
Received: October 23, 2017 159

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.17

An Automatic Short Answer Correction System Based on the Course Material

Zeinab Ezz Elarab Attia1* Waleed Arafa1 Mervat Gheith1

1 Institute of Statistical Studies and Research, Cairo University, Egypt

* Corresponding author’s Email: eng.zeinabezz@gmail.com

Abstract: The paper presents a new system for correcting short answer questions using the course material in

addition to the model answer. Such system overcomes the limitations of the current systems that are just based on

calculating the similarity degree between the model answer and students’ answer. Thus they neglect any correct

answer that may be written by a student but not mentioned in the model answer. Also, they neglect correcting student

answers that contains definition or explanation for a concept stated in the model answer. To overcome such

limitations, the proposed system uses the course material to expand the model answer with more correct answers via

answering the short answer questions. In addition to expanding the model answer’s concepts with their synonyms

and definitions (using is-a relation and have relation). The proposed system is tested and evaluated on Texas dataset.

The proposed system outperforms those systems that are evaluated on the same dataset, by achieving a correlation

value about 0.8.

Keywords: Automatic short answer correction system, Automatic correction systems.

1. Introduction

Examination is a successful practical method for

evaluating students’ educational level. Recent

studies proved that, continuous exams improve

students' educational level when they are corrected

and feedbacks are sent to students immediately.

Unfortunately, this task is tedious and time

consuming. Thus this issue figures out the

importance of having automatic correction systems

that help instructors correcting exams automatically.

Several automatic correction systems are proposed

in the literature that are categorized according to the

question's type, e.g., fill in the blank, essay, short

answer questions...etc.

The paper is concerned with correcting the short

answer questions automatically. Unfortunately, the

current automatic short answer correction systems

suffer from:

1. Comparing student answers only to the model

answer. As the result, they:

i. Neglect any correct answer that is not

mentioned in the model answer.

Example:

Question: State the advantage of Object Oriented

Programming?

Model answer: reusability and modularity

Student answer: inheritance and polymorphism

ii. Neglect correcting students’ definitions for

concepts that are stated in the model answer.

Example:

Question: Where are variables declared in C++?

Model answer: local variable declared inside a

function and global variable declared outside the

functions.

Student answer: they can be declared globally

outside functions also they can be declared

locally inside a function.

 Global variable definition

 Local variable definition

2. In addition to lacking a standard dataset to test

their system on it. Thus each system is tested on

its own dataset.

Thus the paper presents a proposed ontology

based correction system that deals with such

limitations via using the model answer, the

Received: October 23, 2017 160

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.17

Table 1. Comparison between automatic short answer correction systems

question, and the course material to correct a student

answer. The benefit of using course material is to:

1- Expand the model answer with more correct

answers that can be extracted using the

question with the course material. (resolve the

limitation ‘1.i’)

2- Expand each concept in the model answer with

its definition. (resolve the limitation ‘1.ii’)

However, to overcome the second drawback, the

proposed system is evaluated on an already exist

dataset namely, texas dataset. Texas dataset is used

to evaluate another three systems [1], [2], [3]. Thus,

the proposed system’s results are compared with

them.

The paper is organized as follows; section 2

presents some of the current short answer correction

systems. The proposed model is presented in details

in section 3. Evaluating the proposed model is

discussed in section 4. Section 5 concludes the paper.

2. Short answer correction systems

This section provides some of the short answer

questions correction systems namely, Texas [1],

Gomaa [2, 4], Pribadi [3], IndusMarker [5], C-rater

[6], Automarking [7], Noorbehbahani [9] and Pado

[10]. Table 1 classifies such systems according to

the used technique and compares them.

3. The proposed ontology-based short

answer correction system

3.1 The system input

The system takes as its input: a course material,

a model answer, a student answer, and a question

text. The course material is used to build a domain

ontology. Such ontology is used to add more correct

answers through expanding the model answer, and

answering some types of questions (only definition

and comparison questions).

Correction

System

Algorithm Applied domain Results

Systems based on Similarity Measure algorithms
Texas [1] Calculate the similarity degree between both answers

using knowledge-based and corpus-based similarity

measures.

Computer science

(Texas dataset)
Best correlation

-Jiang &Conrath ‘0.44’

-LSA ‘0.4628’
Gomaa

&Fahmy[2]

Calculate the similarity degree between both answers

using string-based and corpus-based similarity

measures.

Computer science

(Texas dataset)

Best correlation ‘0.5’

n-gram then Disco1

Pribadi[3] Calculate the similarity degree between booth answers

using the Cosine Coefficient. Thus, it cannot score

answers with different words and similar meaning

Computer science

(Texas dataset)

Less than 0.4

Pado[10] Four stages: 1. Lemmatize both answers. 2. Remove

stop words. 3. Remove all lemma words from both

answers that appear in the question text. 4. Calculate

the similarity degree between both answers using

DKPro Similarity implementation of Greedy String

Tiling.

Computer science

(German

language)

78%

Systems based on Structure Matching
IndusMarker

[5, 8]
Two stages: 1. Represent model answer in

QAML , 2. Analyze student answer text
Object oriented

programming

69.4%

Systems based on NLP techniques
c-rater [6] Three stages: 1. Model building, 2. Student answers

canonical form generation, 3. Answer comparison.

Mathematics,

comprehension

Kappa value reaches

80%

Automarking

[7]
Four stages:1. text pre-processing, 2. WordNet

processing , 3. answer comparison, 4. grade

assignment

E-commerce Not tested

Systems based on Machine Learning Techniques
Noorbehbaha

ni [9]

Introduces M-BLEU that: 1. uses a domain dictionary,

 2. associates each n-gram with a weight respecting its

importance, 3. Calculate similarity score with the

shorter correct answer with the maximum M-BLEU.

Computer and

information

engineering

Obtained correlation

‘0.85’

http://aip.scitation.org/author/Pribadi%2C+Feddy+Setio
http://aip.scitation.org/author/Pribadi%2C+Feddy+Setio

Received: October 23, 2017 161

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.17

The ontology is built by using an ontology

learning tool with the aid of the course instructor for

reviewing the built ontology.

The model answer is expanded using the course

material to correct the student answer. Some types

of questions (namely, definition and comparison

questions) are also used to expand the model answer

via answering them automatically using the course

material. All such expansions are combined together

to create the complete model answer.

3.2 The system used tools

 To build a domain ontology, the text2onto tool is

used on the course material to extract the domain

main concepts associated with the relation

between them.

 To replace a pronoun to its referred noun, a

coreference tool is used, Stanford CoreNLP.

 To lemmatize answers, the Stanford CoreNLP

is used.

 To determine the part of speech, a POS tagger is

used.
 To stem answers, the Paice/Husk algorithm is

used since, Paice [11] proved that the over-

stemming algorithms increase the recall than the

under-stemmers. This garantees matching the

related words. As according to Moral [12],

Paice/Husk has higher performance than the

other over-stemmers.

3.3 How does the system work?

The student answer is scored via calculating its

similarity degree with the extracted complete model

answer predicates. The scoring method is divided

into four phases namely: the preprocessing phase,

key-answer extraction phase, complete model

answer extraction stage, and grading phase.

1st: Preprocessing phase

The preprocessing phase is applied on both the

model and the student answers. In this phase, the

model answer is prepared to extract the key answer

from it. Whereas the student answer is prepared to

match it with the complete model answer predicates

(will be extracted in the third stage), see example 1,

2, 3, 4.

For each answer, apply the following stages:

1. Resolve pronouns in the answer, see example 1.

2. Divide it into a set of sentences using “.”, “;”,

“and”, “or”, “but”, “while”, “whereas”, “thus”,

“so”, “however”, “normally”, “therefore”, etc.

For example, see examples 2, 3.

3. For each sentence, chunk it into a set of phrases

using a chunking tool, see examples 2, 3.

4. For each phrase, remove determiners (if exist),

lemmatize the phrase and then stem it, see

examples 2, 3.

5. As depicted in example 3, applied on the student

answer only,

 If it contains concepts that match the

following tregexPP $-NP1 $+ NP2

Such that either:

- Both NP1and NP2are found in the ontology

and there is a relation between them

- OR,[NP2 NP1]isa concept in the ontology.

Then, replace them with:[NP2 NP1]

6. For each sentence contains a connector (i.e., but,

however, while, etc), resolve the following

connector problem, if exist:

- if both phrases have a common verb and one

of them ended with that verb, complete such

phrase using the other completed phrase, see

example 3.

Example 1: (Resolving pronouns on a student

answer)

Constructors cannot return values, so they cannot

specify a return type. Normally, constructors are

declared public.

After resolving pronoun:

Constructors cannot return values, so Constructor

cannot specify a return type. Normally,

constructors are declared public.

The End of Example 1

Example 2: (Applying the preprocessing phase

on a model answer for a question)

A function prototype includes the function signature.

The function definition includes the actual body of

the function.

Pronoun resolution (Step 1): Not applied here.

After sentence division (Step 2): S1 A function

prototype includes the function signature.

S2 The function definition includes the actual

body of the function.

Sentence#1:A function prototype includes the

function signature.

Phrases (Step 3): [NP: A function prototype][VP:

includes] [NP: the function signature]

Stem (Step 4): Lemma: [NP: function prototype]

[VP: include][NP: function signature].

Received: October 23, 2017 162

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.17

Stem:[NP: funcprototyp][VP: includ] [NP:

funcsignat]

Sentence#2:The function definition includes the

actual body of the function.

Phrases (Step 3): [NP: The function definition]

[VP: includes][NP: the actual body][PP: of][NP: the

function]

Stem (Step 4): Lemma: [NP: function definition]

[VP: include] [NP: actual body] [PP: of] [NP:

function].

Stem:[NP: funcdefini] [VP: includ] [NP:actu

bod][PP: of][NP:func].

The End of Example 2

Example 3: (Applying the preprocessing phase

on a student answer for the same question)

Function prototype only includes the access function

name and parameter type. Function definition

includes the code for the function to perform the

function’s activity.

Pronoun resolution (Step 1): Not applied here.

After sentence division (Step 2): S1Function

prototype only includes the access function name.

S2Function prototype only includes parameter

type.

S3Function definition includes the code for

the function to perform the function’s activity.

Note:adding the subject “function prototype” and

the verb “includes” in the third sentence. Return the

omitted subject (and verb) after sentence connectors

such as “and, or, so…etc”.

Sentence#1:Function prototype only includes the

access function name.

Phrases (Step 3): [NP: Function prototype][VP:

includes][NP: the access function name].

Stem (step4): Lemma: [NP: Function prototype]

[VP: include] [NP: access function name].

Stem: [NP: Funcprototyp] [VP: includ] [NP:

access funcnam].

Sentence#2:

Function prototype only includes parameter type.

Phrases (Step 3): [NP: Function prototype][VP:

includes] [NP: parameter type].

Stem (step4): Lemma: [NP: Function prototype]

[VP: include] [NP: parameter type].

Stem: [NP: Func prototyp] [VP: includ] [NP:

paramet typ].

Sentence#3:Function definition includes the code

for the function to perform the function’s activity.

Phrases (Step 3): [NP: Function definition] [VP:

includes][NP: the code][PP: for][NP: the function]

[VP: to perform] [NP: the function’s activity].

Stem (step4): [NP: Func defini][VP: includ][NP:

cod][PP: for][NP: func][VP: to perform][NP: func

activ].

Step 5:

Replace the concept “cod for func” with the concept

“func cod” as it matched the tregex PP $-NP $+NP.

Also, both NPs are found in the ontology and there

is a relation between them.

Then, Func defini include func cod to perform

func activ.

The End of Example 3

Example 4: (Resolving the connector problem on

a student answer)

The data member can be accessed outside the

class while the local variable cannot.

Step 7: The data member can be accessed outside

the class while the local variable cannot be accessed.

The End of Example 4

2nd: Key-Answer Extraction phase

The key-answer extraction phase is applied on the

model answer using the ontology via extracting the

range, relation and domain from each sentence in it,

see example 5. The phase is applied as follows:

For each sentence in the model answer:

1. Extract the concept that represents a range from

the sentence using the ontology

(a) If the sentence phrases contains a concept that

matches the tregex: PP $-NP1$+NP2Such that,

both NP1 and NP2are found in the ontology.

Also, there exist a relation between NP1 and

NP2.

Then, NP1(that is related toNP22) is the

range.

For example: “local variable inside

function”. The range will be “local

variable”.

(b) If the sentence phrases contains a concept that

matches the tregex: PP $-NP1$+NP2Such that,

NP2NP1is found in the ontology.

Then, NP2NP1is the range.

For example: “type of parameter”, The

range will be “parameter type”.

“Location in memory”, the range will be

“memory location”.

Received: October 23, 2017 163

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.17

(c) If the sentence phrases contains a concept

that matches the Tregex NP such that NP

is found in the ontology. For example,

local variable, fuzzy ontology, inheritance,

polymorphism.

Then, such concept is the range.

(d) If the sentence phrases contains a concept

that matches the Tregex NP such that a

subset from NP is found in the ontology.

Then, the only matched subset is the range

For example: “word parameter”. The range

will be “parameter”.

(e) If the sentence phrases contains a concept

that matches the Tregex NP such that

more than one subset from the NP is found

in the ontology.

Then, the 2nd subset (that is related to the 1st

subset) is the range.

For example: class data member (both

“class”, “data member” are found in the

ontology). The range will be “data member”.

2. Extract the range relation from the sentence using

the ontology such that:

 If the sentence is positive,

For the extracted range, match its ontology

relation or one of its synonyms. If found,

then, the relation is found

 If the sentence is negative,

For the extracted range, match its ontology

opposite relation. If found, then, the

relation is found

3. Extract the domain from the sentence (if exist)

using the ontology

(a) If the sentence contains a concept that matches

the tregex PP $-NP1 $+NP2such that, NP1or

NP2 or subset from any one of them is related

to the extracted range with the extracted

relation.

Then, the related one is the domain.

For example: “data member is accessed by

member function inside class”, see Fig. 1.

The Range is “data member”

Relation is “accessed”, domain is “class”.

(b) If the sentence contains a concept that matches

the tregex PP $-NP1$+ NP2 such that,

NP2NP1is found in the ontology to be related

to the extracted range with the extracted

relation.

Then, NP2NP1is the range.

For example: “variable is a location in

memory”, see Fig. 2.

The range: “variable”, relation: “is a”

The domain is “memory location”.

(c) If the sentence contains a concept that matches

the tregex NP such that NP or a subset from it

is related to the extracted range with the

extracted relation.

Then, the related one is the domain.

4. Construct the sentence predicate from the

extracted range, relation and domain (if exist):

 if the range, relation and the domain are all

exist, the predicate will be:

relation (range, domain); for positive

sentence

not relation(range, domain) for negative

sentence

 if only the range is exist(range)

Example 5: (Applying the key-answer extraction

phase on the model answer of the same question)

Sentence#1: [NP: func prototyp][VP: includ] [NP:

func signat]

Range: “func prototyp,” Relation: “includ”,

Domain: “func signat”

The predicate:

includ (func prototyp, func signat)

Sentence#2: [NP: func defini] [VP: includ] [NP:

actu bod] [PP: of] [NP: func].

Range: “func defini,” Relation: “includ”,

Domain: “func bod”

Figure. 1 Example on extracting range using ontology

Datum member

Class

Access (inside)?

Figure. 2 Example on extracting range using ontology

Variable

Memory location

Is a

Received: October 23, 2017 164

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.17

The predicate:

includ (func defini, func bod)

The End of Example 5

3rd: Complete Model Answer Predicate

Construction phase

The complete model answer construction phase

constructs the complete model answer from both the

question and the model answer’s predicates, see

example 6. This phase is applied as follows:

1. Answer the question text then from the answer

construct the predicate(s) of the question

answer(s)

i. extract the concept to be answered via:

a. For comparison questions, remove

concepts matching the regular expression

“[difference| similarity] .* between” or

their synonyms.

b. Chunk the question text into of phrases.

c. For each noun phrase (NP) and (PP),

 Remove the question headword, e.g.,

“What”, “Where”, “How”.

 Remove determiners (if exist).

 Stem them after lemmatizing.

 Extract the concept to be answered,

using the same criteria of extracting the

model answer range(see step(1) in the

2nd phase)

ii. For each extracted concept, answer the

question as follows:

 For definition questions, use the ontology

to expand the concept with all its direct

relations.

 For comparison questions,

- Similarity questions:

Expand all concepts with domains and

relations that they both have.

- Difference questions:

Expand all concepts with domains (or/

and) relations that are found in one of

them and not found in the others.

 All the predicates of the question answers

will have the form : relation (concept,

domain) where, the concept is the

extracted concept, the relation and the

domain are that extracted from the

ontology

iii. For each predicate in the question answer,

 expand its range, relation, domain with its

synonyms

 expand its range, relation, domain with its

‘have’ relationship

 if the predicate’s relation is positive

- expand it by adding ‘not’ and the

relation opposite.

 if the predicate’s relation is negative

- expand it by adding only the relation

opposite.

2. Expand the instructor’s model answer (phase 1):

 For all types of questions other than the

comparison and the definition questions,

- Expand each predicate in the model

answer with domains having the same

relation and range in it.

3. For all questions other than the comparison

questions,

 Remove the question concept and/or relation

from each predicate in the complete model

answer, if exist.

4. Expand the instructor’s model answer (phase 2):

 For each predicate in the model answer,

- expand its range, relation, domain with its

synonyms

- expand its range, relation, domain with its

‘have’ relationship

- if the predicate’s relation is positive:

*Expand it by adding ‘not’ and the relation

opposite

- if the predicate’s relation is negative:

*Expand it by adding only its opposite

5. Construct the complete model answer predicates:

i. ORing each predicate in the model answer

with its expansion ones

ii. ANDing each predicate in the model answer

with each other and with each predicate in the

question answer

iii. ORing predicate in the question answer with

its expansion

6. For all the complete model answer predicates,

 If both the domain and the range contain more

than one word, such that there is a common

word between them, then remove it from the

domain of all complete model answer’s

predicates.

7. For all comparison question,

Received: October 23, 2017 165

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.17

 If the concepts to be compare (range in the

predicate) contain more than one word, such

that there is a common word between them,

remove it from each predicate in the complete

model answer.

Example 6: (constructing the complete model

answer predicates from the same questionand its

model answer)

1. Answer the question text

What is the difference between a function

prototype and a function definition?

i. Concept extraction

a. Removing the RE: What is the a function

prototype and a function definition?

b. Phrases: [NP What] [VP: is] [NP: function

prototype],[NP: function definition]

c. Lemma NP, PP: [NP: function prototype],

[NP: function definition]

Stem NP, PP: [NP: func prototyp], [NP: func

defini]

d. Extract concepts to be answered

Concept1: “Func prototyp” WHY?? As

the concept in the NP exist in the ontology

Concept2: “func defini” WHY?? As

the concept in the NP and exist in the

ontology

ii. Question Answering, see Fig. 3

Concept1: declar (func prototyp, func)

Includ(func prototyp, function signat)

not includ (func prototyp, func bod)

Concept2:

includ (func defini, function bod)

iii. Question Answer Expansion

Domain ‘have’ relation, see Fig. 4

[hav (func prototyp, func nam) AND

hav (func prototyp, func paramet) AND

hav (func prototyp, func return typ)]

Domain synonyms:

Func bod=func cod

Not includ (func prototyp, func cod)

declar (func defini, func cod)

paramet=argu

hav (func prototyp, function argu)

Relation synonyms:

declar= defin

defin (function prototyp, func)

2. Expanding the model answer predicate

(phase 1)Not applied on comparison questions

3. Remove the question’s concepts and relation

common word if exist: Not applied on

comparison questions

4. Expanding the model answer predicate

 (phase 2)Since, the model answer predicate is

already a subset from the question answer

predicate, then its expansion will be included in

the question answer predicates’ expansion.

5. Complete model answer construction

[[includ (func defini, func bod) OR includ

(func defini, func cod)]

AND

[declar (func prototyp, func)

OR defin (func prototyp, func)]

AND

[not includ (func prototyp, func bod) OR

Not includ (func prototyp, func cod)]

AND

[includ(func prototyp, func signat)OR

[hav (func prototyp, func nam) AND

hav (func prototyp, func return typ) AND

[hav (func prototyp, func paramet) OR

hav (func prototyp, func argu))]]]]

6. Remove the common word from the domain

[[includ (func defini, bod)

OR includ (func defini, cod)]

AND

Figure.3 Example on answering the question using ontology

Func

Func prototyp Func defini

Func bod

Declar
Includ

Funcsignat

Includ

Func bod

Not includ

Figure. 4 example on expanding the question answer

with the ‘have’ relationship using ontology

Func signat

Func nam

Hav

Hav
Hav

Func Paramet

Func return typ

Received: October 23, 2017 166

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.17

[declar (func prototyp, func)

OR defin (func prototyp, func)]

AND

[not includ (func prototyp, bod) OR not includ

(func prototyp, cod)]

AND

[includ(func prototyp, signat) OR

[hav (func prototyp, nam)

AND hav (func prototyp, return typ)

AND

[hav (func prototyp, paramet) OR hav (func

prototyp, argu)]]]]

7. Remove the question concepts’ common word

from the range of the complete model answer

The question concepts: func prototyp, func defini

Common word: func

After removal: prototyp, defini

[[includ (defini, bod) OR

includ(defini, cod)]

AND

 [declar (prototyp, func) OR

defin (prototyp, func)]

AND

[not includ (prototyp, bod) OR not

includ (prototyp, cod)]

AND

[includ(prototyp, signat) OR

[hav (prototyp, nam)

AND hav (prototyp, return typ)

AND

[hav (prototyp, paramet) OR

hav (prototyp, argu)]

]]]

The End of Example 6

4th: Grading phase

To grade a student answer, its similarity degree with

the complete model answer predicates is calculated

using eqn. (1):

- Let the number of predicates in the complete

model answer is n, the number of sentences in the

student answer in m. SAj is a sentence in the student

answer such that j ϵ [1, m].MAi is a predicate in the

complete model answer such that iϵ [1, n]

- Let SDi is the similarity degree associated with the

complete model answer predicate MAi with its most

similar student answer sentence.

- Let the total number of sentences in the

instructor’s model answer is x. The total grade of the

given question as assigned by the instructor in G.

G/x is the grade of each predicate in the complete

model answer. Final_grade is the student final

grade.

Final_grade =∑ 𝑺𝑫𝒊
𝒏
𝒊=𝟏 eqn.(1)

SDi value is calculated using the following

algorithm as follows:

CalSim(SAj, MAi)

1. If (MAi format is (Range) AND SAj matches it)

2. SDi=G/x

3. Else If (MAi format is Rel(Range) then

4. If (SAj matches it)

5. SDi=G/x

6. Else If (Rel or Range is missed from SAj)

7. SDi= 0.7*G/x

8. Else

9. SDi= 0

10. End if

11. Else If (MAi format is Rel(Domain, Range))

12. If (SAj matches it)then

13. SDi =G/x

14. Else If (Domain, Rel or Range is missed

From SAj) then

15. SDi= 0.7*G/x

16. Else

17. SDi= 0

18. End if

19. End if

Example 7: (Applying the grading phase on the

preprocessed student answer for the same

question)

The question grade is: 5

Total number of sentences in the model answer: 2

Each sentence grade is: 5/2=2.5

Complete model answer predicate

predicate# 1:

includ (defini, cod) and its expansion

matches student sentence # 3

SA3: Func defini include cod for func to perform

Func activ.

Then, Sim_deg=2.5

predicate# 2& predicate #3:

declar (prototyp, func) and its expansion

not includ (prototyp, bod) and its expansion

Received: October 23, 2017 167

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.17

Not matched with any student answer sentence

Then, Sim_deg=0

predicate# 4:

[includ (prototyp, nam) AND includ (prototyp,

return typ) AND includ (prototyp, paramet)]

and its expansion

Part from it matches student answer sentence #1

AND sentence #2

SA1: Func proto typ onl includ access func name.

SA2: Func proto typ onl include paramet.

Then, Sim_deg=1.6

Final_grade=5

The End of Example 7

4. Evaluation

4.1 Dataset

The proposed system is evaluated and tested on

Texas dataset1. It consists of ten assignments with

between four and seven questions each. Also, it

includes two exams with ten questions each. These

assignments/exams were assigned to an introductory

computer science class at the University of North

Texas. Each assignment includes the question,

instructor answer, and set of student answers with

the average grades of two annotators included.

Moreover, the dataset includes the course material

(.ppt) files. Note that this dataset is used to evaluate

and test another two short answer question

correction systems, which are Texas [1] and Gomaa

et al [2].

4.2 Dataset usage

The dataset is used to evaluate the proposed

system’s third module, the text similarity module.

The course material is used to construct the domain

ontology via using the text2onto tool. Then, the

constructed ontology is reviewed by the course

instructor. All the regular expressions used in the

ontology are added by the course instructor. The

domain dictionary is constructed manually by a

domain expert.

4.3 Results and discussion

To evaluate the proposed system, Pearson’s

correlation coefficient is measured against average

human grades. Afterwards, it is compared with

Texas [1], Gomaa [2], and Pribadi [3] systems as

they are tested on the same dataset. Texas reaches

1 https://web.eecs.umich.edu/~mihalcea/downloads.html

Figure. 5 Comparing different correction systems using

the correlation measure

the correlation values 0.328, 0.395, and 0.281 by

applying LSA, ESA, and tf*idf respectively.

However, Gomaa [2] reaches the correlation value

0.504 by combining String-based and Corpus-based

similarity in an unsupervised way. On the other

hand, the correlation value of Pribadi [3] is less than

0.4. The proposed system raises the correlation

results to be 0.8001, see Fig. 5.

Pearson’s correlation measures the agreement

degree between the human and the computer grades.

Thus the higher the correlation value is, the more

accurate the system is. From Fig. 5, the proposed

system outperforms others as the result of using the

course material for:

- expanding the model answer with more correct

answers generated from answering the question.

- expanding the model answer with the definition

of its contained concepts (using ‘is-a’ and ‘having’

relations).

Thus, this approach mimics the human thinking

in detecting and correcting students’ correct answers

that are not mentioned in the model answer. On the

other hand, the other systems have low correlation

value as they just calculate the similarity degree

between a student answer against the instructor

model answer without considering more correct

answers.

5. Conclusion

In order to have an intelligent short answer

correction system that mimics the human correction,

the course material of the underlying exam is used.

Via the course material, the system expands the

model answer with the definitions of its contained

concepts (using the ‘is-a’ and ‘have’ relations) and

with more correct answers extracted by answering

the question to correct a student answer.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Received: October 23, 2017 168

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.17

Our future work is to represent the meaning of

both answers using the Abstract Meaning

Representation. Then calculate the similarity degree

between them.

References

[1] M. Mohler and R. Mihalcea, "Text-to-text

Semantic Similarity for Automatic Short

Answer Grading”, In: Proc. of the 12th

Conference of the European Chapter of the ACL,

Association for Computational Linguistics, pp.

567- 575, 2009.

[2] W. H. Gomaa and A. A. Fahmy, “Automatic

Arabic Essay Assessment”, PHD thesis, Faculty

of Computer Science, Cairo University, 2014.

[3] F. S. Pribadi, T. B. Adji, A. E. Permanasari, A.

Mulwinda, and A. B. Utom, “Automatic short

answer scoring using words overlapping

methods”, AIP Conference Proceedings, 1818,

020042, pp. 1-6, 2017.

[4] W. H. Gomaa and A. A. Fahmy, “Short Answer

Grading Using String Similarity And Corpus-

Based Similarity”, International Journal of

Advanced Computer Science and Applications,

Vol. 3, No. 11. pp. 115-121, 2012.

[5] R. Siddiqi, “Impact of Automated Short-Answer

Marking on Students’ Learning: IndusMarker, a

Case Study”, In: Proc. of the International

Conference on Information & Communication

Technologies, pp. 237-249, 2013.

[6] C. Leacock and M. Chodorow, "C-rater:

Automated Scoring of Short-Answer Questions”,

Computers and the Humanities, Vol. 37, pp.

389–405, 2003.

[7] L. Cutrone and M. Chang, “Automarking:

Automatic Assessment of Open Questions”, In:

Proc. of the 10th IEEE International Conference

on Advanced Learning Technologies, pp. 143-

147, 2010.

[8] R. Siddiqi, C. J. Harrison, and R. Harrison,

"Improving Teaching and Learning through

Automated Short-Answer Marking", IEEE

Transactions on Learning Technologies, Vol. 3,

No. 3, pp. 237-249, 2010.

[9] F. Noorbehbahani and A. A. Kardan, “The

automatic assessment of free text answers using

a modified BLEU algorithm”, Computers &

Education, Vol. 56, pp. 337–345, 2011.

[10] U. Pado and C. Kiefer, “Short Answer Grading:

When Sorting Helps and When it Doesn’t”, In:

Proc. of the 4th workshop on NLP for Computer

Assisted Language Learning at NODALIDA

2015. NEALT Proceedings Series 26 /Linköping

Electronic Conference Proceedings 114, pp. 42–

50, 2015.

[11] C. Paice, “An evaluation method for stemming

algorithms”, In: Proc. of the Seventeenth

Annual International ACM-SIGIR Conference

on Research and Development in Information

Retrieval, pp. 42-50, 1994.

[12] C. Moral, A. Antonio, R. Imbert, J.

Ramírez “A survey of stemming algorithms in

information retrieval”, Information Research:

An International Electronic Journal, Vol.19,

No.1, 2014.

http://aip.scitation.org/author/Pribadi%2C+Feddy+Setio
http://aip.scitation.org/author/Adji%2C+Teguh+Bharata
http://aip.scitation.org/author/Permanasari%2C+Adhistya+Erna
http://aip.scitation.org/author/Mulwinda%2C+Anggraini
http://aip.scitation.org/author/Utomo%2C+Aryo+Baskoro
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6720784
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6720784

