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Abstract: Prediction of fault proneness of modules in software is one of the ways to ensure the achievement of 

software quality and reliability. Software delivered cannot not always be bug free, the more the number of bug the 

more the dis-satisfaction among client due to degradation in software quality and reliability. Though we have few 

models for detecting software fault prone modules, the intend of our work is to increase the reliability of the software 

by using an approach named Rough Fuzzy c-means (RFCM) clustering algorithm to analyse the fault proneness of 

the software modules under test. This helps in an efficient analysis of the modules having an ambiguous behaviour 

using rough set boundary which is not possible using traditional clustering methods. A dataset from PROMISE 

software engineering repository has been taken for the experimental analysis. The results were promising enough to 

determine software modules which fall in the boundary region of ambiguity emphasizing the software team to focus 

on those modules to achieve higher reliable system. 
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1. Introduction 

All Faults in software systems continue to be a 

major problem. Many software systems are 

delivered to users/client with excessive faults. This 

is despite a huge amount of development effort 

going into fault reduction in terms of quality control 

and testing. It has long been recognized that seeking 

out fault-prone parts of the system and targeting 

those parts for increased quality control and testing 

is an effective approach to fault reduction. Fault-

proneness of a software module is the probability 

that the module contains faults. A correlation exists 

between the fault-proneness of the software and the 

measurable attributes of the code (i.e. the static 

metrics) and of the testing (i.e. the dynamic metrics). 

Prediction of fault-prone modules provides one way 

to support software quality engineering through 

improved scheduling and project control. Quality of 

software is increasingly important and testing 

related issues are becoming crucial for software. 

Methodologies and techniques for predicting the 

testing effort, monitoring process costs, and 

measuring results can help in increasing efficiency 

of software testing. Being able to measure the fault-

proneness of software can be a key step towards 

steering the software testing and improving the 

effectiveness of the whole process. In the past, 

several metrics for measuring software complexity 

and testing thoroughness have been proposed. Static 

metrics, e.g., the McCabe's cyclomatic number or 

the Halstead's Software Science, statically computed 

on the source code and tried to quantify software 

complexity. Despite this it is difficult to identify a 

reliable approach to identifying fault-prone software 

components.  

Clustering is used to determine the intrinsic 

grouping in a set of unlabelled data. It is the process 

of organizing objects into groups whose members 

are similar in some way. Among various clustering 

techniques available in literature K-Means 

clustering approach is most widely used technique. 

But due to the crisp nature of the technique some 

modules having an ambiguous behaviour may be 

misclassified into a wrong class. For example, some 

software module only show either fail result of pass 

result, there are changes that module sometimes pass 
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in certain cases but can fail in certain tests leading to 

ambiguous decision, whether the system is correctly 

working and must be delivered or is faulty must be 

re-engineered. Thus, leading to degradation in the 

process of analysis of the fault proneness of the 

system and thus affecting the quality of the software.  

To overcome this shortcoming, we have used 

RFCM clustering technique. It is a hybrid technique 

which deals with ambiguities, vagueness and 

indiscernibility using the concepts from the theory 

of fuzzy sets and rough sets both. The fuzzy nature 

helps in finding the membership of an element for 

given cluster. Thus we are able to calculate that 

amount of similarity between element and the 

cluster to which it has been assigned. The drawback 

here is the generation of overlapping clusters. These 

overlapping clusters make it hard to decide the 

assignment of elements to one specific cluster in the 

real world scenario. This is the place where the use 

of rough set theory proves useful. It provides a 

region for data points which completely belong to a 

given cluster and this region is called lower 

approximation. The next region that exists is the 

upper approximation where the data points aren’t a 

part of the cluster. The region in between the lower 

and the upper approximation is the region known as 

boundary region. It is here that the data points not 

having a crisp belongingness to either of the 

aforementioned area lie. In this paper RFCM is used 

for the process of investigating the fault proneness 

of software modules for the dataset obtained from 

the PROMISE software engineering repository.  

The paper is organized as follows: section 2 

provides the details of existing work related to 

software fault prediction. The next section deals 

with the traditional clustering methods and their 

drawbacks. Section 4 provides the proposed RFCM 

clustering for measuring the fault proneness of 

software modules. In section 5, the computational 

experimental results have been discussed followed 

by the references. 

2. Literature review 

All Several efforts have been made in research 

for software fault prediction and assessment using 

various techniques [1-3]. Agresti and Evanco [4] 

worked on a model to predict defect density based 

on the product and process characteristics for Ada 

program. There are many papers advocating 

statistical models and software metrics [5]. Gaffney 

and Davis [6, 7] of the Software Productivity 

Consortium developed the phase-based model. It 

uses fault statistics obtained during the technical 

review of requirements, design, and the coding to 

predict the reliability during test and operation.  

One of the earliest and well known efforts to 

predict software reliability in the earlier phase of the 

life cycle was the work initiated by the Air Force’s 

Rome Laboratory [8]. For their model, they 

developed prediction of fault density which they 

could then transform into other reliability measures 

such as failure rates.  

To do this the researchers selected a number of 

factors that they felt could be related to fault density 

at the earlier phases. Most of them are based on size 

and complexity metrics. To achieve high software 

reliability, the number of faults in delivered code 

should be reduced. The faults are introduced in 

software in each phase of software life cycle and 

these faults pass through subsequent phases of 

software life cycle unless they are detected through 

testing or review process. Finally, undetected and 

uncorrected faults are delivered with software. To 

achieve the target software reliability efficiently and 

effectively, faults should be identified at early stages 

of software development process. During early 

phase of software development testing/field failure 

data is not available. Therefore, the prediction is 

carried out using various factors relevant to 

reliability.  

A study was conducted by Zhang and Pham [9] 

to find the factors affecting software reliability. The 

study found 32 potential factors involved in various 

stages of the software life cycle. In another recent 

study conducted by Li and Smidt [10], reliability 

relevant software engineering measures have been 

identified. They have developed a set of ranking 

criteria and their levels for various reliability 

relevant software metrics, present in the first four 

phases of software life cycle. Recently, Kumar and 

Misra [11] tried for early software reliability 

prediction considering the six top ranked measures 

given by [10] and software operational profile. 

Sometimes, it may happen that some of these top 

ranked measures are not available, making the 

prediction result unrealistic.  

Software metrics can be classified in three 

categories: product metrics, process metrics, and 

resources metrics [12]. Product metrics describe 

characteristics of the product such as size, 

complexity, design features, performance and 

quality level etc. Process metrics can be used to 

improve software development process and 

maintenance. Resources metrics describe the project 

characteristics and execution. Approximately thirty 

software metrics exist, which can be associated with 

different phases of software development life cycle. 

Among these metrics some are significant predictor 
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to reliability. From the above literature, following 

observations are made. Firstly, it is observed that 

predicting faults early is very important for the 

entire software development process and reliability. 

Secondly, the reliability of software is a function of 

the number of the remaining faults.  Thirdly, data 

available from existing software’s and their 

proneness to faults can be of great use for detecting 

the effectiveness of a technique in the prediction of 

same. The existing data can be analysed and the 

results compared with the already available 

classification results. Also, addition of soft 

computing techniques to these methods can improve 

the prediction ability of the software.  

In this paper, we propose to use a hybrid RFCM 

technique which makes use of concepts from the 

theory of both fuzzy sets and rough sets to handle 

ambiguity and vagueness in better way. The fuzzy 

nature helps in finding the membership of an 

element for given cluster. Thus we are able to 

calculate that amount of similarity between element 

and the cluster to which it has been assigned. The 

drawback here is the generation of overlapping 

clusters.  

These overlapping clusters make it hard to 

decide the assignment of elements to one specific 

cluster in the real world scenario. This is the place 

where the use of rough set theory proves useful. It 

provides a region for data points which completely 

belong to a given cluster and this region is called 

lower approximation. The next region that exists is 

the upper approximation where the data points 

aren’t a part of the cluster. The region in between 

the lower and the upper approximation is the region 

known as boundary region. It is here that the data 

points not having a crisp belongingness to either of 

the aforementioned area lie. 

3. Traditional clustering methods  

In this session we discuss about traditional c- 

means and fuzzy c- means clustering technique. 

3.1  C- means clustering  

C-means is the most widely used prototype 

based partitional clustering algorithms. It is an 

iterative process until all data points stabilizes [13]. 

In hard c-means, each object must be assigned to 

exactly one cluster. The clustering ensures that the 

similarity between the data points with in a cluster is 

maximum than the data points of other clusters. The 

objective of this algorithm is to minimize the 

squared error function given in Eq. (1)  

J= ∑ ∑ ‖xi
j

− 𝑐𝑗‖n
i=1

k
j=1     (1) 

Where, ‖𝑥𝑖
𝑗

− 𝑐𝑗‖ is a chosen measure of  distance 

between a data point 𝑥𝑖
𝑗
 and the cluster center 𝑐𝑗 is 

an indicator of the distance of the n data points from 

their respective cluster centers. 

3.2  Fuzzy c- means clustering  

The fuzzy c-means (FCM) algorithm proposed 

by Bezdek [14, 15] is the fuzzy variant of the 

conventional c-means algorithm. The algorithm is 

based on the minimization of the objective function 

given in Eq. (2) 

 

J = ∑ ∑ uij
m‖xi

j
− cj‖

2
n
i=1

k
j=1                  (2)  

 

This methodology is useful when the required 

number of clusters is available. The primary 

improvement of FCM over conventional c-means is 

the fact that it can assign partial membership to data 

points. This means the use of concept of likelihood 

rather than complete membership. The method can 

be very useful at times but is highly susceptible to 

noise and outliers. The primary drawback is the fact 

that it generates overlapping clusters. The 

membership values is calculated using Eq. (3) and 

the fuzzy centers are calculated using Eq. (4) 

 

uij= 1 ∑ (
‖xi-cj‖

‖xi-c𝑝‖
)

2

m-1k
p=1⁄       (3) 

 

subject to :  

 

 ∑ u𝑖𝑗=1, k
j=1    ∀ i     

 

       0<   ∑ uij < 𝑛, n
j=1  ∀j            

 

Where, 𝜇𝑖𝑗  is the membership of ith  data to jth 

cluster,   m is the fuzzy index where m ∈ (1,∞), c is 

the number of  cluster centres. 

 

cj= ∑ (uij)
m

xi
n
i=1 ∑ (uij)

mn
i=1⁄     (4) 

Where, cj is the fuzzy center of the cluster j. 

The algorithm iteration stops, when the condition 

 maxi j {|uij
k+1-uij

k |} < ε , where ε is the termination 

criteria between 0 and 1 is and k is the number of 

iterations. 
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3.3 Limitations of traditional clustering methods 

There are existent drawbacks to the c-means and 

the fuzzy variant of this clustering algorithm. They 

take long computational time and c-means is 

sensitivity to the initial guess and thus leads to local 

minima. The fuzzy c-means is also sensitivity to 

noise and provides low (or even no) membership 

degree for outliers or to the noisy data. 

4. Rough fuzzy c-means clustering 

algorithm for software fault prediction 

RFCM algorithm extends the c-means algorithm 

by integrating both fuzzy set and rough set theory 

[16, 17]. In this hybrid method, the benefits of both 

fuzzy sets and rough sets are added to the traditional 

c- means and thus we obtain a robust algorithm [18].  

The fuzzy set algorithm provides membership 

values to each of the elements of the set and it ends 

as overlapping partitions which are helpful in few 

applications. In rough set theory, the concepts like 

upper approximation, lower approximation and 

boundary condition further helps to handle 

ambiguity in better way than Fuzzy c- means.  

By hybridizing rough, fuzzy and c-means 

together it enables to efficiently handle the 

uncertainty, incompleteness and vagueness of 

dataset during classification or clustering [19, 20]. 

In RFCM technique, each cluster consists of 3 

parameters, namely, a cluster centroid which is the 

mean or prototype of the cluster, a crisp lower 

approximation which holds the data points 

completely belonging to the set, and a fuzzy 

boundary which holds data points possibly 

belonging to the set and also falls under the rough 

boundary with fuzzy membership.  

The formal representation of the notations and 

the RFCM algorithm used for predicting software 

fault prone modules is as follows: Let L(vj)  and 

U̅(vj)  be the lower and upper approximations of 

cluster vj , and B (vj) = �̅�(𝑣𝑗) - L(vj)  denote the 

boundary region of cluster vj . 

4.1 Objective function 

The objective function of the RFCM algorithm 

which is to be minimized is as given in Eq. (5). In 

Eq. (5) the parameters w and w̃ =1-w are the weights 

related to lower approxiamtion and the boundary 

region.  μ
ij
 is the mebership of the object i in cluster 

j. 

 

 JRF= 

{

w×A1+w̃×B1                 if  L(vj) ≠∅, B(vj) ≠∅ 

A1                                 if  L(vj) ≠∅, B(vj) =∅ 

B1                                  if   L(vj) =∅, B(vj) ≠∅ 

      

 (5) 

Where  

A1= ∑ ∑ uij
m‖xi-cj‖

2

xi ∈ L(vj)
k
j=1 ;   (6) 

and  

B1= ∑ ∑ uij
m‖xi-cj‖

2

xi∈B(vj)
k
j=1                               (7) 

According to the  lower approximations and 

boundary  region definitions of rough sets,  if an 

object xi∈ L(vj), then xi∉ L(vp),∀p ≠j and xi∉B(vj), 

∀j. In simple, the object 𝑥𝑖 is certainly enclosed in 

cluster  vj . In this case, the weights of the objects 

are independent of other centroids and clusters.  

Further, the objects that fall in the lower 

approximation should have similar influence on the 

coresponding centroid and cluster rather, if 

xi∈ B(vj), then the object xi  possibly belongs to  vj 

and potentially belongs to another cluster. Hence, 

the objects in boundary regions should have 

different influence on the centroids and clusters. So, 

in RFCM, the data is partitioned into two classes - 

lower approximation and boundary and only the 

objects in boundary are fuzzified as in fuzzy c- 

means and the membership values of objects in 

lower approximation is μ
ij
=1.  Thus in RFCM   𝐴1 

reduces to 

 

A1= ∑ ∑ ‖xi-cj‖
2

xi ∈ L (vj)
k
j=1                 (8) 

and B1 has the same expression as given in Eq. (7). 

4.2 Cluster centroids 

The new cluster prototypes (centroids) are 

calculated as given in Eq. (9).  

 

Cj
RF= {

w×C1+w̃×D1      if L(vj)≠∅,B (vj ) ≠ ∅

C1                         if L(vj)≠∅, B(vj) = ∅

 D1                        if L(vj) =∅, B(vj) ≠ ∅
                        

      

 (9) 
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Where 

 

 C1=
1

|L(vj)|
∑ xix i ∈ L(vj)

              (10) 

 

 D1=
1

nj

∑ uij
m

xi  ∈ B (v j )  xi               (11) 

 

 ni= ∑ (xj ∈ B(βi)
uij

m)               (12) 

 

and |L(vj)| represents the cardinality of L(vj) . 

The equation is based on the weighting average 

of the crisp lower approximation and fuzzy 

boundary and has both the effects of fuzzy 

memberships and lower and upper bounds.  

From Eq. (9), we observe that the cluster 

prototypes (centroids) depends on the parameters w 

and �̃�, and fuzzifer m rule their relative influence 

and the values are given by 0 < �̃�< 𝑤 < 1. 

4.3 RFCM algorithm 

The algorithmic steps are as follows: 

Step 1: Assign initial centroids  𝑐𝑗 , where j = 1,…,k 

Step 2: Set value for m, ϵ , δ and iteration counter  

Step 3: Compute uij
m  using Eq. (3) for k clusters and 

n objects. 

Step 4: If   uij and uip are the two highest 

memberships of the object xi and ( uij – uip) 

≤ δ, then xi ∈  U̅(vj) and xi ∈  U̅(vp) Further, 

xi is not part of any lower bound. 

Step 5: Otherwise, xi ∈  L(vj) and by the properties    

of rough sets, xi ∈  U̅(vj) 

Step 6: Update uij  for k clusters and n objects 

considering their lower and boundary 

regions  

Step 7: Compute new centroid using Eq. (9) 

Step 8: Repeat the steps 2 to 7, by incrementing t, 

until | uij (t) -  uij(t -1)| > ϵ.  

 

In RFCM, the partitioning of the data set into 

lower approximation and boundary is mainly based 

on the value of δ which is determined basically 

using Eq. (13) 

 

δ = 
1

n
  ∑ ( uij  -  uip )n

i=1                          (13) 

 

Where, n is the total number of objects, uij and uip 

are the highest and second highest memberships of 

xi.  

The flow chart of the proposed algorithm is 

given in Fig. 1. The system design for the proposed 

work is given in Fig. 2. 

 

Figure.1 Flowchart for RFCM Approach 

 

Figure.2 System design 
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5. Computational experiments and the 

results obtained 

For conducting experiments on the proposed 

techniques, DATATRIEVE Transition/Software 

defect prediction dataset is chosen from PROMISE 

repository [21]. For predicting future error prone 

software modules, we have used unsupervised 

techniques namely, c means, fuzzy c- means and 

Rough fuzzy c- means.  

The c-means algorithm basically partitions the 

dataset into specified number of crisp clusters where 

we don’t have option of predicting future error 

prone modules. In the second technique, fuzzy c-

means clustering technique, the software modules 

are partitioned into set of overlapping clusters where 

modules have the membership of both fault prone 

and non-fault prone cluster. As our intended aim is 

to find the future error prone ambiguous module, the 

third technique, hybrid rough fuzzy c- means 

clustering technique determines the ambiguous 

modules falling in the boundary region.  

By the term ambiguous, we mean that the 

particular modules can’t be classified with surety for 

their degree of being prone to potential errors. Such 

modules, if when classified using crisp clustering 

techniques may be misclassified as completely safe 

or vice versa thus increasing the risk of unexpected 

faults in the software system.   

The results obtained for the set of experiments 

conducted are given in Table 1. The results show 

that traditional partitioning method, c- means has 

generated crisp binary results depicting whether a 

module is fault prone or non-fault prone. 
 

Table 1. Computational experimental results 

Class c- means  FCM RFCM 

Non fault 

prone 

115 110 107 

Fault Prone 15 50 30 

Total 130 160 137 

Overlapping No Yes Yes 

Boundary  Not 

detected 

Not detected  Detected 

with 7 

modules 

Ambiguous 

region 

Not 

present 

Not 

ambiguous 

but  its 

overlapping 

clusters 

Elements 

in 

boundary 

region are 

ambiguous  

 

While applying Fuzzy c-means, we find the 

modules falling in both the clusters and hence there 

is overlap among the clusters stating that 30 

modules belong to both the clusters which cannot be 

termed as ambiguous but stated as overlap.  On the 

contrary, when Rough fuzzy c-means is applied, 

there are seven modules lying in the boundary 

showing an ambiguous behavior. 

The benefit of RFCM would be that, the 

boundary region in RFCM accommodates the 

ambiguous elements (software modules) which 

could lead to unexpected failures. The existence of 

upper approximation region in RFCM makes it easy 

to deal with outliers and the lower approximations 

helps in keeping the membership of particular 

modules to a specific cluster thus dealing with their 

overlapping nature.  

The data points in Fig. 3 are the set of data 

points representing the software modules to be 

clustered for partitioning into sets of fault prone 

modules and non-fault prone modules. When 

clustering techniques are applied on the data points, 

the data points are grouped into clusters as given in 

Fig. 4 and Fig. 5.  

In these figures, the green colored data points 

belong to cluster 1 and yellow colored data points 

belong to cluster 2 and the red indicator indicates 

the cluster centroids. From Fig. 4, we also observe 

that there are few data points belonging to both 

clusters being on the same point thus indicating 

ambiguity.  

In Fig. 5, the boundary shows some set of 

modules which are to be concentrated much as those 

are future error prone software modules which may 

affect software reliability. Hence, the results of these 

clustering techniques help the software test team and 

the developers to concentrate on these modules to 

great extent so that detailed analysis of those 

modules will help in achieving high reliable systems. 

 

 

Figure.3 Set of software modules before partitioning 

 

DataPoints
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Figure.4 Software modules clustered into fault Prone 

and non-fault Prone without boundary region 

 

 

Figure.5 Software modules clustered into fault Prone 

and non-fault Prone with overlapping boundary region  

 

6. Conclusion 

Software fault prediction is considered to be an 

important task in software development process. 

The conventional machine learning methods for 

classification allows the user to know whether the 

module under test is fault prone or not- fault prone.  

In reality, there is a chance that, the module 

which is passed in testing is not concentrated much 

for future faults that might arise due to several 

reasons. In this paper, we used RFCM clustering 

technique to find the ambiguous modules. Dataset 

from PROMISE software engineering repository has 

been taken for the analysis. The obtained results 

were promising enough in achieving the separation 

between fault prone modules, non-fault prone 

modules and the boundary region which holds 

modules which might be fault prone in future. This 

is the benefit obtained using the proposed method 

Rough Fuzzy c- means approach which helps in 

highlighting the ambiguous software modules whose 

prediction increases the reliability of the system 

when the software team focuses on those modules. 

Basically, it helps the software team to take pro-

active measures towards possible software failures, 

which otherwise would go unnoticed if some 

conventional technique were used for the analysis.  

The precision of this technique is higher when 

compared to conventional techniques and this makes 

it suitable for tasks which are critical in nature. 

Hence, the proposed approach has more chances of 

applicability for several other applications in real 

world. In future, the performance of the clustering 

can be assessed using appropriate cluster validity 

measures to know the quality of the clusters formed 

and also optimization techniques can be applied to 

further improve the performance of the clustering 

algorithms.  
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