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Abstract: The paper presents a new system for correcting short answer questions using the course material in 

addition to the model answer. Such system overcomes the limitations of the current systems that are just based on 

calculating the similarity degree between the model answer and students’ answer. Thus they neglect any correct 

answer that may be written by a student but not mentioned in the model answer. Also, they neglect correcting student 

answers that contains definition or explanation for a concept stated in the model answer. To overcome such 

limitations, the proposed system uses the course material to expand the model answer with more correct answers via 

answering the short answer questions. In addition to expanding the model answer’s concepts with their synonyms 

and definitions (using is-a relation and have relation). The proposed system is tested and evaluated on Texas dataset. 

The proposed system outperforms those systems that are evaluated on the same dataset, by achieving a correlation 

value about 0.8. 

Keywords: Automatic short answer correction system, Automatic correction systems. 

 

 

1. Introduction 

Examination is a successful practical method for 

evaluating students’ educational level. Recent 

studies proved that, continuous exams improve 

students' educational level when they are corrected 

and feedbacks are sent to students immediately. 

Unfortunately, this task is tedious and time 

consuming. Thus this issue figures out the 

importance of having automatic correction systems 

that help instructors correcting exams automatically. 

Several automatic correction systems are proposed 

in the literature that are categorized according to the 

question's type, e.g., fill in the blank, essay, short 

answer questions...etc. 

The paper is concerned with correcting the short 

answer questions automatically. Unfortunately, the 

current automatic short answer correction systems 

suffer from: 

1. Comparing student answers only to the model 

answer. As the result, they: 

i. Neglect any correct answer that is not 

mentioned in the model answer. 

Example: 

Question: State the advantage of Object Oriented 

Programming? 

Model answer: reusability and modularity 

Student answer: inheritance and polymorphism 
 

ii. Neglect correcting students’ definitions for 

concepts that are stated in the model answer. 

Example: 

Question: Where are variables declared in C++? 

Model answer: local variable declared inside a 

function and global variable declared outside the 

functions. 

Student answer:  they can be declared globally 

outside functions also they can be declared 

locally inside a function. 

                                     Global variable definition                                                   

             Local variable definition  

2. In addition to lacking a standard dataset to test 

their system on it. Thus each system is tested on 

its own dataset.   

Thus the paper presents a proposed ontology 

based correction system that deals with such 

limitations via using the model answer, the 
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Table 1. Comparison between automatic short answer correction systems 

 

question, and the course material to correct a student 

answer. The benefit of using course material is to: 

1- Expand the model answer with more correct 

answers that can be extracted using the 

question with the course material. (resolve the 

limitation ‘1.i’) 

2- Expand each concept in the model answer with 

its definition. (resolve the limitation ‘1.ii’) 

However, to overcome the second drawback, the 

proposed system is evaluated on an already exist 

dataset namely, texas dataset. Texas dataset is used 

to evaluate another three systems [1], [2], [3]. Thus, 

the proposed system’s results are compared with 

them. 

The paper is organized as follows; section 2 

presents some of the current short answer correction 

systems. The proposed model is presented in details 

in section 3. Evaluating the proposed model is 

discussed in section 4. Section 5 concludes the paper. 

 

 

2. Short answer correction systems 

This section provides some of the short answer 

questions correction systems namely, Texas [1], 

Gomaa [2, 4], Pribadi [3], IndusMarker [5], C-rater 

[6], Automarking [7], Noorbehbahani [9] and Pado 

[10]. Table 1 classifies such systems according to 

the used technique and compares them. 

3. The proposed ontology-based short 

answer correction system 

3.1 The system input 

The system takes as its input: a course material, 

a model answer, a student answer, and a question 

text. The course material is used to build a domain 

ontology. Such ontology is used to add more correct 

answers through expanding the model answer, and 

answering some types of questions (only definition 

and comparison questions). 

Correction 

System 

Algorithm Applied domain Results 

Systems based on Similarity Measure algorithms 
Texas [1] Calculate the similarity degree between both answers 

using knowledge-based and corpus-based similarity 

measures. 

Computer science 

(Texas dataset) 
Best correlation 

-Jiang &Conrath ‘0.44’  

-LSA ‘0.4628’  
Gomaa 

&Fahmy[2] 

Calculate the similarity degree between both answers 

using string-based and corpus-based similarity 

measures. 

Computer science 

(Texas dataset) 

Best correlation ‘0.5’ 

n-gram then Disco1 

Pribadi[3] Calculate the similarity degree between booth answers 

using the Cosine Coefficient. Thus, it cannot score 

answers with different words and similar meaning  

Computer science  

(Texas dataset) 

Less than 0.4 

Pado[10]  Four stages: 1. Lemmatize both answers. 2. Remove 

stop words. 3. Remove all lemma words from both 

answers that appear in the question text. 4. Calculate 

the similarity degree between both answers using 

DKPro Similarity implementation of Greedy String 

Tiling. 

Computer science 

(German 

language) 

78% 

Systems based on Structure Matching 
IndusMarker 

[5, 8] 
Two stages: 1. Represent model answer in 

QAML , 2. Analyze student answer text 
Object oriented 

programming 

69.4% 

Systems based on NLP techniques 
c-rater [6]   Three stages: 1. Model building, 2. Student answers 

canonical form generation, 3. Answer comparison. 

Mathematics, 

comprehension 

Kappa value reaches 

80% 

Automarking

[7] 
Four stages:1. text pre-processing, 2. WordNet 

processing , 3. answer comparison,   4. grade 

assignment 

E-commerce Not tested 

Systems based on Machine Learning Techniques 
Noorbehbaha

ni [9] 

Introduces  M-BLEU that:  1. uses a domain dictionary, 

 2. associates each n-gram with a weight respecting its 

importance, 3. Calculate similarity score with the 

shorter correct answer with the maximum M-BLEU. 

Computer and 

information 

engineering 

Obtained correlation 

‘0.85’ 

http://aip.scitation.org/author/Pribadi%2C+Feddy+Setio
http://aip.scitation.org/author/Pribadi%2C+Feddy+Setio
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The ontology is built by using an ontology 

learning tool with the aid of the course instructor for 

reviewing the built ontology.  

The model answer is expanded using the course 

material to correct the student answer. Some types 

of questions (namely, definition and comparison 

questions) are also used to expand the model answer 

via answering them automatically using the course 

material. All such expansions are combined together 

to create the complete model answer. 

3.2 The system used tools 

 To build a domain ontology, the text2onto tool is 

used on the course material to extract the domain 

main concepts associated with the relation 

between them.  

 To replace a pronoun to its referred noun, a 

coreference tool is used, Stanford CoreNLP. 

 To lemmatize answers, the Stanford CoreNLP 

is used.  

 To determine the part of speech, a POS tagger is 

used. 
 To stem answers, the Paice/Husk algorithm is 

used since, Paice [11] proved that the over-

stemming algorithms increase the recall than the 

under-stemmers. This garantees matching the 

related words. As according to Moral [12], 

Paice/Husk has higher performance than the 

other over-stemmers. 

3.3 How does the system work? 

The student answer is scored via calculating its 

similarity degree with the extracted complete model 

answer predicates. The scoring method is divided 

into four phases namely: the preprocessing phase, 

key-answer extraction phase, complete model 

answer extraction stage, and grading phase. 

 

1st: Preprocessing phase 

The preprocessing phase is applied on both the 

model and the student answers. In this phase, the 

model answer is prepared to extract the key answer 

from it. Whereas the student answer is prepared to 

match it with the complete model answer predicates 

(will be extracted in the third stage), see example 1, 

2, 3, 4.  

For each answer, apply the following stages:  

1. Resolve pronouns in the answer, see example 1. 

2. Divide it into a set of sentences using “.”, “;”, 

“and”, “or”, “but”, “while”, “whereas”, “thus”, 

“so”, “however”, “normally”, “therefore”, etc. 

For example, see examples 2, 3. 

3. For each sentence, chunk it into a set of phrases 

using a chunking tool, see examples 2, 3. 

4. For each phrase, remove determiners (if exist), 

lemmatize the phrase and then stem it, see 

examples 2, 3. 

5. As depicted in example 3, applied on the student 

answer only,  

 If it contains concepts that match the 

following tregexPP $-NP1 $+ NP2 

Such that either: 

- Both NP1and NP2are found in the ontology 

and there is a relation between them 

- OR,[NP2 NP1]isa concept in the ontology. 

Then, replace them with:[ NP2 NP1 ] 

6. For each sentence contains a connector (i.e., but, 

however, while, etc), resolve the following 

connector problem, if exist: 

- if both phrases have a common verb and one 

of them ended with that verb, complete such 

phrase using the other completed phrase, see 

example 3. 

Example 1: (Resolving pronouns on a student 

answer) 

Constructors cannot return values, so they cannot 

specify a return type. Normally, constructors are 

declared public. 

After resolving pronoun: 

Constructors cannot return values, so Constructor 

cannot specify a return type. Normally, 

constructors are declared public. 

The End of Example 1 
 

Example 2: (Applying the preprocessing phase 

on a model answer for a question) 

A function prototype includes the function signature. 

The function definition includes the actual body of 

the function. 

Pronoun resolution (Step 1): Not applied here. 

After sentence division (Step 2): S1 A function 

prototype includes the function signature.  

S2 The function definition includes the actual 

body of the function. 

Sentence#1:A function prototype includes the 

function signature.  

Phrases (Step 3): [NP: A function prototype][VP: 

includes] [NP: the function signature] 

Stem (Step 4): Lemma:  [NP: function prototype] 

[VP: include][NP: function signature].   
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Stem:[NP: funcprototyp][VP: includ] [NP: 

funcsignat] 

Sentence#2:The function definition includes the 

actual body of the function. 

Phrases (Step 3): [NP: The function definition] 

[VP: includes][NP: the actual body][PP: of][NP: the 

function] 

Stem (Step 4): Lemma: [NP: function definition] 

[VP: include] [NP: actual body] [PP: of] [NP: 

function]. 

Stem:[NP: funcdefini] [VP: includ] [NP:actu 

bod][PP: of][NP:func]. 

The End of Example 2 
 

Example 3: (Applying the preprocessing phase 

on a student answer for the same question) 

Function prototype only includes the access function 

name and parameter type. Function definition 

includes the code for the function to perform the 

function’s activity. 

Pronoun resolution (Step 1): Not applied here. 

After sentence division (Step 2): S1Function 

prototype only includes the access function name.  

S2Function prototype only includes parameter 

type.  

S3Function definition includes the code for 

the function to perform the function’s activity. 

Note:adding the subject “function prototype” and 

the verb “includes” in the third sentence. Return the 

omitted subject (and verb) after sentence connectors 

such as “and, or, so…etc”. 

Sentence#1:Function prototype only includes the 

access function name.  

Phrases (Step 3): [NP: Function prototype][VP: 

includes][NP: the access function name]. 

Stem (step4): Lemma: [NP: Function prototype] 

[VP: include] [NP: access function name].  

Stem: [NP: Funcprototyp] [VP: includ] [NP: 

access funcnam]. 

Sentence#2: 

Function prototype only includes parameter type.  

Phrases (Step 3): [NP: Function prototype][VP: 

includes] [NP: parameter type]. 

Stem (step4): Lemma: [NP: Function prototype] 

[VP: include] [NP:  parameter type].  

Stem: [NP: Func prototyp] [VP: includ] [NP: 

paramet typ]. 

Sentence#3:Function definition includes the code 

for the function to perform the function’s activity. 

Phrases (Step 3): [NP: Function definition] [VP: 

includes][NP: the code][PP: for][NP: the function]                        

[VP: to perform] [NP: the function’s activity]. 

Stem (step4): [NP: Func defini][VP: includ][NP: 

cod][PP: for][NP: func][VP: to perform][NP: func 

activ]. 

Step 5: 

Replace the concept “cod for func” with the concept 

“func cod” as it matched the tregex PP $-NP $+NP. 

Also, both NPs are found in the ontology and there 

is a relation between them. 

Then, Func defini include func cod to perform 

func activ. 

The End of Example 3 
 

Example 4: (Resolving the connector problem on 

a student answer) 

The data member can be accessed outside the 

class while the local variable cannot. 

Step 7:  The data member can be accessed outside 

the class while the local variable cannot be accessed. 

The End of Example 4 

2nd: Key-Answer Extraction phase 

The key-answer extraction phase is applied on the 

model answer using the ontology via extracting the 

range, relation and domain from each sentence in it, 

see example 5. The phase is applied as follows: 

For each sentence in the model answer: 

1. Extract the concept that represents a range from 

the sentence using the ontology  

(a) If the sentence phrases contains a concept that 

matches the tregex: PP $-NP1$+NP2Such that, 

both NP1 and NP2are found in the ontology. 

Also, there exist a relation between NP1 and 

NP2. 

Then, NP1(that is related toNP22) is the 

range.   

For example: “local variable inside 

function”. The range will be “local 

variable”.  

(b) If the sentence phrases contains a concept that 

matches the tregex: PP $-NP1$+NP2Such that, 

NP2NP1is found in the ontology. 

Then, NP2NP1is the range.     

For example: “type of parameter”, The 

range will be “parameter type”. 

“Location in memory”, the range will be 

“memory location”. 



Received: October 23, 2017                                                                                                                                                163 

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018           DOI: 10.22266/ijies2018.0630.17 

 

(c) If the sentence phrases contains a concept 

that matches the Tregex NP such that NP 

is found in the ontology.  For example, 

local variable, fuzzy ontology, inheritance, 

polymorphism. 

Then, such concept is the range. 

(d) If the sentence phrases contains a concept 

that matches the Tregex NP such that a 

subset from NP is found in the ontology.  

Then, the only matched subset is the range 

For example: “word parameter”. The range 

will be “parameter”. 

(e) If the sentence phrases contains a concept 

that matches the Tregex NP such that 

more than one subset from the NP is found 

in the ontology.  

Then, the 2nd subset (that is related to the 1st 

subset) is the range. 

For example: class data member (both 

“class”, “data member” are found in the 

ontology). The range will be “data member”.  
 

2. Extract the range relation from the sentence using 

the ontology such that: 

 If the sentence is positive, 

For the extracted range, match its ontology 

relation or one of its synonyms.  If found, 

then, the relation is found 

 If the sentence is negative, 

For the extracted range, match its ontology 

opposite relation.  If found, then, the 

relation is found 

3. Extract the domain from the sentence (if exist) 

using the ontology 

(a) If the sentence contains a concept that matches 

the tregex PP $-NP1 $+NP2such that, NP1or 

NP2 or subset from any one of them is related 

to the extracted range with the extracted 

relation.  

Then, the related one is the domain.     

For example:  “data member is accessed by 

member function inside class”, see Fig. 1. 

The Range is “data member” 

Relation is “accessed”, domain is “class”. 
 

(b) If the sentence contains a concept that matches 

the tregex PP $-NP1$+ NP2 such that, 

NP2NP1is found in the ontology to be related 

to the extracted range with the extracted 

relation. 

Then, NP2NP1is the range.     

For example:  “variable is a location in 

memory”, see Fig. 2. 

The range: “variable”,  relation: “is a” 

The domain is “memory location”. 
 

(c) If the sentence contains a concept that matches 

the tregex NP such that NP or a subset from it 

is related to the extracted range with the 

extracted relation.  

Then, the related one is the domain. 
 

4. Construct the sentence predicate from the 

extracted range, relation and domain (if exist): 

 if the range, relation and the domain are all 

exist, the predicate will be:  

relation (range, domain); for positive 

sentence 

not relation(range, domain)   for negative 

sentence 

 if only the range is exist(range) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5: (Applying the key-answer extraction 

phase on the model answer of the same question)  

Sentence#1: [NP: func prototyp][VP: includ] [NP: 

func signat] 

Range: “func prototyp,” Relation: “includ”, 

Domain: “func signat” 

The predicate:  

includ (func prototyp, func signat) 

Sentence#2: [NP: func defini] [VP: includ] [NP: 

actu bod] [PP: of ] [NP: func]. 

Range: “func defini,” Relation: “includ”,  

Domain: “func bod” 

Figure. 1 Example on extracting   range using ontology 

Datum member 

Class  

Access (inside)? 

Figure. 2 Example on extracting range using ontology 

Variable  

Memory location 

Is a  
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The predicate:  

includ (func defini, func bod) 

The End of Example 5 

3rd: Complete Model Answer Predicate 

Construction phase 

The complete model answer construction phase 

constructs the complete model answer from both the 

question  and the model answer’s predicates, see 

example 6. This phase is applied as follows: 

1. Answer the question text then from the answer 

construct the predicate(s) of the question 

answer(s) 

i. extract the concept to be answered via: 

a. For comparison questions, remove 

concepts matching the regular expression 

“[difference| similarity] .* between” or 

their synonyms. 

b. Chunk the question text into of phrases. 

c. For each noun phrase (NP) and (PP),  

 Remove the question headword, e.g., 

“What”, “Where”, “How”. 

 Remove determiners (if exist). 

 Stem them after lemmatizing. 

 Extract the concept to be answered, 

using the same criteria of extracting the 

model answer range(see step(1) in the 

2nd phase) 

ii. For each extracted concept,  answer the 

question as follows:  

 For definition questions, use the ontology 

to expand the concept with all its direct 

relations.  

 For comparison questions,  

- Similarity questions: 

Expand all concepts with domains and 

relations that they both have. 

- Difference questions: 

Expand all concepts with domains (or/ 

and) relations that are found in one of 

them and not found in the others. 

 All the predicates of the question answers 

will have the form : relation (concept, 

domain) where, the concept is the 

extracted concept, the relation and the 

domain are that extracted from the 

ontology 

iii. For each predicate in the question answer,  

 expand  its range, relation, domain with its 

synonyms 

 expand its range, relation, domain with its 

‘have’ relationship 

 if the predicate’s relation is positive  

- expand it by adding ‘not’ and the 

relation opposite.  

 if the predicate’s relation is negative  

- expand it by adding only the relation 

opposite.  

2. Expand the instructor’s model answer (phase 1):  

 For all types of questions other than the 

comparison and the definition questions,  

- Expand each predicate in the model 

answer with domains having the same 

relation and range in it. 

3. For all questions other than the comparison 

questions,  

 Remove the question concept and/or relation 

from each predicate in the complete model 

answer, if exist. 

4. Expand the instructor’s model answer (phase 2):  

 For each predicate in the model answer,  

- expand its range, relation, domain with its 

synonyms 

- expand its range, relation, domain with its 

‘have’ relationship 

- if the predicate’s relation is positive: 

*Expand it by adding ‘not’ and the relation 

opposite  

- if the predicate’s relation is negative: 

*Expand it by adding only its opposite  

5. Construct the complete model answer predicates:  

i. ORing each predicate in the model answer 

with its expansion ones 

ii. ANDing each predicate in the model answer 

with each other and with each predicate in the 

question answer 

iii. ORing predicate in the question answer with 

its expansion  

6. For all the complete model answer predicates, 

 If both the domain and the range contain more 

than one word, such that there is a common 

word between them, then remove it from the 

domain of all complete model answer’s 

predicates.  

7. For all comparison question,  
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 If the concepts to be compare (range in the 

predicate) contain more than one word, such 

that there is a common word between them, 

remove it from each predicate in the complete 

model answer. 
 

Example 6: (constructing the complete model 

answer predicates from the same questionand its 

model answer) 

1. Answer the question text  

What is the difference between a function 

prototype and a function definition? 

i. Concept extraction 

a. Removing the RE: What is the a function 

prototype and a function definition? 

b. Phrases: [NP What] [VP: is] [NP: function 

prototype],[NP: function definition] 

c. Lemma NP, PP:  [NP: function prototype], 

[NP: function definition] 

Stem NP, PP: [NP: func prototyp], [NP: func 

defini] 

d. Extract concepts to be answered  

Concept1:  “Func prototyp”     WHY??   As 

the concept in the NP exist in the ontology 

Concept2:  “func defini”      WHY??   As 

the concept in the NP and exist in the 

ontology 

ii. Question Answering, see Fig. 3 

Concept1: declar (func prototyp, func) 

Includ(func prototyp, function signat) 

not includ (func prototyp, func bod) 

 

 

 

 

 

 

 

 

Concept2: 

includ (func defini, function bod) 
 

iii. Question Answer Expansion 

Domain ‘have’ relation, see Fig. 4 

[hav (func prototyp, func nam) AND 

hav (func prototyp, func paramet) AND 

hav (func prototyp, func return typ)] 

Domain synonyms: 

Func bod=func cod 

Not includ (func prototyp, func cod) 

declar (func defini, func cod) 

paramet=argu 

hav (func prototyp, function argu) 

Relation synonyms: 

declar= defin 

defin (function prototyp, func) 

2. Expanding the model answer predicate  

(phase 1)Not applied on comparison questions 

 

3. Remove the question’s concepts and relation  

common word if exist: Not applied on 

comparison questions 

 

 

 

 

 

 

 

 

4. Expanding the model answer predicate 

 (phase 2)Since, the model answer predicate is 

already a subset from the question answer 

predicate, then its expansion will be included in 

the question answer predicates’ expansion. 

5. Complete model answer construction 

[[includ (func defini, func bod) OR includ 

(func defini, func cod)] 

AND 

[declar (func prototyp, func)   

OR defin (func prototyp, func) ] 

AND 

[not includ (func prototyp, func bod) OR 

Not includ (func prototyp, func cod)] 

AND 

[includ(func prototyp, func signat)OR 

[hav (func prototyp, func nam)  AND  

hav (func prototyp, func return typ) AND   

[ hav (func prototyp, func paramet) OR 

hav (func prototyp, func argu))]] ] ] 

6. Remove the common word from the domain 

[[includ (func defini, bod) 

OR includ (func defini, cod) ] 

AND 

Figure.3 Example on answering the question using ontology 

Func 

Func prototyp Func defini 

Func bod 

Declar 
Includ 

Funcsignat 

Includ 

Func bod 

Not includ 

Figure. 4 example on expanding the question answer 

with the ‘have’ relationship using ontology 

Func signat 

Func nam 

Hav 

Hav 
Hav 

Func Paramet 

Func return typ 
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[declar (func prototyp, func)   

OR defin (func prototyp, func) ] 

AND 

[not includ (func prototyp, bod) OR  not includ 

(func prototyp, cod)] 

AND 

[includ(func prototyp, signat) OR 

[ hav (func prototyp, nam)  

AND hav (func prototyp, return typ)  

AND   

[ hav (func prototyp, paramet) OR hav (func 

prototyp, argu)]] ] ] 

7. Remove the question concepts’ common word 

from the range of the complete model answer 

The question concepts: func prototyp, func defini 

Common word: func 

After removal: prototyp, defini 

[     [includ (defini, bod)   OR 

includ(defini, cod)] 

AND 

 [declar (prototyp, func)  OR 

defin (prototyp, func) ] 

AND 

[not includ (prototyp, bod) OR not  

includ (prototyp, cod)    ] 

AND 

[includ(prototyp, signat) OR  

[hav (prototyp, nam)  

AND hav (prototyp, return typ)  

AND   

[ hav (prototyp, paramet) OR 

hav (prototyp, argu) ] 

] ] ] 

The End of Example 6 

4th: Grading phase  

To grade a student answer, its similarity degree with 

the complete model answer predicates is calculated 

using eqn. (1): 

- Let the number of predicates in the complete 

model answer is n, the number of sentences in the 

student answer in m. SAj is a sentence in the student 

answer such that j ϵ [1, m].MAi is a predicate in the 

complete model answer such that iϵ [1, n] 

- Let SDi is the similarity degree associated with the 

complete model answer predicate MAi with its most 

similar student answer sentence.  

- Let the total number of sentences in the 

instructor’s model answer is x. The total grade of the 

given question as assigned by the instructor in G. 

G/x is the grade of each predicate in the complete 

model answer. Final_grade is the student final 

grade. 

Final_grade =∑ 𝑺𝑫𝒊
𝒏
𝒊=𝟏             eqn.(1) 

SDi value is calculated using the following 

algorithm as follows: 

CalSim(SAj, MAi) 

1.  If (MAi format is (Range) AND SAj matches it) 

2. SDi=G/x 

3. Else If (MAi format is Rel(Range) then 

4. If (SAj matches it) 

5. SDi=G/x 

6. Else If (Rel or Range is missed from SAj) 

7. SDi= 0.7*G/x 

8. Else  

9. SDi= 0 

10. End if 

11. Else If (MAi format is Rel(Domain, Range)) 

12.  If (SAj matches it)then 

13. SDi =G/x 

14. Else If (Domain, Rel or Range is missed  

From SAj) then 

15. SDi= 0.7*G/x 

16. Else  

17. SDi= 0 

18. End if 

19. End if 

 

Example 7: (Applying the grading phase on the 

preprocessed student answer for the same 

question) 

The question grade is: 5 

Total number of sentences in the model answer: 2 

Each sentence grade is: 5/2=2.5 

Complete model answer predicate 

predicate# 1: 

includ (defini, cod) and its expansion 

matches  student sentence # 3 

SA3: Func defini include cod for func to perform  

Func activ. 

Then, Sim_deg=2.5 

predicate# 2& predicate #3: 

declar (prototyp, func) and its expansion 

not includ (prototyp, bod)  and its expansion 
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Not matched with any student answer sentence  

Then, Sim_deg=0 

predicate# 4: 

[includ (prototyp, nam)  AND includ (prototyp, 

return typ)  AND  includ (prototyp, paramet) ]  

and its expansion 

Part from it matches student answer sentence #1 

AND sentence #2 

SA1: Func proto typ onl includ access func name. 

SA2: Func proto typ onl include paramet. 

Then, Sim_deg=1.6 

Final_grade=5 

The End of Example 7 

4. Evaluation 

4.1 Dataset 

The proposed system is evaluated and tested on 

Texas dataset1. It consists of ten assignments with 

between four and seven questions each. Also, it 

includes two exams with ten questions each. These 

assignments/exams were assigned to an introductory 

computer science class at the University of North 

Texas. Each assignment includes the question, 

instructor answer, and set of student answers with 

the average grades of two annotators included. 

Moreover, the dataset includes the course material 

(.ppt) files. Note that this dataset is used to evaluate 

and test another two short answer question 

correction systems, which are Texas [1] and Gomaa 

et al [2]. 

4.2 Dataset usage 

The dataset is used to evaluate the proposed 

system’s third module, the text similarity module. 

The course material is used to construct the domain 

ontology via using the text2onto tool. Then, the 

constructed ontology is reviewed by the course 

instructor. All the regular expressions used in the 

ontology are added by the course instructor. The 

domain dictionary is constructed manually by a 

domain expert. 

4.3 Results and discussion  

To evaluate the proposed system, Pearson’s 

correlation coefficient is measured against average 

human grades. Afterwards, it is compared with 

Texas [1], Gomaa [2], and Pribadi [3] systems as 

they are tested on the same dataset. Texas reaches 

 

                                                           
1 https://web.eecs.umich.edu/~mihalcea/downloads.html 

 
Figure. 5 Comparing different correction systems using 

the correlation measure 

 

the correlation values 0.328, 0.395, and 0.281 by 

applying LSA, ESA, and tf*idf respectively. 

However, Gomaa [2] reaches the correlation value 

0.504 by combining String-based and Corpus-based 

similarity in an unsupervised way. On the other 

hand, the correlation value of Pribadi [3] is less than 

0.4. The proposed system raises the correlation 

results to be 0.8001, see Fig. 5. 

Pearson’s correlation measures the agreement 

degree between the human and the computer grades. 

Thus the higher the correlation value is, the more 

accurate the system is. From Fig. 5, the proposed 

system outperforms others as the result of using the 

course material for: 

- expanding the model answer with more correct 

answers generated from answering the question.  

- expanding the model answer with the definition 

of its contained concepts (using ‘is-a’ and ‘having’ 

relations).  

Thus, this approach mimics the human thinking 

in detecting and correcting students’ correct answers 

that are not mentioned in the model answer. On the 

other hand, the other systems have low correlation 

value as they just calculate the similarity degree 

between a student answer against the instructor 

model answer without considering more correct 

answers.  

5. Conclusion 

In order to have an intelligent short answer 

correction system that mimics the human correction, 

the course material of the underlying exam is used. 

Via the course material, the system expands the 

model answer with the definitions of its contained 

concepts (using the ‘is-a’ and ‘have’ relations) and 

with more correct answers extracted by answering 

the question to correct a student answer. 
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Our future work is to represent the meaning of 

both answers using the Abstract Meaning 

Representation. Then calculate the similarity degree 

between them. 
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