
Received: April 1, 2017 30

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.04

Agility based safety growth of Slow-Start Congestion Avoidance and Control

Scheme in TCP

Pavithra Krishna Moorthy1* Karthikeyan Easwara Moorthy1

1Department of Computer Science, Government Arts College, Tamil Nadu, India

* Corresponding author’s Email: pkpavikrishna@gmail.com

Abstract: Wired and Wireless networks are two types of challenging environment for TCP congestion control. Most

of the congestion control algorithms have been proposed to improve the performance of TCPs in these two

environments. Although these improved algorithm can improve network utilization, and perform excellently over

disparate networks that contain both wired and wireless residue a good performance. In this study, the Enhanced

Slow-Start algorithm, which can concentrate for avoiding heavy packet loss and improved network utilization for

keeping a Congestion Window (CWND) increment/decrement manner, and perform very well while controlling

packet loss with the standard TCP Reno algorithm. A series of experimental results to demonstrate the performance

of Enhanced Slow-Start compared with other state-of-the-art algorithms. The performance of the proposed algorithm

is proved to better when compared to the standard Slow-Start, Agile-SD, Reno, Vegas, Hybrid Congestion control

Algorithms. The parameters used for testing are CWND size, packet delivery ratio, RTT value, Packet drop.

Keywords: Congestion control, Agility factor, Slow-start, TCP.

1. Introduction

Internet performance is tightly depending on

Transmission Control Protocol (TCP) congestion

control function. When the number of packets sent

to the network is much more than the network

capacity, congestion occurs in the network and

thereby packets are dropped. TCP congestion

control aims to adjust the sending rate of flows in

order to reduce traffic and also congestion. Several

variants of TCP are provides to improve the

performance of the TCP [1]. TCP variants can be

classified as loss-based algorithms such as TCP

Reno [2], TCP NewReno [3] and delay-based

algorithm such as TCP Vegas [4]. The Fast TCP [5],

Hybrid start (Hystart) [6, 7] can enhance TCP

performance over high loss wireless links but cannot

fully adapt to the rapid growth of network utilization

over both networks. The Compound TCP [8], High

speed TCP (HSTCP) [9], Scalable TCP [10] and

TCP CUBIC [11] achieve remarkable throughput in

wired networks. These advanced protocol to

improve the TCP performance in high-speed

networks and to manage efficiency friendliness

methods are above, as loss based protocol using

RTT metrics have been proposed. E.g., Gentle High

speed TCP [12], Compound TCP [13], TCP-LP [14],

TCP Africa [15]. They can adaptively switch their

congestion control phase to the congestion level

measurement estimate from RTT. The Congestion

Control Algorithm (CCA) is one of the main part of

TCP. It significantly affects the overall performance

of such networks, because it still suffering from the

problem of heavy packet loss, network under

utilization, especially if the applied buffer regime is

very small. This under utilization of bandwidth is

caused by the performance of the networks which

results in either a slow growth of congestion

window (CWND) or an over injection of data into

the network.

In order to solve the problem of heavy packet

loss over wired/wireless networks, a modified

version of CCA namely Enhanced Slow-Start has

been proposed. By increasing the CWND in safety

manner and maintaining the sender window size.

For each connection, at the sender limits the

Received: April 1, 2017 31

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.04

maximum amount of unacknowledged traffic in

transit in networks.

The rest of this paper is organized as follows.

Related works are described in Section 2. The

section 3 discusses the proposed approach based on

agility to increase the CWND in safety manner.

Section 4 presents the simulation results, and finally

Section 5 bring concluding remarks.

2. Concept of congestion control

Basically, to control congestion, is adjust the

window of data transmission at sender side in such a

way that is preventing buffer overflow in the

recipient, but also in the intermediate routers. To

achieve this, TCP uses another variable to control

congestion window (CWND). The congestion

control represents a number of segments of

appreciation that can be injected in the network

without causing congestion. The challenge is to take

advantage of the available space in the network

routers. Routers do not participate in the TCP layer

and cannot be used to adjust the TCP ACK frame.

To resolve this problem, TCP assumes network

congestion as the retransmission timer expires and

that it interacts with the network congestion by

adjusting the congestion window using two

algorithms, a Slow-Start and Congestion Avoidance,

as shown in the Fig. 1.

In the slow start phase when the connection is

established, initially set the value of CWND to 1 and

then each received ACK value is updated as CWND

= CWND ×2 which means doubling the CWND per

RTT. The rapid growth of CWND continues until the

packet loss was observed, causing the value of Slow

Start Threshold (SSThreshold) is updated as

SSThreshold = CWND / 2.After losing the packet,

the connection starts from slow start again with

CWND = CWND ×2 and is increased exponentially

until the window is equal to SSThreshold, the

estimate of available bandwidth in the network. At

this point, it goes to the congestion avoidance phase,

where the value of CWND is less aggressive with

the pattern CWND = (CWND + (1/CWND)), which

implies a linear rather than exponential growth and

also continue to increase until it incur the packet

loss.

3. Related works

Congestion detection mechanism is an important

module of TCP algorithms. The most widely used

congestion detection mechanism is adopted by many

popular TCP algorithms such as TCP Reno [2, 16]

Figure. 1 TCP slow-start and congestion avoidance

phase

and CUBIC [11] which inputs based on packet

loss(loss based TCP) and used low speed wired and

large Bandwidth Delay Product (BDP) environment.

Delay based (queuing delay) Vegas [4] used low

speed wired environment. Delay and Loss based

Compound TCP [8, 17], TCP BIC [18], TCP Veno

[19] used in Large BDP and TCP friendliness and

TCP Westwood [20, 21]. TCP Westwood uses

queuing delay to measure network bandwidth and

thus avoid the impact packet losses to TCP

congestion control in wireless networks.

TCP Veno adopts queuing delay as an index to

adjust AIMD parameters for different random

packet loss rates in fast-start-up [22, 23]. The

Agility based Agile-SD [24] is used in high speed

and short distance networks. The performance of

these TCP variants are good for the application

scenarios for which they were originally designed.

However, an emerging generation of high-

bandwidth wireless networks and heterogeneous

networks that contain segments of both large BDP

and wireless links still presents challenges to such

algorithms.

3.1 TCP reno

The Reno retains the basic principle of Tahoe,

such as slow starts and the coarse grained retransmit

timer [16]. Reno performed very poorly if

connection suffered from multiple packets dropping

in one window of data. These because of Reno need

to wait for the expiration timer of retransmission

before restarting flow of data. Reno is applied

diverse algorithm to control the network congestion

which consists of four phases; Slow Start,

congestion avoidance, fast retransmit and fast

recovery. Reno is tried to exploiting the losses in

packets to determining the existing bandwidth

capacity in the network. It execute Slow Start

Received: April 1, 2017 32

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.04

procedure in the TCP connection beginning as well

as when timeouts within connection. In this

progression the Reno primarily growths an

exponential manner of congestion window and

linearly when reaches Slow Start Threshold

(SSThreshold) level to start the other phase known

by congestion avoidance. When timeout occurs or if

three duplicate ACKs are received, fast retransmit

and fast recovery is initiated, where these algorithms

enhancing the Reno performance by using the

timeout interruption to indicate the congestion in

network [2]. The congestion control of Reno does

not decrease the transmission flow rate except if it

notes a dropping in packet and that will happen only

if network suffer from overload situation. Reno try

to balance the size of window for different

connections. The size of window in Reno is

regularly changed in a distinctive situation. The size

of window stays to be enlarged till packet loss

happens. Whenever Reno receive 3 duplicate ACK‘s

it will take it as a sign that the segment was lost, so

the Reno re-transmit the segment without waiting

for timeout. Thus it manage to re-transmit the

segment with the pipe almost full. Another

modification that Reno makes is in that after a

packet loss, it does not reduce the Congestion

Window (CWND) to 1.

3.2 TCP vegas

Vegas is a Transmission Control Protocol (TCP)

implementation which is a modification of Reno [4].

It builds on the fact that proactive measure to

encounter congestion is much more efficient than

reactive ones. It tried to get around the problem of

coarse-grained timeout by suggesting an algorithm

which checks for timeout at a very efficient schedule.

Also it overcomes the problem of requiring enough

duplicate acknowledgements to detect a packet loss,

and it also suggests a modified slow start algorithm

which prevents it from congesting the network. It

does not depend solely on packet loss as a sign of

congestion. It detects congestion before the packet

loss occur. However it still retains the other

mechanism of Reno and Tahoe, and a packet loss

can still be detected by the coarse-grained timeout of

the other mechanisms fail. Vegas exploits the simple

idea that the number of bytes in transit is directly

proportional to the expected throughput. In Vegas

the modified Slow Start mechanism which allows an

exponential growth of Congestion Window

(CWND) at every other Round Trip Time (RTT)

and in between compares its current transmission

rate with the expected rate see to the path has still

some point to increase. Vegas maintains an estimate

RTT minimum of the minimum measured RTT,

corresponding to the RTT encountered when the

bottleneck queue is empty. It allows an exponential

growth of CWND at every other RTT and also,

compares its current transmission rate with the

expected rate to see whether the path has still some

point to increase. The modified slow start of Vegas

is known to incur a premature termination of slow

start because of an abrupt increase of RTT caused

by temporal queue buildups in the router during

bursty TCP transmission. TCP Vegas records the

smallest measured round trip time as Base RTT and

computes the available bandwidth as:

Expected Bandwidth = Window Size/ Base RTT

Here Window Size is measured by current

window size. During the packet transmission the

RTT of packets are recorded. The actual throughput

is calculated as:

Actual Bandwidth = Window Size/ RTT

The difference between the Expected Bandwidth

and Actual Bandwidth is used to adjust the Window

Size. The difference is calculated as:

Diff = Expected Bandwidth -Actual Bandwidth

If the actual throughput is smaller than the

expected throughput, TCP Vegas takes this as

indication of network congestion, and if the actual

throughput is very close to the expected throughput,

it is suggested that the available bandwidth is not

fully utilized, so TCP Vegas increases the window

size. This mechanism used in TCP Vegas to

estimate the available bandwidth does not purposely

cause any packet loss. Hence the oscillatory

behavior is removed and a better throughput is

achieved. Retransmission mechanism used by TCP

Vegas is more efficient as compared to TCP Reno as

it retransmits the corresponding packet as soon as it

receives a single duplicate ACK and does not wait

for three ACKs. TCP Vegas as compared to TCP

Reno is more accurate and is less aggressive, thus it

does not reduce its CWND unnecessarily. It has

problems when packets do not follow the same route

and when large delays are present. When routes

change for a certain TCP Vegas flow, the Base RTT

recorded from the previous route is not become

unstable when there is large network delay for a

flow; later established connections cannot get a fair

share of the bandwidth, and when they coexist with

TCP Reno connections, TCP Reno connections use

most of the bandwidth.

Received: April 1, 2017 33

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.04

3.3 Hystart (Hybrid start)

In general, the standard TCP doubles its

congestion window (CWND) in every Round Trip

Time (RTT) during Slow-start. However

exponential growth of CWND results in burst packet

loss. Hystart [25] reduces burst packet losses during

Slow-Start and hence achieves better throughput and

lower system load. This algorithm does not change

Hybrid start [6] (Hystart) that finds a “safe” exit

point of Slow-Start at which Slow-Start can finish

and safely move to congestion avoidance without

causing any heavy packet losses. This algorithm

does not change the doubling of CWND during

Slow-Start [7] but based on round trip delays it

heuristically finds safe exit point at which it can

finish Slow-Start and move to congestion avoidance,

before CWND overshooting. When packet loss

occurs during Slow-start, Hystart behaves the same

way as the Slow-start.

3.4 Agile-SD

Agile-SD [13] mechanism which is geared to

work on high-speed and short-distance networks to

enhance the overall performance and bandwidth

utilization while preserving the fairness. Agile-SD

initializes its CWND by 2 packets in order to focus

on the impact of Congestion avoidance on

bandwidth utilization.

4. Proposed algorithm

4.1 Agility based safety growth enhanced slow-

start algorithm

In this section we describe the enhanced Slow-

Start algorithm that avoid and control the congestion,

reduce the heavy packet losses during Slow-Start.

This algorithm is a combination of Hybrid [25] and

Agile-SD [24]. Main objective of this algorithm is to

avoid the congestion before receiving three

duplicate Acknowledgement (ACK). The algorithm

need to change the doubling of CWND during the

Slow-Start after finding the safe exit point, and also

finding the agility factor mechanism to solve the

problem of bandwidth under utilization over high

speed networks. The latest studies have deployed

that all of the current TCP variants have different to

handle bandwidth utilization and queuing buffer.

But every algorithm check their position and start

the process in ACK basis. Hence the congestion

incur very first then after they need to reduce the

data flow. So it is very essential that to avoid the

congestion and also control the congestion. Thus it

becomes very essential to design a new Congestion

Avoidance Algorithm to avoid the starting level

congestion and also queuing delay, then

simultaneously increase a bandwidth utilization.

 In this paper we have to compare our proposed

work to a latest techniques are Agile-SD [24],

Hybrid [25], and also compared to basic algorithms

are Reno [2], Vegas [4], finally the proposed

technique has performed very well to compare those

algorithms.

4.2 Algorithm overall behavior

The intention of the Slow-Start is to find an

appropriate sending rate and to follow the self-

clocking mechanism. However the Slow-Start is not

perfect in all situations. First, it takes a long time

until a sender can fully utilize the available

bandwidth on the path. Second the exponential

increase may also be too strong and reason multiple

packet drops if large CWND is reached. Finally the

Slow-Start not ensures that new flows converge

quickly to a reasonable share of resources.

The network limit C is computed using the

following equation:

 C=B+S (1)

where B is a unused buffer space and S is the

available buffer space. The congestion window size

checked initially, if the value of CWND is greater

than the C, next it wait for the three duplicate ACK.

Suppose the CWND is less than the C, it check

whether the CWND < Slow-start Threshold

(ssthreash) value for control the exponential

increment of the CWND.When the result is true it

will increment the congestion window by

exponentially as CWND = CWND ×2, otherwise

congestion window is modified as CWND =

CWND+CWND / 2 and CWND = CWND + CWND

/ 4 manner. If the sender receives the three duplicate

ACK this algorithm work in Agile-SD [13] basis.

The main contribution of Agile-SD is the unique

CWND growth function which relies on the agility

factor mechanism which symbolized by λ, as shown

in the following equation:

 λ = max (
𝜆𝑚𝑎𝑥 _ 𝑔𝑎𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑔𝑎𝑝𝑡𝑜𝑡𝑎𝑙
, 𝜆𝑚𝑖𝑛) (2)

gaptotal=max((cwnd_loss-cwnd_degraded),1) (3)

gapcurrent=max((cwnd_loss-cwnd),1) (4)

Moreover, Fig. 2 shows the control flow diagram of

Enhanced slow start algorithm.

Received: April 1, 2017 34

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.04

Figure. 2 The control flow diagram of modified slow start algorithm

The Algorithm - 1 explains the proposed

strategy to enhance the overall performance and

control the packet loss and improve the network

utilization.

Algorithm–1: Enhanced Slow-Start Algorithm

1 Initialization:

2 λmin←1, λmax←3,

3 β1←0.90, β2←0.95,

4 𝑐𝑤𝑛𝑑 ← 5

5 Event on No timeout C Value Reception do

6 Calculate C as in Eq. (1)

7 𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑 *2

8 𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑 + 𝑐𝑤𝑛𝑑 /2

9 End

10 Event on Ack Reception do

11 cwnd=cwnd+cwnd/4

12 Calculate gapcurrent as in Eq. (4)

13 Calculate gaptotal as in Eq. (3)

14 Calculate λ as in Eq. (2)

15 = λ/ 𝑐𝑤𝑛𝑑

16 𝑐𝑤𝑛𝑑 ← 𝑐𝑤𝑛𝑑 +

Received: April 1, 2017 35

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.04

17 end

18 Event on Loss Detection of 3-duplicated Acks do

19 Cwnd Loss← 𝑐𝑤𝑛𝑑

20 If tcp-status=slowstart then

21 𝑐𝑤𝑛𝑑 ← 𝑐𝑤𝑛𝑑 * β1

22 else

23 𝑐𝑤𝑛𝑑 ← 𝑐𝑤𝑛𝑑 * β2

24 end

25 ssthresh← 𝑐𝑤𝑛𝑑 -1

26 cwnddegraded← 𝑐𝑤𝑛𝑑

27 end

4.3 Improved round trip time (RTT) independent

The RTT independent epoch time method

enhances the performance of Agile-SD [24]

algorithm. In RTT dependent every transaction

depending to RTT and followed time out for every

segment. So need to wait the time out for new

transmission so the delay increased and also

network utilization decreased. In that situation, to

overcome the problem of unnecessary delay, the

RTT independent epoch time methodology is

utilized. This methodology used to reduce the delay,

and also increase the network utilization. Agile-SD

[24] increases its CWND independently from the

Round Trip Time (RTT). The epoch time needed by

the standard TCP, which is “RTT-dependent” [9], is

the number of needed cycles time RTT, so it will

equal to 80ms. For more understanding, assume that

there is a TCP link with cwnd_loss = 12;

cwnd_degraded = 9 and a constant RTT equal to

20ms, and the congestion avoidance stage is just

started after the loss directly. Thus, the number of

cycles needed by any CCA to reach cwnd_loss is 4

cycles is equal to (cwnd_loss–cwnd_degraded+1)

which consequently, the epoch time needed by

the standard TCP, which is “RTT-dependent”, is the

number of needed cycles times RTT, so it will be

equal to 80ms. Instead, Agile-SD increases its

CWND independently from the RTT. Thus, every

cycle consumes a time of RTT = λ to send a number

of CWND = λ packets during that cycle, then it

increases its CWND by 1.

Epoch Time is the number of needed cycles.

Suppose λmin and λmax are set to1and 4,

respectively. So, λi will take the value of (4, 3, 2, 1)

sequentially, which will result in an epoch time

equal to 41.66ms. Thus, the epoch time of Agile-SD

[24] will be shrunk by around 48% from the epoch

time of the standard TCP on the same network link.

The epoch time of this algorithm will be shrunk by

around 50% from the epoch time of the Agile-SD on

the same network link calculated by interval

difference of RTT.

Table 1. Experimental Parameter

Parameter Value

CCA Standard Slow-Start,

Reno, Vegas, Hybrid,

Agile-SD, Enhanced

Slow-Start

Link

capacity

0.2 mb to all

Link delay 1ms

Buffer size 10 Packets

Packet

Size

1000bytes

Queuing

algorithm

Drop tail

Traffic

type

TCP

𝐸𝑝𝑜𝑐ℎ𝑇𝑖𝑚𝑒 = ∑
𝑀𝑎𝑥𝑅𝑇𝑇−𝐿𝑎𝑠𝑡𝑅𝑇𝑇

𝜆𝑖
𝑘
𝑖=1 (5)

This behavior helps this algorithm to increase its

CWND more quickly and consequently improves

the bandwidth utilization.

Here also we have to compare our proposed

work to a latest techniques are Agile-SD [24],

Hybrid [25], and also compared to basic algorithms

are Reno [2], Vegas [4], finally the proposed

technique has performed very well to compare those

algorithms.

5. Performance evaluation of enhanced slow

start

5.1 The experiments setup

The proposed work is tested using the standard

well known simulator called NS2. The result is

obtained with three main scenarios such as single-

flow, packet send, packet drop, CWND stability.

The parameters used for simulation is given in Table

1.

5.2 Results and discussion

This subsection presents an analytical discussion

of the behavior exhibited by the proposed algorithm

and compared to various congestion control

algorithms. As well as, it presents the results of the

performance evaluation and shows the

measurements of the CWND, loss ratio, send ratio.

5.2.1 The CWND evolution

Fig. 3 shows the CWND evolution of the studied

Congestion Control Algorithms (CCAs) based on

Received: April 1, 2017 36

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.04

Figure. 3 The congestion window evolution for different

TCP variants with enhanced slow-start.

Figure. 4 Packet send ratio for different congestion

control algorithm with enhanced slow-start

Figure. 5 Packet send ratio for standard slow-start (SS)

and enhanced slow-start of different TCP variants

the buffer size change. Due to the mechanism of

agility this method expectedly the average CWND

growth to compare other congestion control

techniques as followed.

5.2.2 Packet send ratio

In the next scenario, as shown in Fig.4,

Enhanced Slow-Start (ESS) has overcome the

various Congestion Control Algorithm (CCA) in

Figure. 6 Packet drop ratio for various slow-start and

enhanced slow-start

Figure. 7 RTT level for different congestion control

algorithms

terms of sending rate due to its safety growth of

CWND resulted by the combination of safe exit

point and agility factor.

In the next scenario, as shown in Fig. 5,

Enhanced Slow-Start (ESS) has performed in

different TCP variants better than the other CCAs in

terms of sending rate due to its safety growth of

CWND.

5.2.3 Packet drop ratio

In the next scenario, as shown in Fig. 6,

Enhanced Slow-Start (ESS) has control the packet

drop to compare other Congestion control

algorithms (CCA) in terms of safety growth of

congestion window.

5.3 RTT independent

In the next scenario, as shown in Fig. 7, RTT

level of different Congestion control algorithms.

Here the result in an epoch time equal to 20ms. Thus,

the epoch time of this method will be shrunk by

around 80%, 50% from the epoch time of Agile-SD

[24], Hybrid [25], Reno [2], Vegas [4], finally the

proposed technique has performed very well to

0

50

100

150

200

250

0 5 10 15

A
v
g
.

C
W

N
D

 g
ro

w
th

No.of segment

ESS

Reno

Agile -sd

Vegas

Hybrid

0

500

1000

1500

2000

2500

4 5 6 7 8 9 10 11

N
o

.o
f

p
ac

k
et

s

No.Of Segments

ESS

Agile-SD

Reno

Vegas

Hybrid

0

500

1000

1500

2000

Reno Vegas Sack Fack

N
o

.o
f

p
ac

k
et

s

Different TCP Variants

SS

ESS

0

5

10

15

4 5 6 7 8 9 10 11

N
o

.
o

f
p

ac
k
et

s

No. Of segments

ESS

Agile-
SD
Reno

Vegas

Hybrid

0
10
20
30
40
50
60
70
80
90

R
TT

Different TCP Variants

RTT

Received: April 1, 2017 37

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.04

Figure. 8 Packet send ratio for different CCAs with RTT

independent ESS

compare those algorithms. This behavior helps this

method to increase its CWND more quickly than the

another compared other CCA and consequently

improves the bandwidth utilization.

As we can see from the graph the sending rate

reach the maximum in RTT independence to

compare RTT dependence and also decrease the

waiting time for change a CWND this technique has

smoothly increase bandwidth utilization and also

ESS is better than other CCAs. The normal

approach has increase the CWND in Congestion

avoidance and standard Slow-Start manner, but the

Enhanced Slow-Start approach increased the

Congestion window in safety manner, hence Packet

Send ratio is automatically increased in Enhanced

Slow-Start method. From the results obtained, it is

observed that the performance of network.

6. Conclusion

In this paper, the performance of the network is

enhanced in terms of packet delivery ratio, delay,

packet drop. The main contribution of this

Congestion Control Algorithms (CCAs) is to

implement the mechanism of agility factor. The

need of the proposed CCA has the inability of the

existing standard TCP CCAs in achieving a full

bandwidth utilization over high-speed networks,

especially when a small buffer regime is applied.

Our enhanced Slow-Start protocol, detecting safe

exit points of Slow-Start that does not lead to heavy

packet losses or low network utilization,

preventively avoiding heavy system overload or low

performance during the start-up of TCP. It uses the

concept of packet trains and RTT delay increase to

find the safe exit points. Main objective of this

algorithm is to avoid the congestion before receiving

3 Ack. The algorithm need to change the doubling

of CWND during the Slow-Start after finding the

safe exit point, and also finding the agility factor

mechanism to solve the problem of bandwidth under

utilization over high speed networks. Finally, this

method helps this algorithm to increase its CWND

in safety manner and consequently improves the

bandwidth utilization and control the packet loss

smoothly. The result shown prove that the proposed

algorithm, ESS performs well when compared to

Agile-SD [24], Vegas [4], Reno [2], and Hybrid [25].

In the future, the proposed work is integrated with

Retransmission Time Out (RTO) based congestion

avoidance, for improving the performance of TCP.

References

[1] H. Balakrishnan, V.N. Padmanabhan, S. Seshan,

and R.H. Katz, “A comparison of mechanisms

for improving TCP performance over wireless

links”, IEEE/ACM Transactions on Networking,

Vol.5, No.6, pp.756-769, 1997.

[2] V.V. Jacobson, “Congestion avoidance and

control”, In: Proc. of the ACM SIG COMM., pp.

314–329, 1988.

[3] S. Floyd and T. Henderson, “The New reno

modification to TCPs fast recovery algorithm”,

IETF Network Group, RFC 2582, 1999.

[4] L.S. Brakmo and L.L. Peterson, “TCP vegas:

end to end congestion avoidance on a global

internet”, IEEE Journal Sel. Areas

Communication, Vol. 13, No.8, pp. 1465–80,

1995.

[5] D.X. Wei, C. Jin, S.H. Low, and S. Hegde,

“FAST TCP: motivation, architecture,

algorithms, performance”, IEEE/ACM

Transactions on Networking, Vol.14, No.6,

pp.1246-1259, 2006.

[6] W. Xu, Z. Zhou, D. Pham, C. Ji, M. Yang, and Q.

Liu, “Hybrid congestion control for high-speed

networks”, Journal of Network and Computer

Applications, Vol. 34, No. 4, pp. 1416–28, 2011.

[7] K. Kaneko, T. Fujikawa, Z. Su, and J. Katto,

“TCP-Fusion: a hybrid congestion control

algorithm for high-speed networks” In: Proc. of

PFLDnet ISI, pp. 31–36, 2007.

[8] K. Tan and J. Song, “Compound TCP: a scalable

and TCP-friendly congestion control for high-

speed networks”, In: Proc. of the 4th

international workshop on protocols for fast

long-distance networks, pp. 80–83, 2006.

[9] M.C. Weigle, P. Sharma, and J.R. Freeman,

“Performance of competing high-speed TCP

flows”, Lecture Notes in Computer Science,

Vol.15, No.3976, pp.476, 2006.
[10] R. Morris, “Scalable TCP congestion control”,

In: Proc. of the Nineteenth Annual Joint

Conference of the IEEE Computer and

0

100

200

R
T

T
 a

n
d

 N
o

.o
f

P
ac

k
et

s

Different CCAs

Packet
Send

RTT

Received: April 1, 2017 38

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.04

Communications Societies, Vol.3, pp.1176-

1183, 2000.

[11] S. Ha and I. Rhee, “CUBIC: a new tcp-friendly

high-speed TCP variant”, ACM SIGOPS

Operating Systems Review - Research and

developments in the Linux kernel, Vol.42, No.5,

pp. 64–74, 2008.

[12] K. Yamanegi, T. Hama, Gohasegawa, M.

Murata, H. Shimonishi, and T. Murase,

“Implementation Experiments of the TCP Proxy

Mechanism”, In: Proc. of the 6th Asia – Pacific

symposium, Information and

Telecommunication Technologies, APSITT, pp.

17-22, 2005.

[13] K. Tan. J. Song, Q. Zhang, and M.A. Sridharan,

“A compound TCP approach for high-speed

and long distance networks”, In: Proc of

INFOCOM, 2006.

[14] A. Kuzmanovic and E. W. Knightly, “TCP-LP:

Low priority service via end point congestion

control”, In: Proc. of the IEEE/ACM Trans.

Networking, Vol.14, No.4, pp. 739-752, 2006.

[15] R. King, R. Baraniuk and R. Riedi, “TCP-

Africa: An Adaptive and Fair Rapid Increase

Rule for Scalable TCP”, In: Proc. of the IEEE

INFOCOM, pp. 1838-1848, 2005.

[16] A. Mohamed, O. Mohamed, A. Borhanuddin,

and H.Z. Mohd, “Comparative study of high-

speed Linux TCP variants over high-BDP

networks”, Journal of Network and Computer

Application, Vol. 43, pp. 66–75, 2014.

[17] C. Testa and D. Rossi, “Delay based congestion

control: Flows vs Bittorrent swarm

Perspectives”, Elsevier, Computer Networks,

Vol. 60, pp. 115–128, 2014.

[18] L. Xu, K. Harfoush, and I. Rhee, “Binary

Increase Congestion control (BIC) for fast long-

distance networks”, In: Proc. of the Twenty-

Third Annual Joint Conference of the IEEE

Computer and Communications Societies, Vol.

4, pp. 2514–2524, 2014.

[19] C. Fu and S. Liew, “TCP enhancement for

transmission over wireless aceess network”,

IEEE Journal of Set. Areas. Communication,

Vol. 21, No. 2, pp. 216-228, 2003.

[20] R. Wang, S. Mascolo, C. Casetti, M. Gerla, and

M. Sanadidi, “TCP Westwood, Bandwidth

estimation for enhanced transport over wireless

links”, In: Proc. of ACM mobicom, pp. 287-

297, 2001.

[21] D. Kliazovich, F. Granelli, and D. Miorandi,

“Logarithmic window increase for TCP

Westwood for improvement in high speed, long

distance networks”, Computer Networks, Vol.

52, No. 12, pp. 395-410, 2008.

[22] M. Scharf, “Comparison of end to end network

supported fast start up congestion control

schemes”, Elsevier , Computer Networks, Vol.

55, No. 8, pp. 1921-1940, 2011.

[23] K. Xu, Y. Tian, and N. Ansari, “Improving

TCP performance in integrated wireless

communications networks”, Computer

Networks, Vol.47, No.2, pp.219-237, 2005.

[24] M.A. Alrshah, M. Othman, B. Ali, and Z.M.

Hanapi, “Agile-SD: a Linux-based TCP

congestion control algorithm for supporting

high-speed and short-distance networks”,

Journal of Network and Computer Applications,

Vol.55, pp.181-190, 2015.

[25] S. Ha and I. Rhee, “Taming the elephants: New

TCP Slow-Start”, Elsevier Journal of Computer

Networks, Vol. 55, pp. 2092–2110, 2011.

