size. Over time, some test cases in a constructed test

suite may become redundant, because the test cases

created specifically for some selected testing criteria

may also satisfy other requirements, and a

requirement may still satisfy by some of the proper

subsets of the test suite. Two test cases are termed as

duplicate or redundant if their satisfied testing

objectives are same. On the other hand, some of the

test cases are termed as essential if their testing

objective is unique. So, the prime objective is to

Received: March 15, 2018 2

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.01

remove the duplicate test cases and extract the

essential or diverse test cases to generate the optimal

test suite.

With the aim of optimizing the test suite, many

researchers proposed different regression testing

techniques; such as test case selection, minimization,

and prioritization techniques by using different

approaches. Majority of the existing minimization

tools and framework consider code coverage

information of the software to be tested as a base to

determine the minimized test suite [7-9] and apply

any of these techniques: Greedy [10], GE (Greedy

Essential) [11], GRE (Greedy Redundant Essential)

[12], and HGS (Harrold Gupta and Soffa) [13].

Greedy approach repeatedly chooses the test case

that covers the maximum number of uncovered test

requirements. GE is based on essential concept.

GRE is based on three rules: the greedy heuristic,

the 1-to-1 redundancy rule, and the essentials rule.

Whereas, HGS approach is based on selection of test

cases according to their degree of essentialness, i.e.,

the order of test cases is most essential to least

essential in the reduced test suite. On the other hand,

Shounak et al. [20] proposed an algorithm i.e.

GTAP) using TAP (Test cases which Already

included in Pool-based Measure) measure and

greedy search algorithm to reduce the number of test

cases. Optimizing the test suite by ordering the test

cases Megala et al. proposed a cost-cognizant

history based prioritization approach using immune

algorithm that makes use of the historical

information of the test cases [22].Coverage based

test suite reduction techniques have gained wide

consideration but they do not always give a

satisfactory output. Empirical studies, however,

reveals that code coverage may not the strong

criteria for test suite effectiveness [14]. To address

this problem, a number of techniques and

framework have been proposed to make the

reduction process more effective which is based on

test case classification according to similarity degree

measured by a distance function [2, 15-16].

Diversity and similarity-based test case selection

and prioritization are one of the new approaches

with favourable output [17-19]. But the above

techniques did not provide any systematic approach

for minimization and prioritization both. They have

optimized the test suite only on the basis of the

calculated similarity degrees between test case pairs.

So, the study suggests that using the greedy

technique with similarity-based approach could be a

better option for effective regression testing.

In this paper, we proposed a similarity based

greedy approach for test suite reduction. The main

idea is to analyse the similarity degree among test

case pairs and systematically remove them by

applying enhanced greedy algorithm while

maintaining test requirements coverage. In this

paper clustering approach is also considered, which

could simplify the further optimization process. We

divided the proposed approach into different phases,

and each phase helps to get an optimal

representative test set. However, rather than using

single coverage criterion, here we used multiple

criteria i.e. branch, control flow, def-use, and data

flow to compute the similarity (distance) values for

each test case pair. With the help of distance values,

cluster of test cases are generated accordingly. And,

on each cluster combination of regression testing

techniques i.e. test case minimization with

prioritization is applied (testers will decide order to

execute these techniques).

In order to evaluate the quality and effectiveness

of the proposed approach, we performed

experiments on a standard case study. We also

implemented the well-known standard HGS

algorithm [17]; to compare the results of optimized

test suites using our similarity-based test suite

optimization algorithm with those of minimizing test

suites using the HGS algorithm.

The rest of the paper is organized as follows:

Section 2 provides a background of test suite

optimization and an overview of related work.

Section 3 presents the proposed similarity based

greedy approach for test suite optimization. Section

4 presents an experimental study to validate the

proposed approach, while, Section 5 discusses the

result and analysis of the proposed work. Finally,

the conclusion is presented in Section 6.

2. Background

Different approaches including test case

selection, minimization, and prioritization aimed at

finding the optimal representative test set that

reduces the cost and effort required for regression

testing. A complete survey of these approaches and

critical investigation on different TSR (Test Suite

Reduction) framework and tools are discussed in

detail by Yoo and Harman [22] and Khan et al. [23].

In this paper, we presented similarity based

greedy approach, which involves the combination of

different regression testing techniques such as test

case selection, minimization, and prioritization and

employs agglomerative hierarchical clustering

approach as well to produce an optimal solution.

The main aim is to find an optimized representative

test set by concentrating on multiple regression

testing techniques rather than using the only single

technique. Khan et al. combines the reduction and

Received: March 15, 2018 3

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.01

prioritization to get minimal and ordered test suite.

However, other previous work did not consider any

potential combination of regression testing

techniques.

Despite the above-discussed techniques

researchers are also working on similarity-based

approach. The main aim of using similarity-based

approach is to increase the diversity of test suite for

regression testing. Different distance measures were

used for this purpose. With the help of any distance

measure, we can evaluate how much the two test

cases are different or similar to each other. Hemmati

et al. [24] analysed different similarity measures for

similarity based test case selection. Cartaxo et al.

[25] presented similarity based selection in the

context of MBT (Model-Based Testing). Whereas,

Coutinho et al. [26] proposed test suite reduction

strategy based on similarity degree between test case

pair. The key idea behind their approach is to

remove most similar test cases according to some

defined coverage requirements. Chunrong et al.

[27] proposed different similarity based

prioritization techniques to order the test cases

according to their importance with the help of edit

distances. Wang et al. [19] proposed global

similarity based prioritization to overcome the

problems that are not effectively solved by coverage

based prioritization techniques. All the above

techniques have their common objective i.e. to

optimize the test suite. But, they have used only

single coverage criterion to compute the similarity

degree between test case pairs. And the removal of

such test cases by their similarity degree based on

certain single coverage criterion may suffer from the

quality of the test suite generated and overall fault

detection ability may also reduce. The proposed

approach presented a systematic way to get the

desired output by considering different coverage

criteria with a similarity-based approach to

minimize and prioritize the test cases.

3. The proposed approach

 The proposed approach consisting of three

phases: (1) Test case analysis (2) Clustering and (3)

Optimization. Where, Fig. 1 shows the flow diagram

of proposed similarity based greedy approach. In the

following, we briefly discuss all the three phases.

3.1 Test case analysis

The required inputs for this phase are - Program

source code, Test suite, and Test case coverage

metrics. The test case coverage metrics are used to

compare any pair of test cases in a quantifiable

manner. Four metrics used in this work are Block

coverage equivalence, Control-flow divergence, def-

use equivalence and data flow divergence. A first

metric measures the block testing overlap between

two test cases of a test suite. Second metric control-

flow divergence measures the similarity of two test

cases that test the same blocks that have conditional

path within them. Third metric DU equivalence

measures def-use path testing overlaps between two

test cases in a test suite. And, the last metric Data

divergence measures the similarity or diversity of

test cases by data values used by test cases for code

variables. In this phase, all the four metrics values

are calculated. After getting these values, similarity

and diversity values of test case pairs are calculated.

Algorithm 1 illustrates the procedure to analyse the

test cases. In this phase, test cases are analysed and

selected based on their similarity and diversity

values. With the help of calculated similarity values,

clustering approach will be applied to categorize the

test cases accordingly.

3.2 Test case clustering

For clustering, we applied an agglomerative

hierarchical clustering approach which is based on

the distance between test case pairs [28]. Test cases

are grouped into a cluster with the help of their

similarity value as measured in the analysis phase.

For making a group of similar and diverse test cases,

threshold values of divergence and equivalence as

0.05 and 0.90 are assumed. Only those test cases

having divergence value less than (0.05) and

equivalence value greater than (0.90) comes under

the similar or duplicate group and the remaining test

cases are selected for a diverse group.

3.3 Test case optimization approach

On each cluster, a combination of optimization

technique (Reduction and Prioritization) is applied

to get the refined result. As discussed earlier, users

are free to select the execution order of combination.

If they use the combination of both the techniques, it

helps them to determine the execution order of test

cases as well as they get improved fault detection

rate. Note that we have employed Enhanced Greedy

Algorithm (CMIMX technique) [29] for test suite

reduction followed by prioritizing the test cases by

their total number of the unique path coverage. After

applying the optimization technique, testing team

will get the minimized as well as an ordered test

suite, which is termed as an optimized test suite.

Received: March 15, 2018 4

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.01

Figure.1 Effective test suite generation process

4. Empirical study

To evaluate the effectiveness of the proposed

approach, we implemented our algorithm and

applied it to the benchmark program of prime

number (see Table. 1). We have extracted some of

the test cases for the given program to validate the

proposed work (see Table 2).

The complete work of this paper is carried out in

three essential phases as discussed above: where the

first phase is achieved by TCCA algorithm and

combination of second and third phase is achieved

by SBGA algorithm. For each test case pair, the

coverage metrics are calculated with the help of

TCCA algorithm, where the values are shown in

Table 3. Here, 𝑀𝐵 , 𝑀𝐶𝐹 , 𝑀𝐷𝑈 𝑎𝑛𝑑 𝑀𝐷𝐹 represents

coverage metric value for block, control-flow, def-

use and data flow coverage. After applying TCCA

algorithm, the Commonality (Comm.) and

Divergence (Div.) signature values are calculated

for each pair of test cases (see Table 4).

We apply Similarity Based Greedy Algorithm

(SBGA) on collected coverage metrics for each pair

of test cases. According to the agglomerative

clustering approach, we have created four groups i.e.

diverse, relaxed, sensitive, and duplicate. To remove

some conflicts, we merge them with each other and

creates only two groups i.e. diverse and similar

group.

Table 1. Sample program

Original Program
Fault

No.
Injected Faults

#include <iostream.h>

int main()

int num i;

cout << “enter a number \n”;

cin >> num;

if(num%2==0) F1 if(num%2>=0)

cout<< “even\n”; else

cout<< “odd\n”;

if(num == 1) F2 if(num<1)

cout<< “prime\n”; else

{for (i=2; i ≤ num/2; ++i) F3 {for (i=2; i ≤

num/2; --i)

if(num%i==0) F4 if(num%i==1)

{cout<< “not prime\n”;

goto lb;}

cout<< “prime\n”;}

lb; return 0; }

Received: March 15, 2018 5

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.01

Algorithm 1: Test Case Coverage Analyzer (TCCA)

Input: N: Total number of test cases

 𝑅𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎: Requirement coverage information in terms of the selected criteria i.e. blocks(𝑅𝐵𝑟), Control-

Flow(𝑅𝐶𝐹), Def-Use(𝑅𝐷𝑈), Data Flow (𝑅𝐷𝐹) coverage, and Path (𝑅𝑃) coverage.

Output: Similarity Matrix

Begin

 /* Calculate block coverage commonality */

1. X ← Number of common blocks between each pair of test cases;

2. Y ← Number of unique blocks tested by both test case pair;

3. for each test case (𝑇𝑖 ≤ 𝑁) do

4. for each test case (𝑇𝑖+1 ≤ 𝑁) do

5. 𝐵𝑙𝑜𝑐𝑘 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 𝑀𝐵 (𝑇𝑖 , 𝑇𝑖+1) = 𝑋 𝑌⁄ ;

6. end for

7. end for

/* Control Flow (CF) is calculated for each test case that executes block B with a conditional branch. */
8. 𝑛(𝑇) ← Number of times true branch is executed

9. 𝑛(𝐹) ← Number of times false branch is executed

/* Calculate the total number of times each branch is executed */

10. for each test case (𝑇𝑖 ≤ 𝑁) do

11. 𝑆𝑢𝑚(𝑇, 𝐹) ← 𝑛(𝑇) + 𝑛(𝐹) ;

/* Calculate the average number of times each branch is executed */
12. 𝐴𝑣𝑔(𝑇, 𝐹) ← 𝑆𝑢𝑚(𝑇, 𝐹) 𝑇𝑜𝑡𝑎𝑙(𝐵𝑟)⁄ ;

13. 𝐶𝐹𝐵(𝑇𝑖) ← ((𝑛(𝑇) − 𝐴𝑣𝑔(𝑇, 𝐹)) + (𝐴𝑣𝑔(𝑇, 𝐹) − 𝑛(𝐹))) 𝑆𝑢𝑚(𝑇, 𝐹)⁄ ; end for

/* Variance of CF values is calculated for each test case pair that executes common blocks with conditional

statements */

14. for each test case (𝑇𝑖 ≤ 𝑁) do

15. for each test case (𝑇𝑖+1 ≤ 𝑁) do

16. 𝑛 (𝑐𝑜𝑚𝑚𝑜𝑛(𝑇𝑖 , 𝑇𝑖+1)) = Number of common shared block for each test case pair;

17. 𝑀 = 𝑀𝑒𝑎𝑛(𝐶𝐹𝐵(𝑇𝑖), 𝐶𝐹𝐵(𝑇𝑖+1) ;

/* Calculate the variance of CF (Control Flow) value for a common block B for each test case pair */

18. ∆ 𝐵(𝑇𝑖 , 𝑇𝑖+1) ← (𝐶𝐹𝐵(𝑇𝑖) − 𝑀)2 + (𝐶𝐹𝐵(𝑇𝑖+1) − 𝑀) 2 ;
19. 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐹𝑙𝑜𝑤 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 𝑀𝐶𝐹 (𝑇𝑖 , 𝑇𝑖+1) = ∑ ∆ 𝐵(𝑇𝑖 , 𝑇𝑖+1) 𝑛 (𝑐𝑜𝑚𝑚𝑜𝑛(𝑇𝑖 , 𝑇𝑖+1)⁄

20. end for

21. end for

/* Calculate def-use coverage equivalence */

22. for each test case (𝑇𝑖 ≤ 𝑁) do

23. for each test case (𝑇𝑖+1 ≤ 𝑁) do

24. W= No. of common def-use chain tested by test case pairs

25. Z = No. of unique def-use chain tested by both test case pairs

26. 𝑑𝑒𝑓 − 𝑢𝑠𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 𝑀𝐷𝑈 (𝑇𝑖 , 𝑇𝑖+1) = 𝑊 𝑍⁄ ;

27. end for

28. end for

/* For each test case that executes a block B, a data flow (DF) diversity value is calculated */

29. for each test case (𝑇𝑖 ≤ 𝑁) do

30. 𝐷𝐹(𝑇𝑖 , 𝐵) ← (𝑛(𝑇) − 𝑛(𝐹)) 2⁄ ; end for
/* Calculate the variance of DF value for a common block B with loop statements */

31. for each test case (𝑇𝑖 ≤ 𝑁) do

32. for each test case (𝑇𝑖+1 ≤ 𝑁) do

33. 𝑛 (𝑐𝑜𝑚𝑚𝑜𝑛(𝑇𝑖 , 𝑇𝑖+1)) = Number of common shared block for each test case pair;

34. 𝑀 = 𝑀𝑒𝑎𝑛(𝐷𝐹𝐵(𝑇𝑖), 𝐷𝐹𝐵(𝑇𝑖+1) ;

35. ∆ 𝐵(𝑇𝑖 , 𝑇𝑖+1) ← (𝐷𝐹𝐵(𝑇𝑖) − 𝑀)2 + (𝐷𝐹𝐵(𝑇𝑖+1) − 𝑀) 2 ;
36. 𝐷𝑎𝑡𝑎 𝐹𝑙𝑜𝑤 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 𝑀𝐷𝐹 (𝑇𝑖 , 𝑇𝑖+1) ← ∑ ∆ 𝐵(𝑇𝑖 , 𝑇𝑖+1) 𝑛 (𝑐𝑜𝑚𝑚𝑜𝑛(𝑇𝑖 , 𝑇𝑖+1)⁄ ;

37. end for

38. end for

/* Generate Test Case Distance matrix to compare the pair of test cases */

39. for each test case (𝑇𝑖 ≤ 𝑁) do

40. for each test case (𝑇𝑖+1 ≤ 𝑁) do

41. 𝑀𝐷𝑖𝑠𝑡(𝐶𝑜𝑚𝑚𝑎𝑛𝑎𝑙𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒[𝑇𝑖 , 𝑇𝑖+1]) ← (𝑀𝐵 + 𝑀𝐷𝑈) 2⁄ ;

Received: March 15, 2018 6

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.01

42. 𝑀𝐷𝑖𝑠𝑡(𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒[𝑇𝑖 , 𝑇𝑖+1]) ← (𝑀𝐶𝐹 + 𝑀𝐷𝐹) 2⁄ ;
43. end for

44. end for

45. end TCCA

Algorithm 2: SBGA (Similarity Based Greedy Algorithm)

1. Apply agglomerative clustering;

2. if (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 == 1) then

3. On each cluster, apply enhanced greedy algorithm (CMIMX);

4. for each test cases 𝑇𝑖 do

5. Calculate number of unique coverage for each test cases: 𝑢𝑛𝑞𝑐𝑜𝑣𝑝(𝑇𝑖);

6. Ranked the test cases based on highest 𝑢𝑛𝑞𝑐𝑜𝑣𝑝(𝑇𝑖) to lowest; end for

7. else if (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 == 2) then

8. Apply the step 4, step 5, step 6 and then step 3 respectively;

9. else apply step 3 onwards; endif
10. endif
11. end SBGA

Table 2. Test cases

Test Cases Test cases inputs
Expected

output

T1 7 Prime

T2 2 Prime

T3 6 Not prime

T4 15 Not prime

T5 1 Prime

T6 10 Not prime

Table 3. Coverage matrix for test case pairs

Test cases
Coverage metrics values

T1 T2 T3 T4 T5 T6

T1

𝑀𝐵 0.00 0.66 0.42 0.66 0.50 0.42

𝑀𝐶𝐹 0.00 0.88 0.22 0.22 − 0.22

𝑀𝐷𝑈 0.00 1.00 0.75 0.75 0.66 0.75

𝑀𝐷𝐹 0.00 0.50 0.50 0.12 − 0.50

T2

𝑀𝐵 0.66 0.00 0.66 0.42 0.28 0.66

𝑀𝐶𝐹 0.88 0.00 2.00 2.00 − 2.00

𝑀𝐷𝑈 1.00 0.00 0.75 0.75 0.66 0.75

𝑀𝐷𝐹 0.50 0.00 0.00 0.12 − 0.00

T3

𝑀𝐵 0.42 0.66 0.00 0.66 0.28 1.00

𝑀𝐶𝐹 0.22 2.00 0.00 0 − 0

𝑀𝐷𝑈 0.75 0.75 0.00 1.00 0.50 1.00

𝑀𝐷𝐹 0.50 0.00 0.00 0.12 − 0.00

T4

𝑀𝐵 0.66 0.42 0.66 0.00 0.50 0.42

𝑀𝐶𝐹 0.22 2.00 0.00 0.00 − 0.00

𝑀𝐷𝑈 0.75 0.75 1.00 0.00 0.50 1.00

𝑀𝐷𝐹 0.12 0.12 0.12 0.00 − 0.12

T5

𝑀𝐵 0.50 0.28 0.28 0.50 0.00 0.28

𝑀𝐶𝐹 − − − − 0.00 −

𝑀𝐷𝑈 0.66 0.66 0.50 0.50 0.00 0.50

𝑀𝐷𝐹 − − − − 0.00 −

T6

𝑀𝐵 0.42 0.66 1.00 0.42 0.28 0.00

𝑀𝐶𝐹 0.22 2.00 0 0.00 − 0.00

𝑀𝐷𝑈 0.75 0.75 1.00 1.00 0.50 0.00

𝑀𝐷𝐹 0.50 0.00 0.00 0.12 − 0.00

Table 4. Overall distance matrix for test case pairs

Test

cases
Distances

Signature values

T1 T2 T3 T4 T5 T6

T1
Div. 0.69 0.36 0.17 0.00 0.36

Comm. 0.83 0.58 0.70 0.58 0.58

T2
Div. 1.00 1.06 0.00 1.00

Comm. 0.70 0.58 0.47 0.70

T3
Div. 0.06 0.00 0.00

Comm. 0.83 0.39 1.00

T4
Div. 0.00 0.06

Comm. 0.50 0.71

T5
Div. 0.00

Comm. 0.39

4.1 Reduction and then prioritization

On each generated cluster, we apply CMIMIX

procedure to minimize the cluster size by removing

obsolete or redundant test cases. Control flow graph

of the source code is given in Fig. 2 and the paths

covered by the test cases are shown in Table 5. One

(1) and zero (0) represents paths covered and not

covered respectively. With the help of Table 6

further prioritization is processed. Finally, we get

the optimized (minimized and ordered) clusters C1

(T2, T1, T5) and C2 (T4, T3).

4.2 Prioritization and then reduction

In this optimization approach, first of all, we

prioritize the test cases of the given cluster, and then

we apply the minimization technique on them. After

prioritization, in cluster one the value of PRTest

becomes {T2, T1, and T5}. Subsequently, the

minimization technique (CMIMX) is processed to

get the representative test suite in cluster one.

Received: March 15, 2018 7

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.01

Figure.2 Control flow graph of the source program with

their path coverage.

Keep in mind that, always prefer the test case

have the highest priority while applying

minimization here. While considering cluster two,

after prioritization we get the PRTest as {T4, T3,

T6}, and because the test case pair T3 and T6 are

duplicate the minimized test suite or cluster

becomes {T4, T3}. Then, we have combined the

results of generated clusters and get the optimized

test suite i.e. T2, T1, T5, T4, and T3 respectively.

The result of this technique is similar to previous

one. But, if we have taken a larger set of test cases,

results may defer accordingly.

Table 5. Path coverage of test cases

Test

Cases

Path Coverage (P)

1 2 3 4 5 6 7 8 9 10 11 12 13

T1 1 0 1 0 1 0 1 1 1 1 1 0 0

T2 1 1 0 1 0 0 1 1 0 0 0 0 0

T3 1 1 0 1 0 0 1 0 1 0 0 1 1

T4 1 0 1 0 1 0 1 0 1 0 1 1 1

T5 1 0 1 0 1 1 0 0 0 1 0 0 0

T6 1 0 1 0 1 0 1 1 1 1 1 0 0

Table 6. Unique paths covered by test cases of cluster C1

Test

Cases

Path Covered

(cov(t))
│cov(t)│ │unqcov(t)│

T1
1, 3, 5, 7, 8, 9,

10, 11
8 2 {9, 11}

T2
1, 2, 4, 7, 8, 12,

13
7

4 {2, 4, 12,

13}

T5 1, 3, 5, 6, 10 5 1 {6}

Table 7. Coverage criteria

Coverage

Criteria
Description

def-use

Coverage

Measures a logic execution sequence in a

block that defines and uses a variable [2]

Block

Coverage

Measures the sequence of consecutive

groups of statements [2]

Control

Flow

Coverage

Measures the same block that has a

conditional path between them [15]

Data

Flow

Coverage

Measures the coverage with respect to

data values used for code variables [15]

Path

Coverage

Measure the coverage of each possible

routes in each function [16]

5. Experimental results and discussion

 The performance evaluation of the proposed

algorithms and state-of-the-art algorithm HGS [13]

has been performed on a benchmark program with

different coverage criteria (Table 7). The four

coverage criteria i.e. Block, Control flow, def-use

and data flow are used to assess the level of

similarity between test case pair. Alternatively, path

coverage is used for optimizing test suite. Hand

seeded faults were used for the subject program. The

representative optimized test set obtained for the

subject program is analyzed for test suite size and

fault detection effectiveness. We have compared the

proposed approach with the standard minimization

technique i.e. HGS approach. For the HGS

algorithm, we have taken each coverage criteria

independently for measuring their adequacy.

Moreover, for the proposed algorithm we have taken

multi-coverage criteria. The results of this

experiment are presented via Fig. 4, which denotes

the percentage of suite size reduction (SSR) and

percentage fault detection loss (FDL) of minimized

test suites.

To show the importance of combining

prioritization with minimization, we have compared

the proposed prioritization approach with random

prioritization that are presented via Fig. 4 and Fig. 5.

Received: March 15, 2018 8

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.01

5.1 Performance metrics

The following metrics are used for performance

evaluation of the proposed and state-of-the-art

algorithms and are described as follows:

The first test metric implies the percentage reduction

in test suite i.e. Suite Size Reduction (SSR). This is

calculated as in Eq. (1)

𝑆𝑆𝑅 = 100 × (1 −
𝑇𝑟𝑠

𝑇
) (1)

On the other hand, second metric Fault detection

loss (FDL) percentage signifies the total number of

faults revealed by the minimized test suite. It is

calculated as in Eq. (2)

𝐹𝐷𝐿 = 100 × (1 −
𝐹𝑚

𝐹
) (2)

Where 𝐹 represents the total number of distinct

faults revealed by original test suite and 𝐹𝑚 is the

number of distinct faults exposed by minimized test

suite.

5.2 Result and analysis

As can be seen in Fig. 3, for each coverage

criteria the percentage of size reduction and fault

detection loss are different for HGS algorithm. The

main drawback of this algorithm is that they achieve

high test suite size reduction with the sacrifice of

significant loss in fault detection ability. However,

the prime objective of any testing scheme is to

reveal maximum faults. We observe from Fig. 3 that

suite size reduction with multiple coverage criteria

by the proposed algorithm is lower than the HGS

algorithm as expected. However, the proposed

algorithm achieves zero fault dete ction loss since

the reduced test suite retain all coverage (multi-

coverage). Where the loss is very less than the

corresponding HGS fault detection loss values. In

the proposed approach we have mainly concentrated

on fault detection ability of the reduced test suite.

In this work, the test cases are checked for all the

selected coverage criterion for redundancy rather

than considering only single criterion as HGS

algorithm. Because while removing any duplicate

test cases from the test suite, there might be a

possibility that the removed test cases may not

become duplicate with respect to another criterion.

The user can also use a different set of coverage

criteria to evaluate similarity or difference between

test case pair depending on their requirement. Fig. 4

and Fig. 5 illustrates the fault coverage percentage

of ordered test cases based on random prioritization

and proposed prioritization approach. And result

reveals that our proposed approach is quite effective

in terms of early fault detection as compared to

random based approach. As we can clearly see in

Fig. 4 that 100% fault coverage is obtained at last

while execution of test case T5. Despite that in Fig.

5, 100% coverage is obtained at an early stage while

executing the test cases on a priority basis. By

comparing the proposed approach with the

conventional approach (HGS), our approach

identifies maximum faults as early as possible and

show good improvement in fault detection loss (see

Fig. 3).

Therefore analysis reveals that, identification of

duplicate test cases based on any one single criteria

and throwing them away is not an smart approach.

Our experimental results clearly reveals that use of

more than one criteria improves the quality of

reduced and prioritized test suite in terms of

coverage and fault detection ability. Our approach

also provides the combinatorial approach for

regression testing techniques i.e. the possible

combination of minimization and prioritization.

Overall the proposed similarity based greedy

algorithm performs better than the existing coverage

based technique HGS. If we have taken larger data

set for validation of the proposed work, results

would be quite different in terms of suite size

reduction and fault detection loss.

6. Conclusion

In this paper, a similarity-based greedy approach

is presented to get an optimal test suite. The

optimized test suite is used by testers for effective

regression testing. The goal is to apply similarity-

based strategy with multiple criteria to identify the

difference between a pair of test cases and compare

them to similarity level. This paper concentrates on

the combination of regression testing techniques i.e.

minimization and prioritization with different

coverage criterion to optimize the test suite size. The

main idea is to analyze the test cases first to know

the difference and similarity value of the test case

pairs and further apply the greedy and clustering

approach to optimize the test cases accordingly. We

have proposed two algorithms TCCA and SBGA for

optimizing the test suite. The proposed approach can

be very helpful when the fault detection

effectiveness is more important as compared to code

coverage. The paper also presents the results of an

experimental study conducted on the small case

study to evaluate the performance of the proposed

approach. To evaluate the effectiveness of the

Received: March 15, 2018 9

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.01

Figure.3 Test suite size reduction and fault detection loss

using HGS and proposed algorithm with different

coverage criteria

Figure.4 Fault coverage graph for random based

prioritization of test cases

Figure.5 Fault coverage graph for the proposed

prioritization approach

proposed work two performance metrics were used

i.e. SSR and FDL. And the experimental results

show that the fault detection ability is highly

improved by the proposed technique as compared to

existing technique.

As future work, we are going to experiment with

the larger size of data set that may produce different

and more precise results. Moreover, experimental

evaluation of other similarity functions with a

different combination of coverage criteria needs to

be conducted for getting more optimal test cases.

References

[1] S.U.R. Khan, A. Nadeem, and A. Awais,

“TestFilter: A Statement Coverage based Test

Case Reduction Technique”, In: Proc. of 10th

IEEE International Multitopic Conference

(INMIC’06), pp. 275-280, 2006.

[2] S. Singh, C. Sharma, and U. Singh, “A Simple

Technique to Find Diverse Test Cases”, In:

Proc. of 9th International ICST Conference on

Heterogeneous Networking for Quality,

Reliability, Security, and Robustness, pp. 1-4,

2013.

[3] R. Gupta and M. L. Soffa, "Employing static

information in the generation of test case",

Software Testing, Verification and Reliability

Vol.3, No.1, pp. 29-48, 1993.

[4] D. Binkley, “Semantics guided regression test

cost reduction”, IEEE Transactions on

Software Engineering, Vol.23, No.8, pp.498–

516, 1997.

[5] H. Zhong, L. Zhang, and H. Mei, “An

experimental study of four typical test suite

reduction techniques”, Information and

Software Technology, Vol.50, No. 6, pp. 534–

546, 2008.

[6] A. Ilkhani and G. Abaee, “Extracting test cases

by using data mining; reducing the cost of

testing”, In: Proc. of International Conference

on Computer Information Systems and

Industrial Management Applications, pp.730–

737, 2011.

[7] 8. J. R. Horgan and S. London, “A data flow

coverage testing tool for C”, In: Proc. of the

Second IEEE Symposium on Assessment of

Quality Software Development Tools, pp. 2-10,

1992.

[8] H. S. Chae, G. Woo, T. Y. Kim, J. H. Bae, and

W. Y. Kim, “An automated approach to

reducing test suites for testing retargeted C

compilers for embedded systems”, Journal of

Systems and Software, Vol.84, No.12, pp.

2053-2064, 2011.

[9] X. Zhang, Q. Gu, X. Chen, J. QI, and D. Chen,

“A study of relative redundancy in test-suite

reduction while retaining or improving fault-

localization effectiveness”, In: Proc. of the

ACM Symposium on Applied Computing

(SAC'10), Sierre, Switzerland, pp. 2229-2236,

2010.

[10] V. Chvatal, “A greedy heuristic for the set-

covering problem”, Mathematics of operations

research, Vol.4, No.3, pp.233-235, 1979.

[11] T. Y. Chen and M. F. Lau, “A simulation study

on some heuristics for test suite reduction”,

Information and Software Technology, Vol.40,

No.13, pp. 777-787, 1998.

Received: March 15, 2018 10

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.01

[12] T. Y. Chen and M. F. Lau, “A new heuristic for

test suite reduction”, Information and Software

Technology, Vol.40, No.(5-6), pp.347-354,

1998.

[13] M. J. Harrold, R. Gupta, and M. L. Soffa, “A

methodology for controlling the size of a test

suite”, ACM Transactions on Software

Engineering and Methodology (TOSEM), Vol.2,

No.3, pp. 270-285, 1993.

[14] L. Inozemtseva and R. Holmes, “Coverage is

not strongly correlated with test suite

effectiveness”, In: Proc. of the 36th

International Conference on Software

Engineering, pp. 435-445, 2014.

[15] C. Sharma and S. Singh, “Mechanism for

identification of duplicate test cases”, In: Proc.

of Recent Advances and Innovations in

Engineering (ICRAIE), pp. 1-5, 2014.

[16] S. Singh and R. Shree, “A combined approach

to optimize the test suite size in regression

testing”, CSI transactions on ICT, Vol.4, No.

(2-4), pp. 73-8, 2016.

[17] A. E. V. B. Coutinho, E. G. Cartaxo, and P. D.

L. Machado, “Analysis of distance functions

for similarity-based test suite reduction in the

context of model-based testing”, Software

Quality Journal,Vol.24, No.2, pp.407-445,

2016.

[18] H. Hemmati, A. Arcuri, and L. C. Briand,

“Achieving scalable model-based testing

through test case diversity”, ACM Transactions

on Software Engineering and Methodology

(TOSEM), Vol.22, No.1, pp. 1–42, 2013.

[19] R. Wang, S. Jiang, and D. Chen,

“Similarity-based regression test case

prioritization”, In: Proc. of the 27th

International Conference on Software

Engineering and Knowledge Engineering, pp.

358-363, 2015.

[20] S. R. Sugave, S. H. Patil, and B. E. Reddy, "A

Cost-Aware Test Suite Minimization Approach

Using TAP Measure and Greedy Search

Algorithm", International Journal of Intelligent

Engineering and Systems, Vol.10, No.4, pp.60-

69, 2017.

[21] M. Tulasiraman and V. Kalimuthu, “Cost

Cognizant History Based Prioritization of Test

Case for Regression Testing Using Immune

Algorithm”, International Journal of Intelligent

Engineering and Systems, Vol.11, No.1,

pp.221-228, 2018.

[22] S. Yoo and M. Harman, “Regression testing

minimization, selection, and prioritization: a

survey”, Softw. Test., Verif. Reliable, Vol.22,

No.2, pp. 67–120, 2012.

[23] S. U. R. Khan, S. P. Lee, R. W. Ahmad, A.

Akhunzada, and V. Chang, "A survey on Test

Suite Reduction frameworks and

tools", International Journal of Information

Management, Vol.36, No.6, pp.963-975, 2016.

[24] H. Hemmati and L. Briand, “An industrial

investigation of similarity measures for model-

based test case selection”, In: Proc. of IEEE

21st International Symposium on Software

Reliability Engineering (ISSRE), pp. 141-150,

2010.

[25] E. G. Cartaxo, P. D. Machado, and F. G. O.

Neto, “On the use of a similarity function for

test case selection in the context of model-

based testing”, Software Testing, Verification

and Reliability, Vol.21, No.2, pp.75-100, 2011.

[26] A. E. V. B. Coutinho, E. G. Cartaxo, and P. D.

L. Machado, "Test suite reduction based on

similarity of test cases", In: Proc. of 7th

Brazilian workshop on systematic and

automated software testing—CBSoft, 2013.

[27] C. Fang, Z. Chen, K. Wu, and Z. Zhao,

“Similarity-based test case prioritization using

ordered sequences of program entities”,

Software Quality Journal, Vol.22, No.2,

pp.335-361, 2014.

[28] S. Yoo, M. Harman, P. Tonella, and A. Susi,

“Clustering test cases to achieve effective and

scalable prioritization incorporating expert

knowledge”, In: Proc. of the 18th international

symposium on Software testing and analysis, pp.

201-212. ACM, 2009

[29] A. P. Mathur, “Foundations of Software

Testing”, Pearson Education, 1st Edition, 2008.

