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Abstract: This paper presents an adaptive speech enhancement approach to suppress non-stationary noises form a 

noisy speech signals. This approach is based on the Empirical Mode Decomposition and Signal Uncertainty. The 

EMD is just used as pre-processor for signal decomposition into Intrinsic Mode Functions. Further The IMFs are 

processed for noise suppression through a recursive smoothing based on a smoothing factor which was decided 

based on the probability of speech presence. A new signal detector is proposed here to measure the probability of 

speech presence. This approach mainly focused on the optimization of probability of detection through the newly 

proposed signal detector. The simulation is carried out through various speech signals contaminated with different 

noise types like White noise, Babble noise and Airport noise at various SNR levels reveals the outstanding 

performance of proposed approach. The performance evaluation is carried out by measuring the performance metrics, 

Overall output SNR, Output AvgSegSNR and Perceptual Evaluation of Speech Quality (PESQ). The evaluation is 

carried out for varying noise strengths and for every test case all these metrics are evaluated and compared with 

conventional approaches. 
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1. Introduction 

Recently, the drastic growth in the market of 

speech communication applications like hearing-

aids, teleconferencing, speech recognition and hands 

free telephony motivated the research on the speech 

enhancement. Particularly in the hands free 

telephony speech communication systems, the 

microphones are typically placed at certain distant 

from the speaker’s mouth. In such cases, various 

noise sources makes the speech signal corrupted, by 

which the performance of a speech oriented devices 

are not able to process the signal effectively. For 

example the performance of an automatic speech 

recognition (ASR) system becomes worst in the case 

of adverse acoustic environment [1]. Hence there is 

a necessity of speech preprocessing to remove the 

unnecessary noise before transferring it to the final 

peripheral devices.   

Several approaches have already been proposed 

to improve the speech enhancement results. 

Although the microphone array based approach 

exhibits better results, at the same time speech 

processing research community is trying to reduce 

the number of microphones (channels). The spectral 

subtraction is one of the early methods to reduce the 

noise effects from the observed speech signals. In 

this method, the noise reduction is achieved by 

appropriate adjustment of the set of spectral 

magnitudes [2]. Its basic requirement is the noise 

spectrum which is determined from the non-speech 

segments [3]. In such speech enhancement system, 

the residual noise is a usual issue. It decreases the 

speech intelligibility and hence further processing is 

required to reduce the residual noise. The subband 
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approach to speech enhancement is another potential 

method. Fourier transform and wavelet transform 

are dominating methods widely used in subband 

based speech enhancement techniques. But the 

Fourier transformation is not suitable to analyze 

non-stationary signals like speech. There are several 

approaches of using wavelet transformation in 

subband decomposition. The decomposition results 

are varied with the different parameters, for example, 

the basis wavelet, the number of decomposition 

levels, and so forth. Moreover, the selection of 

parameters also depends on the analyzing data. 

Therefore, a data adaptive tool for analyzing non-

stationary and nonlinear signal is highly desirable 

[4]. 

This paper proposes new speech enhancement 

approach by focusing the signal uncertainty as a 

main critic. EMD is used as a pre-processing filter to 

decompose the noisy speech signal into IMFs. 

Further a new signal detector approach is proposed 

here to improve the probability of detection and to 

reduce the probability of false alarm. Based on the 

hypothesis framework, the segments of IMFs are 

decided as speech or noise dominant. For the noise 

dominant segments the proposed approach applies a 

recursive smoothing to remove the noise. The 

proposed approach applied over the noisy speech 

signals taken from TIMIT data base for performance 

evaluation. Non-stationary noises like car noise, 

babble noise, airport noise are considered at three 

SNR levels.  

Rest of the paper is organized as follows; 

Section II illustrates the details of Literature survey. 

Section III illustrates the details of proposed speech 

enhancement approach. Section IV illustrates the 

simulation results and section V concludes the paper. 

2. Related work 

Several methods have been used to reduce the 

noise existing in degraded speech signals. Spectral 

subtraction is one of these methods, and it is easily 

implemented. In this method, the noise spectrum is 

estimated first from the silence periods of the noisy 

signal, and then this estimated noise spectrum is 

subtracted from the spectrum of degraded speech 

producing an estimate of the original signal with less 

noise. Although, this method is easy to implement, it 

submits some source of musical noise to the 

enhanced signals [5].   

Empirical Mode Decomposition (EMD) is 

observed to be a better technique to study the 

characteristics of non-stationary signals. EMD is 

developed by Huang et.al. [7] to decompose a non-

stationary signals into a finite set of functions called 

Intrinsic Mode Functions (IMFs).  Several 

approaches are developed in earlier based on EMD 

[6]. In [6], an adaptive soft thresholding algorithm 

was developed based on EMD. Here the variance is 

derived for every IMF not for speech signal by 

which this algorithm achieved better performance. 

However the main drawback of this approach is in 

finding the speechless part to determine the variance 

of noise. In [8] a new speech enhancement approach 

is developed based on the EMD and Hurst 

component to suppress the white noise as well non-

stationary acoustic noises. The main contribution is 

focused for the adaption of Hurst exponent in the 

selection of IMFs to reconstruct the speech. EMD is 

used as a pre-processing filter to decompose the 

noisy speech signal into IMFs. However it is not 

considering any signal or noise variance in the 

speech enhancement.  

Further a combined speech enhancement 

algorithm was developed in [9] to suppress the non-

stationary noises. It employs the combination of 

variational mode decomposition (VMD) [10, 16] 

and empirical mode decomposition (EMD) methods. 

This approach tried to filter the noise components 

efficiently in both low frequencies and high 

frequencies. All these approaches tries to do the 

speech enhancement through the thresholding, i.e., 

based on particular static measure the noise 

components are filtered from the noisy speech signal. 

However all these approaches introduce a musical 

noise after the speech reconstruction. The musical 

noise has similar characteristics with noise and 

needs to be reduced further. Some approaches also 

focused to reduce the musical noise by considering 

the signal uncertainty problem.  

In [11], minima controlled recursive averaging 

(MCRA) approach was developed to reduce the 

noise from a noisy speech.  The noise estimate is 

given by averaging past spectral power values and 

using a smoothing parameter that is adjusted by the 

signal presence probability in subbands. Presence of 

speech in subbands is determined by the ratio 

between the local energy of the noisy speech and its 

minimum within a specified time window. However 

the probability of speech presence considered a 

constant value of 2 for all types of noises. This 

constant value does not suites for all types’ non-

stationary noises. One more approach is developed 

in [12] by assuming that the noisy speech signal 

follows a chi-square distribution and the signal 

uncertainty is measured based on two hypotheses. 

This approach combines the DCT and EMD for 

speech enhancement, DCT as a first stage filter and 

EMD is for reducing the musical noises existing in 

the output of first stage. However in the chi-square 
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distribution the signal variables are assumed to be 

independent. But there exists a strong correlation 

between the samples in a noisy speech. 

3. Proposed approach 

3.1 Speech enhancement 

Let y(n) ne a noisy speech signal that is the sum 

of clean speech signal s(n) and a noise signal d(n); 

y(n)=s(n)+d(n). Apply empirical mode 

decomposition (EMD) over the noisy speech and 

divide the every IMF into K segments with every 

segment having equal number of samples. 

 

𝑌(𝑚, 𝑘) = 𝑆(𝑚, 𝑘) + 𝐷(𝑚, 𝑘)                     (1) 

 

Where 𝑚 = 1,2, … , 𝑀 is the frequency bin and the 

𝑘 = 1,2, … , 𝐾  is the segment index. 𝑆(𝑚, 𝑘)  and 

𝐷(𝑚, 𝑘) denotes the speech signal and noise signal 

of kth  frequency bin in the mth segment, respectively.  

 Consider two hypotheses 𝐻0(𝑚, 𝑘)  and 𝐻1(𝑚, 𝑘) 

which indicates the absence of speech and presence 

of speech respectively, as 

 
𝐻0(𝑚, 𝑘): 𝑌(𝑚, 𝑘) = 𝐷(𝑚, 𝑘)

𝐻0(𝑚, 𝑘): 𝑌(𝑚, 𝑘) = 𝑆(𝑚, 𝑘) + 𝐷(𝑚, 𝑘)
    (2)           

 

In the case of 𝐻0(𝑚, 𝑘), the speech signal is absent 

and only the noise signal is present.  Whereas in the 

case 𝐻1(𝑚, 𝑘) denotes the presence of both speech 

signal and noise signal.  

Let 𝜎𝑑(𝑚, 𝑘) = 𝐸[|𝐷(𝑚, 𝑘)|2] be the noise variance 

in the mth segment, the speech signal can be detected 

by the conventional signal detector (CSD) [13] as 

 

𝑊 = ∑ (
𝑌(𝑖,𝑘)

𝜎𝑑(𝑘)
)

2
𝑁
𝑖=1,𝑘=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡     

𝐻1

>
<
𝐻0

  𝛿       (3) 

 

Where N is the total number of samples in kth 

segment and 𝛿 is the threshold to be determined. In 

the above expression, the presence or absence of 

speech signal is detected by simply dividing the 

amplitudes of all speech samples with noise 

variance 𝜎𝑑 and then squaring the result.  Then the 

obtained result is compared with a predefined 

threshold. If the result is greater than the threshold, 

then it is declared as the presence of speech signal 

otherwise it is declared as the absence of speech 

signal. 

Form the above Eq. (3),  it can be observed that 

the CSD decides the kth segment is belongs the 

Hypothesis 𝐻1 or 𝐻0 just by squaring the amplitudes 

of all samples divided by the noise variance 𝜎𝑑 . 

However a simple squaring operation cannot give 

much efficient results of probability of detection 

( 𝑃𝑑 ), i.e., it can’t increases the probability of 

detection or reduces the probability of false alarm 

(𝑃𝐹). In this case 𝑃𝑑 and 𝑃𝐹 are defined as  

 

𝑃𝑑 = 𝑝𝑟(𝐻1|𝐻1)                                          (4) 

𝑃𝐹 = 𝑝𝑟(𝐻1|𝐻0)                                          (5) 

 

Here the 𝑃𝑑 is defined as the probability of correct 

detection, i.e., the result shown by Eq. (3) and the 

assumption are same. Otherwise it results under 𝑃𝐹.   

Since the characteristics of non-stationary noises 

like Babble noise, Airport noise etc., are varying in 

nature, the signal detector has to consider this 

varying nature also. Then only the signal can be 

detected exactly. For every noise, there are unique 

characteristics. Thus a common threshold cannot 

satisfy the detection performance.   

The noise variance 𝜎𝑑(𝑘) involved in the Eq. (3) 

reflects the varying nature of non-stationary noises 

by a simple squaring operation can’t differentiate 

the entire segment is noise dominant or signal 

dominant. Hence the signal detector must be an 

optimal and varying in nature according to the 

varying statistics of noise. The statistics of noise are 

different from noise to noise, like car noise, babble 

noise, aircraft noise, fan noise etc. hence this paper 

proposed a new signal detector called generalized 

signal detector (GSD) [14] and it is formulated as 

 

𝑊′ = ∑ (
𝑌(𝑖,𝑘)

𝜎𝑑(𝑘)
)

𝑝
𝑁
𝑖=1,𝑘=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡     

𝐻1

>
<
𝐻0

  𝛿′      (5) 

 

Where 𝑝 > 0 is an arbitrary constant and 𝛿′ is a new 

threshold to be determined by fixing the probability 

of false alarm, mean and variance values of two 

hypotheses 𝐻1  and 𝐻0 . The proposed approach 

obtains a noise power estimate by applying a 

temporal recursive smoothing to the noise in the 

absence of speech and the new hypotheses are as 

follows; 

 

𝐻0
′ (𝑚, 𝑘):      �̂�𝑑(𝑚, 𝑘 + 1) = 𝛼𝑑𝜉 + 𝜁

𝐻1
′ (𝑚, 𝑘):                �̂�𝑑(𝑚, 𝑘 + 1) = 𝛼𝑑𝜉

       (6) 

 

Where 𝜁 = (1 − 𝛼𝑑)|𝑌(𝑖, 𝑘)|2 , 𝜉 = �̂�𝑑(𝑚, 𝑘)  and 

𝛼𝑑  (0 < 𝛼𝑑 < 1)  is a smoothing parameter. Here 

the above eq.(6) tries to optimize the detection rate 

by detecting whether the kth segment is noise 

dominant or signal dominant. But the notation m 

specifies the frequency bin. For every segment, 
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there are M frequency bins and for every frequency 

bin there is N number of samples.  In the mth 

frequency bin of kth segment, amplitude of every 

sample is considered for evaluation.  

Form [11] a clear distinction was provided 

between the two hypotheses (2) and (6). Deciding 

that the speech is not present (𝐻0) when there is a 

presence of speech ( 𝐻1 ) makes the speech 

enhancement not to achieve an optimal performance. 

Thus the 𝐻1
′  is chosen to achieve higher confidence 

levels, i.e., 𝑃(𝐻1(𝑚, 𝑘)|𝑌(𝑚, 𝑘)) ≥
 𝑃(𝐻1

′ (𝑚, 𝑘)|𝑌(𝑚, 𝑘)) [11].  

Where the 𝑃(𝐻1
′(𝑚, 𝑘)|𝑌(𝑚, 𝑘))  denotes the 

posteriori probability of speech presence. Then the 

presence of speech in the equation.(6) becomes  

 

�̂�𝑑(𝑚, 𝑘 + 1) = 𝜍𝜉 + [1 − 𝜍]|𝑌(𝑚, 𝑘)|2      (7)                               

 

Where 𝜍 = �̂�𝑑(𝑚, 𝑘)  is a time varying smoothing 

parameter that is adjusted by the probability of 

speech presence as follows; 

 

�̂�𝑑(𝑚, 𝑘) = 𝛼𝑑 + (1 − 𝛼𝑑) ≥
𝑃(𝐻1

′ (𝑚, 𝑘)|𝑌(𝑚, 𝑘))                                  (8) 

 

Further the conditional probability 

 𝑃(𝐻1
′ (𝑚, 𝑘)|𝑌(𝑚, 𝑘)) is decides based on the test 

static defined in the equation.(5), as 

 

𝑃(𝐻1
′ (𝑚, 𝑘)|𝑌(𝑚, 𝑘)) 

= 𝛼𝑝𝑃(𝐻1
′(𝑚, 𝑘 − 1)|𝑌(𝑚, 𝑘 − 1)) 

  +(1 − 𝛼𝑝)𝐼(𝑚, 𝑘)                                           (9) 

 

Where 𝛼𝑝(0 < 𝛼𝑝 < 1) is a smoothing factor and I 

is an indicator function obtained as 

 

 𝐼(𝑚, 𝑘) = {
1   𝑖𝑓 𝑄𝑟(𝑚, 𝑘) > 𝛿′

0     𝑖𝑓 𝑄𝑟(𝑚, 𝑘) < 𝛿′
              (10) 

 

Here defining one new parameter called 𝑄𝑟(𝑚, 𝑘) to 

measure the statistics of segment. It is simply 

obtained by dividing the local energy of a noisy 

speech ( 𝑄(𝑚, 𝑘) ) by its determined minimum 

𝑄𝑚𝑖𝑛(𝑚, 𝑘).  

 

𝑄𝑟(𝑚, 𝑘) = 𝑄(𝑚, 𝑘) 𝑄𝑚𝑖𝑛(𝑚, 𝑘)⁄ .             (11) 

 

Where 

𝑄(𝑚, 𝑘) = 𝛽𝑄(𝑚, 𝑘 − 1) + (1 − 𝛽)|𝑌(𝑚, 𝑘)|2                                              
(12) 

 

Where 𝛽 is a smoothing parameter. 

3.2 Threshold (𝛅′) determination  

The mathematical formulation for the threshold 

derivation is carried out in this section. In the 

conventional signal detector [13] the threshold has a 

simple relation with the shape parameter (𝜇0
′ ) and 

scale parameter ( 𝜎0
′ ). In the generalized signal 

detector the threshold is determined through a 

complex process. According to the Neyman-Pearson 

rule, the expression for threshold [13] is as 

 

𝛿′ = 𝐹−1(1 − 𝑃𝐹 , 𝜇0
′ , 𝜎0

′)                            (13) 

 

Where  

𝜇0
′ =

𝑀2{(𝑊`|𝐻0)}

𝑉{(𝑤`|𝐻0)}
= 𝑛.

Γ2(
𝑝+1

2
)

Γ(
2p+1

2
)√π−Γ2(

𝑝+1

2
)
      (14)     

𝜎0
′ =

𝑉{(𝑊`|𝐻0)}

𝑀{(𝑤`|𝐻0)}
=

2
𝑝

2⁄

𝑛
.

√𝜋Γ(
2p+1

2
)−Γ2(

𝑝+1

2
)

Γ(
p+1

2
)√𝜋

    (15)    

 

Where 

𝑀{(𝑤`|𝐻0)} =
2

𝑝
2⁄

√𝜋
 Γ(

p+1

2
)                         (16) 

𝑉{(𝑊`|𝐻0)} =
2𝑝Γ(

2p+1

2
)

√𝜋
𝑛 −

2𝑝

𝑛𝜋
Γ2(

𝑝+1

2
)       (17) 

𝐹(𝑥, 𝑣1, 𝑣2) = ∫
1

𝑣1
𝑣2Γ(v2)

𝑡𝑣2−1𝑒
−𝑡

𝑣1  
𝑥

0
𝑑𝑡       (18) 

 

The 𝜇0
′  and 𝜎0

′  denotes the shape parameter and 

scale parameter for the hypothesis 𝐻0 . In the 

conventional signal detector, these parameters are 

defined as just functions of the number of samples 

by which the probability of detection won’t be that 

much effective. For that reason, here the proposed 

approach defines the shape and scale parameters as a 

function of mean and variances, as shown in Eq.(14) 

and Eq.(15). 
In the CSD, the decision variable W does not 

follow the gamma distribution, however the 

modified decision variable W' can be well 

approximated as a Gamma random variable by 

matching the mean and the variance. This 

approximation enables us to determine the detection 

threshold δ' for the new detector in Eq. (5), which is 

otherwise difficult to obtain without the distribution 

of 𝑊′.  

Based on the above illustration, the probability of 

detection is defined as 

 

𝑃𝐷 = 1 − 𝐹(𝛿′, 𝜇1
′ , 𝜎1

′)                                (19) 

𝜎1
′ =

𝑉{(𝑊`|𝐻1)}

𝑀{(𝑤`|𝐻1)}
=

2
𝑝

2⁄ (1+𝛾)
𝑝

2⁄

𝑛
.

√𝜋Γ(
2p+1

2
)−Γ2(

𝑝+1

2
)

Γ(
p+1

2
)√𝜋

                     

(20) 



Received:  October 16, 2017                                                                                                                                               135 

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018           DOI: 10.22266/ijies2018.0228.14 

 

 
(a)                                                                                           (b) 

 
(c)                                                                                           (d) 

Figure.1 Obtained results: (a) clean speech of a male with airport noise at 0dB SNR, (b) spectrogram of (a), (c) enhanced 

speech signal of (a), and (d) spectrogram of (c) 
 

 
(a)                                                                                           (b) 

 
(c)                                                                                     (d) 

Figure.2 Obtained results: (a) clean speech of a male with airport noise at 10dB SNR, (b) spectrogram of (a), (c) 

enhanced speech signal of (a), and (d) spectrogram of (c) 
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(a)                                                                                                      (b) 

 
(c)                                                                                             (d) 

Figure.3 Obtained results: (a) clean speech of a female with babble noise at 0dB SNR, (b) spectrogram of (a), (c) 

enhanced speech signal of (a), and (d) spectrogram of (c) 

 

𝜇1
′ =

𝑀2{(𝑊`|𝐻1)}

𝑉{(𝑤`|𝐻1)}
= 𝑛.

Γ2(
𝑝+1

2
)

Γ(
2p+1

2
)√π−Γ2(

𝑝+1

2
)
      (21) 

 

Where 𝛾 is the average signal to noise ratio (ASNR) 

of the total speech signal. 

Form the above expressions, we can obtain an 

optimal values for probability of detection through 

the detection threshold. Here the detection threshold 

is determined through the scale and shape 

parameters of the speech signal when the speech 

signal is assumed to be absent by which the 

complete characteristics of noise can be obtained 

which gives more clarity about the features of clean 

speech and noise. Here the arbitrary constant p is 

implicitly related to the false alarm, the probability 

of detection and ASNR and the number of samples. 

Thus we can obtain an optimal value of p that 

maximizes the probability of detection at fixed 

values of Probability of false alarm, ASNR and N. 

Thus, Eq. (19) is a very general expression that can 

be used in different applications. An analytical 

expression for the optimum value of 𝑝 is difficult to 

obtain, if not impossible. 

 

 

4. Simulation results 

This section describes the performance 

evaluation of the proposed approach. To illustrate 

the effectiveness of the proposed speech 

enhancement algorithm, extensive computer 

simulations were carried out with 10 male and 10 

female utterances, randomly selected from the 

TIMIT database. Totally four types of noses are 

considered for the evaluation. They are White Noise, 

Babble Noise, Car Interior Noise and Airport Noise.  

To evaluate the performance of proposed 

approach, overall and average segmental SNR 

improvements are measured. The quality of the 

enhanced speech signal through the proposed 

approach was evaluated through Perceptual 

evaluation of speech quality (PESQ) test. To show 

the performance improvement of proposed speech 

enhancement algorithm, it was compared with 

conventional approaches proposed by Tafiq Hasan 

et.al [12] and the S.N.Rao et.al [15]. 

The obtained results after simulation are 

represented in figures 1-6. Figure 1 and figure 2 

shows the results of a clean speech with airport 

noise at 0dB and 10dB SNR respectively. Similarly 
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(a)                                                                                   (b) 

 
(c)                                                                                             (d) 

Figure.4 Obtained results: (a) clean speech of a female with babble noise at 10dB SNR, (b) spectrogram of (a), (c) 

enhanced speech signal of (a), and (d) spectrogram of (c) 

 

 
(a)                                                                                                   (b) 

 
(c)                                                                                             (d) 

Figure.5: Obtained results: (a) clean speech of a male with car interior noise at 0dB SNR, (b) spectrogram of (a), (c) 

enhanced speech signal of (a), and (d) Spectrogram of (c) 
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(a)                                                                                   (b) 

 
(c)                                                                                                    (d) 

Figure.6 Obtained results: (a) clean speech of a female with car interior noise at 10dB SNR, (b) spectrogram of (a), (c) 

enhanced speech signal of (a), and (d) spectrogram of (c) 

 
Table 1. Comparison of the output SNR improvements of different denoising methods 

Noise Type Input SNR (dB) Tafiq.et.al [12] S.N.Rao et.al [15] Proposed 

Babble 0 2.0345 3.8663 5.2345 

5 5.6685 7.2493 8.8847 

10 11.0027 12.5812 13.3386 

15 16.0037 18.2214 18.7711 

Airport 0 2.8492 4.4986 6.1920 

5 6.5743 7.3468 9.8495 

10 11.1297 12.8592 13.4965 

15 16.9171 18.7682 19.7416 

Car Interior 0 2.9916 4.2880 5.8902 

5 6.1538 8.1650 8.9204 

10 11.802 13.3732 14.1873 

15 16.1455 19.1808 19.7050 

 

Figure 3 and figure 4 shows the results of a clean 

speech with Babble noise at 0dB and 10dB SNR 

respectively and Figure 5 and figure 6 shows the 

results of a clean speech with Car Interior noise at 

0dB and 10dB SNR respectively. The respective 

spectrograms are also shown in the every figure for 

both noisy speech and the enhanced speech. Further 

the performance of proposed approach is evaluated 

through the performance metrics such as Output 

SNR and Average SegSNR. The following tables 

describe the details of performance measures for all 

test cases. 

Tables 1-3 describe the details of Output SNR, 

Output AvgSegSNR and PESQ for varying noise 

environments. The complete results are evaluated 

for average results of 10 male and 10 female 

utterances for every instant of SNR and noise type. 

The superiority of proposed approach is observed in 

the all tables. Form table.1 it can be observed that 

the proposed approach obtained an increased Output 

SNR for every Input SNR; compared to the 

conventional approach it is observed to be high. 

Similarly the output AvgSegSNR of proposed 
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Table 2. Comparison of the output AvgSegSNR improvements of different denoising methods 

Noise Type Input Avg 

SegSNR (dB) 

Tafiq.et.al [12] S.N.Rao et.al [15] Proposed 

Babble -4.1482 -1.1788 0.0526 0.0556 

-1.2744 0.0144 2.0585 2.3377 

2.2858 2.6682 3.3983 3.4085 

5.6931 6.0244 7.9849 8.2963 

Airport -4.1041 -1.1593 0.0805 0.1215 

-1.2358 0.0629 2.1334 2.3532 

2.3615 2.7125 3.4256 3.6698 

5.7725 6.0886 8.0519 8.3458 

Car Interior -4.1332 -1.0897 0.1177 0.1209 

-1.2486 0.1103 2.0840 2.3710 

2.3698 2.7229 3.4488 3.4665 

5.7185 6.0382 8.0548 8.3183 

 

Table 3. Comparison of the PESQ improvements of different denoising methods 

Noise Type Input SNR (dB) Tafiq.et.al [12] S.N.Rao et.al [15] Proposed 

Babble 0 2.8502 3.2620 3.3356 

5 2.9986 3.7414 3.8574 

10 3.0014 3.8332 3.9223 

15 3.1047 3.9223 3.9984 

Airport 0 2.7687 3.2423 3.3004 

5 2.9742 3.7162 3.7743 

10 2.9084 3.7715 3.8637 

15 3.0697 3.8749 3.9434 

Car Interior 0 2.7971 3.0339 3.1438 

5 2.9206 3.2846 3.3288 

10 2.9079 3.4256 3.5565 

15 3.0917 3.5369 3.7130 

 

 
Figure.7 Output SNR comparison for different methods 

 

approach is also observed to be high compared with 

Tafiq.et.al [12] and S.N.Rao et.al [15]. 

Further to provide a better idea about the speech 

quality of enhanced speech signals, the enhanced 

speech signals are subjected to Perceptual evaluation 

of speech quality (PESQ) test. Here, the PESQ test 

was conducted by considering the scores of listeners. 

For this purpose, the original and enhanced speech 

signals were listened by a randomly selected 20 

 

 
Figure.8 PESQ comparison for different methods 

 

listeners and then asked them to give the score from 

0 to 5.  The PESQ is a subjective measure, gives the 

score from 0 to 5, with higher scores indicating 

better quality. The details of PESQ are shown in 

table.3. The PESQ values obtained through the 

proposed approach are observed to be high when 

compared with the PESQ values of conventional 

approaches. Further the obtained results for white 

noise at various input SNR levels are represented in 

the following figures. 
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Figure 7 and figure 8 shows the comparative 

analysis of Output SNR and PESQ for various 

values of Input SNRs, for both proposed and 

conventional approaches. From the above figures, 

the proposed approach is observed to achieve an 

outstanding performance compared with 

conventional approaches. 

5. Conclusion 

A new speech enhancement algorithm was 

proposed in this paper with an aim of reducing the 

non-stationary noises added on the clean speech 

signals. Suppression of non-stationary noise in a 

critical issue. Because, the characteristics of noises 

are different for different noises. A constant 

suppression criterion can’t afford to achieve better 

performance for all types of noise. Thus, this paper 

proposed an adaptive technique which considers the 

internal characteristics of noises to suppress them 

from a noisy speech signal. Most of the earlier 

approaches focused on the thresholding in which the 

signal gets cropped. Even though there are adaptive 

thresholding techniques they are not able to suppress 

the noises, especially the non-stationary noises. 

Since the proposed approach tried to suppress the 

noise features based on the mean and variance of 

signal, the proposed approach achieved better results 

compared to conventional approaches. further the 

proposed approach test the signal both segment and 

frequency bins wise, the noise features are detected 

more precisely. Here the speech presence 

uncertainty is mainly focused to detect whether the 

segment of a speech is noise dominant or signal 

dominant. Further the noise dominant segments are 

filtered through a recursive smoothing. The obtained 

results for various noises at various SNR levels 

reveal the outstanding performance of proposed 

approach.  In the case of Babble noise, on an 

average the proposed approach achieved an 

improvement of 2.8789 dB and 1.0777 dB in the 

Output SNR compared with the Tafiq.et.al [12] and 

S.N.Rao et.al [15] respectively. Similarly the 

improvement is observed to be 7.1816 dB and .4517 

dB for Airport Noise. Further the improvement for 

Car interior noise is 2.9025 dB and 0.9240 dB.  

From the obtained Output AvgSegSNR values, 

the proposed approach is observed to be achieved an 

improvement of 4.9626 dB and 0.4935 dB from the 

conventional approaches Tafiq.et.al [12] and 

S.N.Rao et.al [15] respectively. Further the obtained 

results through PESQ test also reveal an 

enhancement of 2.0861 and 0.2732 approximately 

from the conventional approaches. 

In the case of deep analysis about the signal 

uncertainty, the future work can be extended 

through the design of an adaptive threshold which 

confines to the exact detection of signal and noise 

with less probability of false alarm. 
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