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Abstract: The harmonics injecting into power systems are increasing from day to day with the increasing use of 

power electronics and nonlinear loads. These harmonics are to be monitored and analyzed to measure their impact on 

the quality of the power flowing through the lines during normal and abnormal conditions. It is easy to measure the 

fundamental frequency and it’s off nominals of power signal using DFT and its extended methods when the power 

system frequency is stable. But, with increase in micro-grids and renewable energy sources like wind into the power 

network, the frequency of the power system in not stable. The DFT leads to errors in frequency estimation during 

this unstable state .This work uses the demodulation method for estimating the amplitudes and phase angle of 

fundamental frequency and its off-nominals of a power system having dynamics in frequency. This demodulation 

principle is part of the orthogonal frequency division multiplexing (OFDM) used for digital multi-carrier modulation. 
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1. Introduction 

With the increase in technology, the use of 

power electronics is increasing in the modern power 

system networks. Along with this, the use of non-

linear loads is increasing at the load side [1]. The 

use of this power electronics and the non-linear 

loads incorporate switching action which produces 

series of current interruptions. These switching 

operations gives rise to current which will have not 

the fundamental component but also the multiples of 

it. The multiples of the fundamental frequency 

component are called harmonics [2]. These 

harmonics affects the power system network 

steering to increase servicing cost, mal-operation of 

the protection system or reduces the capability of the 

power system devices. The principal problem being 

faced in the microgrid is the change in the frequency 

and the difficult in controlling it [3]. Along with the 

change in frequency, the total harmonic distortion in 

the micro-grid is also increasing. 

 Many techniques are available in literature for 

providing the protection and analyzing the power 

system in which they assume that the frequency of 

the power system is always stable [4, 5]. Also, 

various techniques of identifying the off nominal 

frequencies of signal processing are also used to 

monitor the signals having the multiples of 

fundamental frequency in the power system signal. 

The measured signals are then compensated by 

some compensating devices and these compensating 

techniques are completely dependent on the 

measured frequency component of fundamental and 

multiples of it. The correct estimation of frequencies 

is not that much easy and various literature works 

are present on this which has some margin in 

estimating the fundamental frequency. The 

continuous change in the power system 

configuration, load condition and the operational 

framework leads to change in the frequency of the 

harmonic components. So, one of the key point in 

the modern power system network which is aiming 

to smart grid in near future is to identify the changes 

in the fundamental frequency and the multiples of it 

accurately and make proper adjustments to the 

protection system and to the monitoring algorithms 

so that the mal-operations, the servicing costs and 



Received:  July 2, 2017                                                                                                                                                         61 

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017          DOI: 10.22266/ijies2017.1231.07 

 

the derating of the power system components comes 

down. 

 The technique used frequently in measuring the 

frequency of power system is Discrete Fourier 

Transform (DFT). This is because of its simplicity 

and lower computational complexity. But, whenever 

there are changes in the system, the frequency of 

power system changes. There are other techniques 

which are proposed in literature some of which are 

wavelet transforms [6], phase locked loops [7], least 

square techniques [8], kalman filters [9], neural 

networks [10], gauss gradient newton methods [11]. 

The LS and Kalman have proven to be better than 

fast fourier transform, but when there is a sudden 

change in amplitude, frequency or phase, these 

methods are not good enough as they take more time 

for estimating the parameters of the signal. The 

proposed technique is based on the demodulation 

part of OFDM receiver technique for estimating the 

phase and the amplitude of the fundamental 

frequency component of the power signal. The 

demodulation methods used for estimating the 

fundamental frequency is also presented in [12], 

[13]. In this paper, the principle of OFDM receiver 

is used to estimate the harmonics of power signal. In 

communication, the data transmitted in the form of 

bits is to be received without any error. Multiple 

carrier signals are used in OFDM and generate 

orthogonal frequencies without making use of any 

oscillatory circuit. The guard band insertion along 

with the orthogonal frequencies receives the 

transmitted data efficiently. The demodulation 

method on the power signal not only estimates the 

fundamental component but also the harmonics of it.  

This principle is used as base in power system to 

estimate the off nominal frequencies and is quite 

challenging. The sub carriers used in OFDM are 

considered as harmonics in this work.  The 

harmonics of power signal are orthogonal to each 

other as like the sub carriers are orthogonal in 

OFDM technique. 

Section 2 gives the problem formulation of the 

work and section 3 introduces the OFDM principle. 

2. Problem formulation 

Let the power signal from the power system is  
 

𝑥(𝑡) = ∑ 𝐴𝑚(𝑡) 𝑐𝑜𝑠[𝑚Ω𝑜𝑡 + ∅𝑚(𝑡)] + 𝜂(𝑡)

𝑁ℎ

𝑚=1

 

(1) 

 

Where 𝐴𝑚(𝑡) is the amplitude,  ∅𝑚(𝑡) is the phase 

of the m-th harmonic, 𝑁ℎis the maximum harmonic 

order,  𝜂(𝑡) is the additive noise, and Ω𝑜 denotes the 

angular fundamental synchronous frequency. From 

[14, 15], the m-th harmonic frequency is given by  

 

𝜓𝑚(𝑡) =
𝑑[𝑚Ω𝑜𝑡+∅𝑚(𝑡)]

𝑑𝑡
= 𝑚Ω𝑜 +

𝑑∅𝑚(𝑡)

𝑑𝑡
      (2) 

 

Let Ω𝑜 be constant, so any change in 𝜓𝑚(𝑡) can be 

shown by using the term 
𝑑∅𝑚(𝑡)

𝑑𝑡
 . If 𝜓𝑚(𝑡) is the m-

th harmonic, its frequency is m times the 

fundamental frequency i.e. 𝜓𝑚(𝑡) = 𝑚𝜓1(𝑡) . 

Substituting this in Eq.(2) 

 

𝑚Ω𝑜 +
𝑑∅𝑚(𝑡)

𝑑𝑡
= 𝑚[Ω𝑜 +

𝑑∅1(𝑡)

𝑑𝑡
   

∴    
𝑑∅𝑚(𝑡)

𝑑𝑡
= 𝑚 

𝑑∅1(𝑡)

𝑑𝑡
                               (3) 

 

Let the demodulation signal of the k-th harmonic is  

          

𝑑𝑐𝑘
(𝑡) = 𝑐𝑜𝑠[𝑘Ω𝑜𝑡 +  𝜑𝑘(𝑡)]              (4) 

and    𝑑𝑠𝑘
(𝑡) = 𝑠𝑖𝑛[𝑘Ω𝑜𝑡 +  𝜑𝑘(𝑡)]              (5) 

 

where k ∊{1,2,…….,Nh} and 𝜑𝑘(𝑡) is phase of 

 𝑑𝑐𝑘
(𝑡)  and 𝑑𝑠𝑘

(𝑡) . The frequencies for both the 

demodulation signals is then 

 

𝑣𝑘(𝑡) =
𝑑[𝑘Ω𝑜𝑡+𝜑𝑘(𝑡)]

𝑑𝑡
= 𝑘Ω𝑜 +

𝑑𝜑𝑘(𝑡)

𝑑𝑡
         (6) 

 

Let 𝑣1(𝑡) be the fundamental angular demodulation 

frequency, then from Eq. (6)  
𝑑𝜑𝑘(𝑡)

𝑑𝑡
= 𝑘

𝑑𝜑1(𝑡)

𝑑𝑡
 

Multiplying  𝑥(𝑡)  by Eqs. (4) and (5), 𝑦𝑐𝑘
(𝑡)  and 

𝑦𝑠𝑘
(𝑡) are obtained as  

 

𝑦𝑐𝑘
(𝑡) = ∑ 𝐴𝑚(𝑡) 𝑐𝑜𝑠[𝑚Ω𝑜𝑡 + ∅𝑚(𝑡)] 𝑐𝑜𝑠[𝑘Ω𝑜𝑡

𝑁ℎ

𝑚=1

+ 𝜑𝑘(𝑡)]
+  𝜂(𝑡) 𝑐𝑜𝑠[𝑘Ω𝑜𝑡 + 𝜑𝑘(𝑡)]   

(7) 

   𝑦𝑠𝑘
(𝑡) = ∑ 𝐴𝑚(𝑡) 𝑐𝑜𝑠[𝑚Ω𝑜𝑡

𝑁ℎ

𝑚=1

+ ∅𝑚(𝑡)] 𝑠𝑖𝑛[𝑘Ω𝑜𝑡 + 𝜑𝑘(𝑡)]
+  𝜂(𝑡) 𝑠𝑖𝑛[𝑘Ω𝑜𝑡 + 𝜑𝑘(𝑡)] 

(8) 

 

From trigonometric relations,   cos 𝑎 cos 𝑏 =
1

2
cos(𝑎 + 𝑏) + 

1

2
cos(𝑎 − 𝑏), and sin 𝑎 cos 𝑏 =

1

2
sin(𝑎 + 𝑏) +  

1

2
sin(𝑎 − 𝑏) in Eqs. (7) and (8), in 

which 𝑎 = 𝑘Ω𝑜𝑡 + 𝜑𝑘(𝑡) 𝑎𝑛𝑑 𝑏 = 𝑚Ω𝑜𝑡 + ∅𝑚(𝑡) 
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𝑦𝑐𝑘
(𝑡) = ∑ 𝐴𝑚(𝑡) 𝑐𝑜𝑠[𝑘Ω𝑜𝑡 + 𝜑𝑘(𝑡) +

𝑁ℎ
𝑚=1

𝑚Ω𝑜𝑡 + ∅𝑚(𝑡)]+∑ 𝐴𝑚(𝑡) 𝑐𝑜𝑠[𝑘Ω𝑜𝑡 + 𝜑𝑘(𝑡) −
𝑁ℎ
𝑚=1

𝑚Ω𝑜𝑡 + ∅𝑚(𝑡)] +  𝜂(𝑡) 𝑐𝑜𝑠[𝑘Ω𝑜𝑡 + 𝜑𝑘(𝑡)]  
(9) 

 

 𝑦𝑠𝑘
(𝑡) = ∑ 𝐴𝑚(𝑡)𝑠𝑖𝑛

𝑁ℎ
𝑚=1 [𝑘Ω𝑜𝑡 + 𝜑𝑘(𝑡) +

𝑚Ω𝑜𝑡 + ∅𝑚(𝑡)] + ∑ 𝐴𝑚(𝑡)𝑠𝑖𝑛
𝑁ℎ
𝑚=1 [𝑘Ω𝑜𝑡 +

𝜑𝑘(𝑡) − 𝑚Ω𝑜𝑡 − ∅𝑚(𝑡)] + 𝜂(𝑡) 𝑠𝑖𝑛[𝑘Ω𝑜𝑡 +
𝜑𝑘(𝑡)] 

(10) 

 

Thus, 

 

𝑦𝑐𝑘
(𝑡) = ∑

1

2
𝐴𝑚(𝑡) 𝑐𝑜𝑠[𝑚Ω𝑜𝑡 + 𝑘Ω𝑜𝑡 +

𝑁ℎ
𝑚=1

∅𝑚(𝑡) + 𝜑𝑘(𝑡)] + ∑
1

2
𝐴𝑚(𝑡) 𝑐𝑜𝑠[𝑚Ω𝑜𝑡 −

𝑁ℎ
𝑚=1

𝑘Ω𝑜𝑡 + ∅𝑚(𝑡) − 𝜑𝑘(𝑡)] +  𝜂(𝑡) 𝑐𝑜𝑠[𝑘Ω𝑜𝑡 +
𝜑𝑘(𝑡)] 

(11) 

 

𝑦𝑠𝑘
(𝑡) = ∑

1

2
𝐴𝑚(𝑡)𝑠𝑖𝑛

𝑁ℎ
𝑚=1 [𝑚Ω𝑜𝑡 + 𝑘Ω𝑜𝑡 +

∅𝑚(𝑡) + 𝜑𝑘(𝑡)] − ∑
1

2
𝐴𝑚(𝑡)𝑠𝑖𝑛

𝑁ℎ
𝑚=1 [𝑚Ω𝑜𝑡 −

𝑘Ω𝑜𝑡 + ∅𝑚(𝑡) − 𝜑𝑘(𝑡)] +  𝜂(𝑡) 𝑠𝑖𝑛[𝑘Ω𝑜𝑡 +
𝜑𝑘(𝑡)]    

(12) 

 

For any value of k, the frequencies of first and 

second terms of both signals of Eqs. (14) and (15) 

are  

 

𝜑𝑘(𝑡) =  𝑚Ω𝑜 + 𝑘Ω𝑜 +
𝑑∅𝑚(𝑡)

𝑑𝑡
+

𝑑𝜑𝑘(𝑡)

𝑑𝑡
      (13) 

𝜓𝑘(𝑡) =  𝑚Ω𝑜 + 𝑘Ω𝑜 +
𝑑∅𝑚(𝑡)

𝑑𝑡
−

𝑑𝜑𝑘(𝑡)   

𝑑𝑡
    (14) 

 

for  m=1,2,………,Nh . 

Substituting Eqs. (3) and (7)  in Eqs. (13), (14)  

 

∅𝑘(𝑡) = (𝑚 + 𝑘)Ω𝑜 + 𝑚
𝑑∅𝑚(𝑡)

𝑑𝑡
+ 𝑘

𝑑𝜑𝑘(𝑡)

𝑑𝑡
      (15) 

𝜓𝑘(𝑡) = (𝑚 − 𝑘)Ω𝑜 + 𝑚
𝑑∅𝑚(𝑡)

𝑑𝑡
− 𝑘

𝑑𝜑𝑘(𝑡)   

𝑑𝑡
    (16) 

 

for  m=1,2,………,Nh . If 
𝑑𝜑𝑘(𝑡)

𝑑𝑡
 is an estimate of 

𝑑∅𝑘(𝑡)

𝑑𝑡
 , (15) and (16) will be 

 

∅𝑘(𝑡) ≅ (𝑚 + 𝑘) [Ω𝑜 +
𝑑∅1(𝑡)

𝑑𝑡
] = (𝑚 + 𝑘)𝜓1(𝑡) 

(17) 

𝜓𝑘(𝑡) ≅ (𝑚 − 𝑘) [Ω𝑜 +
𝑑∅1(𝑡)

𝑑𝑡
] = (𝑚 − 𝑘)𝜓1(𝑡) 

(18) 

 

For m=1,2,………,Nh. As, (m-k) can assume 

negative values in Eq. (18), 𝜓𝑘(𝑡)  can also be 

negative.  To work with only positive values, the 

second term of Eqs. (12)  and (13) is taken as 

|𝜓𝑘(𝑡)|  for the frequencies. From ∅𝑘(𝑡)  and 

|𝜓𝑘(𝑡)| , it can be said that 𝑦𝑐𝑘
(𝑡)  and 𝑦𝑠𝑘

(𝑡) will 

consist of a constant current i.e. the DC value (at 

m=k) and frequency components at 

𝜓1(𝑡), 2𝜓1(𝑡), 3𝜓1(𝑡) … ….,max(k-1, Nh –k) 𝜓1(𝑡), 

(k+1)  𝜓1(𝑡) , (k+2)  𝜓1(𝑡) ,……., (Nh + 1)  𝜓1(𝑡)  . 

Using low pass filter on 𝑦𝑐𝑘
(𝑡) and 𝑦𝑠𝑘

(𝑡) gives 

 

𝜓𝑐𝑐𝑘
(𝑡) =  

1

2
𝐴𝑘(𝑡) 𝑐𝑜𝑠[∅𝑘(𝑡) − 𝜑𝑘(𝑡)] + 𝜂𝑐(𝑡) 

(19) 

𝜓𝑠𝑠𝑘
(𝑡) =  −

1

2
𝐴𝑘(𝑡) sin[∅𝑘(𝑡) − 𝜑𝑘(𝑡)] + 𝜂𝑠(𝑡) 

(20) 

 

Where  𝜂𝑐(𝑡) and 𝜂𝑠(𝑡)  are respectively the low 

pass component values of 𝜂(𝑡)cos [𝑘Ω𝑜𝑡 + ∅𝑑𝑘
(𝑡)] 

and 𝜂(𝑡)sin [𝑘Ω𝑜𝑡 + ∅𝑑𝑘
(𝑡)] . If the low pass filter 

possess good attenuation in the stop band, the 𝜂𝑐(𝑡) 

and 𝜂𝑠(𝑡) are negligible and hence the value of 

amplitude and phase of the k-th order harmonic 

component are estimated using 

 

𝐴̂𝑘(𝑡) = 2√𝑦𝑐𝑐𝑘
2 (𝑡) + 𝑦𝑠𝑠𝑘

2 (𝑡)                  (21) 

∅̂𝑘(𝑡) = −𝑎𝑟𝑐𝑡𝑎𝑛 [
𝑦𝑠𝑠𝑘

(𝑡)

𝑦𝑐𝑐𝑘
(𝑡)

] + 𝜑𝑘(𝑡)        (22) 

 

In power systems, the phase angle difference 

between two signals is given by [16] (22), in which 

∅𝑘𝑎
̂ (𝑡)  and  

 

∆∅̂𝑘(𝑡) = ∅𝑘𝑎
̂ (𝑡) − ∅𝑘𝑏

̂ (𝑡)              (23) 

 

∅𝑘𝑏
̂ (𝑡) are the phase values of 𝑥𝑎(𝑡) and 𝑥𝑏(𝑡) . But, 

in an present modern interconnected power system, 

the demodulating signal is same for all signals and 

so, the ∅̂𝑘(𝑡) will be independent of 𝜑𝑘(𝑡). Hence, 

𝜑𝑘(𝑡)  is subtracted from Eq. (21) as this won’t 

affect the phase difference. So, ∅̂𝑘(𝑡) is given by 

 

 ∅̂𝑘(𝑡) = −𝑎𝑟𝑐𝑡𝑎𝑛 [
𝑦𝑠𝑠𝑘

(𝑡)

𝑦𝑐𝑐𝑘
(𝑡)

]                 (24) 

 

The block diagram of the technique presented so far 

is shown in Fig. 1. The LPF are the low pass filters 

and the cos and sin gives the demodulation signals 

expressed by Eqs. (4) and (5). The Amplitude and 

Phase are the values of the expressions (21) and (24).  
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Figure. 1 Modulation principle 

 

 
Figure. 2 OFDM receiver 

 

In this, the demodulation signals are controlled and 

the frequency of the low pass filters by the Freq 

block. This demodulation method is different  from 

the prior methods in two ways.  

i) The Sin and Cos block are fixed in the old 

methods where as these blocks vary in this 

method according to the frequency value. 

ii) The low-pass filter coefficients vary in this 

method while they remain same in the old 

methods.  

This technique is a part of the OFDM receiver 

principle. The OFDM receiver is as shown in Fig. 2. 

The real and the imaginary values of Fig. 2 are the 

amplitude and phase values of Fig. 1. The amplitude 

is the magnitude of harmonic signal and the phase 

value is the angle of the harmonic signal. Then, the 

FFT is implemented on the amplitude and the plot of 

this gives the frequency of the harmonic. 

3. Basic principle of OFDM principle and 

application to power system 

OFDM principle is used mostly in 3G system to 

take off the signal attenuation problem.  The main 

function of OFDM technique is to reduce the multi 

path transmission using multi carrier system and 

proper guard band. This principle of OFDM is 

modified for analyzing the power system off 

nominal frequencies. In communication, the data 

transmitted in the form of bits is to be received 

without any error. The OFDM uses multiple carriers 

and generate orthogonal frequencies without making 

use of any oscillatory circuit. The guard band 

insertion along with the orthogonal frequencies 

receives the transmitted data efficiently. This 

principle is used as base in power system to estimate 

the off nominal frequencies and is quite challenging. 

The sub carriers used in OFDM are considered as 

harmonics in this work.  The harmonics are 

orthogonal to each other as like the sub carriers are 

orthogonal in OFDM technique. 

In OFDM, inverse fast fourier transform (IFFT) 

is used in transmitter and fast fourier transform 

(FFT) is used in receiver part. This work makes use 

of the receiver part of actual OFDM technique and 

the transmitter part of OFDM is considered as a 

power signal containing harmonics. The harmonics 
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Figure. 3 OFDM transmitter 

 

 
Figure. 4 OFDM receiver 

 

 
Figure. 5 Proposed OFDM receiver principle for harmonic detection 

 

of power signal are nothing but various sub carriers 

in OFDM. The sub carriers in the OFDM are 

estimated at the receiving end which is equal to 

estimation of harmonics using FFT in power line. 

OFDM has two modulation stages, the base band 

modulation having many sub carriers and carrier 

modulation having only one frequency. The 

frequency in the carrier modulation is higher than 

the sub carrier frequencies of the base band 

modulation.  Since, the fundamental frequency of 

Indian power system is 50Hz, the harmonics are 

viewed as base band modulation using many 

orthogonal frequency signals. The actual OFDM 

transmitter and receiver are as shown in Fig. 3 and 

Fig. 4. 

4. Technique implementation 

The expression (1) in discrete form is 

 

𝑥[𝑛] = ∑ 𝐴𝑚[𝑛] cos[𝑚𝜔𝑜𝑡 + ∅𝑚[𝑛]] + 𝜂[𝑛]

𝑁ℎ

𝑚=1

 

    (25) 

 

Where 𝜔𝑜 =
Ω𝑜

𝑓𝑠
 is the synchronous angular 

frequency in discrete mode and 𝑓𝑠  is the sampling 

rate. The demodulation signals from expression (4) 

and (5) are given by Eqs. (26) and (27).  

  

𝑑𝑐𝑘
[𝑛] = cos[𝑘Ω𝑜𝑛 + 𝜑𝑘[𝑛]]          (26) 

and      𝑑𝑠𝑘
(𝑡) = sin[𝑘Ω𝑜𝑛 + 𝜑𝑘[𝑛]]           (27) 

 

The discrete version of continuous derivative is 

 
𝑑𝜑𝑘(𝑡)

𝑑𝑡
<=> 𝑓𝑠(𝜑𝑘[𝑛] − 𝜑𝑘[𝑛 − 1])        (28) 

 

The discrete version of Eq. (6) for the demodulation 

frequency is given by 

 

𝑣𝑘[𝑛] = 𝑘Ω𝑜 + 𝑓𝑠(𝜑𝑘[𝑛] −  𝜑𝑘[𝑛 − 1])    (29) 

 

Let the demodulation frequency of Eq. (29) be 

𝑣𝑘[𝑛] = 𝑘𝑣1[𝑛] which is the frequency of 𝑘𝜓1[𝑛]. 
So, from Eq. (29) 

 

𝜑𝑘[𝑛] = 𝜑𝑘[𝑛 − 1] +
𝑘

𝑓𝑠
(𝜓1[𝑛] − Ω𝑜)       (30) 

 

From (30), it is clear that𝜓1[𝑛], the fundamental 

frequency of signal x(n) is identified, then the value 

of phase 𝜑𝑘[𝑛] of the demodulation signals is easily 

modified for each sample period . Then, the 

frequency of both the demodulation signals is 

changed to match the frequency of the respective 

harmonic. Several approaches are present for 

finding 𝜓1[𝑛] and in this work, phase locked loop 

(PLL) is used to identify it.  

Generally, the power system frequency will not 

remain constant and changes slowly in time. This 

change in frequency will change the harmonic 

components in the same proportion. By using this 

technique, these changes are clearly observed. The 
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final diagram of the logic used to identify the 

harmonics is shown in Fig. 4. The technique of Fig. 

5 resembles the OFDM receiver technique shown in 

Fig. 2. 

5. Results 

The sampling frequency   is taken as 6400 Hz. 

The test signal considered is 

 

        𝑥[𝑛] = 𝐴1[𝑛]cos (𝜔0𝑛 + ∅1[𝑛])]
+ 𝐴3[𝑛]cos (3𝜔0𝑛 + ∅3[𝑛])
+ 𝐴5[𝑛]cos (5𝜔0𝑛 + ∅5[𝑛]) 

           +𝐴7[𝑛] cos(7𝜔0𝑛 + ∅1[𝑛])
+ 𝐴9[𝑛] cos(9𝜔0𝑛 + ∅9[𝑛])
+ 𝐴11[𝑛] cos(11𝜔11𝑛 + ∅11[𝑛]) 

          +𝐴13[𝑛] cos(13𝜔0𝑛 + ∅13[𝑛])
+ 𝐴15[𝑛] cos(15𝜔0𝑛 + ∅15[𝑛])
+ 𝐴17[𝑛] cos(17𝜔0𝑛 + ∅17[𝑛]) 

          +𝐴19[𝑛] cos(19𝜔0𝑛 + ∅19[𝑛])
+ 𝐴21[𝑛] cos(21𝜔0𝑛 + ∅21[𝑛])
+ 𝐴23[𝑛] cos(23𝜔0𝑛 + ∅23[𝑛]) 

          +𝐴25[𝑛] cos(25𝜔0𝑛 + ∅25[𝑛])
+ 𝐴27[𝑛] cos(27𝜔0𝑛 + ∅27[𝑛])
+ 𝐴29[𝑛]cos (29𝜔0𝑛 + ∅29[𝑛])] 

 

Where 𝜔0 =
2𝜋50

𝑓𝑠
. The amplitudes and phases 

considered for each harmonic are as shown in 

Table .1. The phase angles and the amplitudes of up 

to 29th order the harmonics obtained after 

implementing the OFDM principle is as shown in 

Fig. 6 and Fig. 7. The magnitude and phase angles 

of each harmonic signal is approximately same with 

the given table values. 

 
Table 1. Amplitudes and Phase angles for each harmonic 

signal 

Amplitude Phase angle 

A1[n] 1 ∅1[𝑛] -3.0 

A3[n] 1/3 ∅3[𝑛] -2.5 

A5[n] 1/5 ∅5[𝑛] -2.0 

A7[n] 1/7 ∅7[𝑛] -1.5 

A9[n] 1/9 ∅9[𝑛] -1.0 

A11[n] 1/11 ∅11[𝑛] -0.5 

A13[n] 1/13 ∅12[𝑛] 0.0 

A15[n] 1/15 ∅13[𝑛] 0.5 

A17[n] 1/17 ∅14[𝑛] 1.0 

A19[n] 1/19 ∅15[𝑛] 1.5 

A21[n] 1/21 ∅17[𝑛] 2.0 

A23[n] 1/23 ∅19[𝑛] 2.5 

A25[n] 1/25 ∅21[𝑛] 3.0 

A27[n] 1/27 ∅22[𝑛] 3.5 

A29[n] 1/29 ∅23[𝑛] 4.0 

 

 
Figure. 6 Phase angle of each harmonic signal 

 

 
Figure. 7 Amplitude of each harmonic signal 

 

 
 

The phasor plot of all the harmonics is shown in the 

Fig. 8.The fft is applied to the amplitude of all the 

harmonics and the fft plot for the harmonics 7th, 

13th and 17th  is shown in the Fig. 9. The frequency 

observed from the fft plot is matching with the 

frequency of the harmonic signal. 
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Figure. 9 FFT plot of amplitude for 7th, 13th, 17th 

harmonic signal 

6. Conclusion 

In this work, the OFDM receiver principle is 

successfully implemented for detecting the 

harmonics of the power signal. A novel 

demodulation technique is introduced for detecting 

harmonics which is a part of OFDM receiver. The 

outputs, amplitude and phase angles of each 

harmonic signal are almost matching with the 

harmonic input values. The phasor plot of each 

harmonic is also plotted and then the FFT plot of the 

Amplitude for all the harmonics has given the 

frequency value for each harmonic signal. The 

frequency identified through FFT plot exactly 

matched with the input harmonic frequency. The 

noise parameter is not considered in this work. 

Hence noise can be added to the power signal and 

analysis can be done on the effect of noise on the 

measurement of harmonic signal and its parameters. 
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