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Abstract: Software testing is required to detect the faults and to ensure the quality of the software under 

development. Usually, test suites are used to evaluate the software system during the software development cycle. 

But often test suites contain more redundant test cases due to overlapped test objectives. So, the test-suite reduction 

is an important step to reduce the number of test cases so as to satisfy the entire objectives with less computational 

cost. Literature presents different methods to select the suitable test suites of optimal subsets for regression testing. 

Accordingly, this research aims to develop an effective test suite reduction approach for regression testing. The 

proposed algorithm (GTAP) is newly designed using TAP measure and greedy search algorithm. This algorithm uses 

TAP-measure which is specially developed for measuring the importance of test cases. The performance of the 

GTAP algorithm is evaluated using four different evaluation metrics with eleven subject programs available in SIR 

repository. From the experimentation, the average performance of the proposed GTAP algorithm in all the programs 

is 93.07% which is higher than the DIV-GA which obtained the value of 90.27%. 

Keywords: Testing, Test case, Coverage, Test suite, Greedy search, Test suite reduction. 

 

 

1. Introduction 

Generally, a test suite minimization problem [1-

5] can be simplified as a minimum set cover 

problem, which Karp has asserted as an NP-

complete problem. Numerous techniques have been 

reported in the literature. This technique exploits 

many software metrics to converge the test suite 

minimization problem to the near-optima. Test suite 

minimization technique produce a representative set 

of test cases but are unable to reduce test suite size 

significantly and are not efficient in reducing the 

execution time. W. E. Wong et al. 1995 [6] and M. J. 

Harrold et al. 1993 [7] have presented test suite 

minimization approaches for fault detection 

effectiveness. It is also observed that majority of the 

minimization algorithms did not consider the 

important deviations among the test cases in terms 

of execution penalties [1]. When these algorithms 

attempt to minimize the cost in terms of execution 

time, they fail to achieve the effective rate of fault 

detection. This interprets the strong need to have a 

technique which provides a good trade-off between 

the effectiveness and cost metrics such as test 

coverage, execution time and fault detection 

capability [3]. 

If the literature is examined, coverage can be 

deemed as a conventional approach that employs the 

Greedy Search algorithm for decreasing the number 

of test cases. A thorough description of the coverage 

specifications and the likewise test suite reduction 

schemes were presented in [4] and [5]. In [8], 

modelling-based test suite minimization problem is 

covered. The various search-based algorithms 

resulting in test suite reduction are dealt in [3, 9-18] 

and [19, 20] which briefs about several cost-

effective algorithms. A two-step test-suite reduction 

scheme is elucidated in [21] and the three weight-

based Genetic Algorithms are depicted in [3]. In 

most of the algorithms, the test metrics allow 
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choosing the test cases using decreased value of cost. 

Jones and Harrold [22], in their preceding work, 

have specified that the choice of a test case in the 

test suite reduction algorithms can be made in 

relation to its contribution or goodness. Some 

researchers have utilized a metric, termed as a ratio, 

to assess the test cases. A more recent metric, 

known as EIrreplaceability metric, enables 

decrementing the number of test cases via greedy 

search algorithm [1]. 

This paper aims to develop an effective test suite 

reduction approach for regression testing. Here, 

TAP measure is newly proposed for finding the 

importance of test cases using two parameters, 

called the number of test cases that can satisfy 

availed test requirement and the number of test cases 

that already satisfied test requirement and the GTAP 

algorithm is designed including TAP measure and 

greedy search algorithm. The proposed GTAP 

algorithm enables the finding of test cases using the 

objective measure called, TAP-measure. 

In the proposed work, GTAP algorithm is 

devised for test suite reduction using TAP measure 

(Test cases which Already included in Pool-based 

Measure). TAP measure includes three different 

constraints to find the goodness of a test case. TAP 

measure does the selection of test cases in GTAP 

algorithm for multiple iterations. The selected test 

cases can satisfy the entire test requirement with 

much-reduced cost. The proposed GTAP algorithm 

can yield the representative set of test cases with the 

lowest cost and the reduction capability of the 

proposed algorithm is higher than the existing 

algorithm. The paper is organized as follows: 

section 2 provides the problem statement and 

section 3 proposes cost-aware test suite 

minimization approach using TAP measure and 

greedy search algorithm. Section 4 explains the 

running example and comparison and section 5 

presents results and discussion. Finally, the 

conclusion is given in section 6. 

2. Problem statement 

Software testing is an important field of current 

days due to wide usage of a software system. Before 

delivering any software products, testing is required 

to fix the faults that may exist in the module. 

Testing can be done through different test suite 

generation methods with so many techniques which 

are available in the literature. In [2], dubbed 

RZOLTAR was proposed for test suite minimization. 

RZOLTAR can significantly reduce the original test 

suite, while still maintaining the full code coverage. 
The drawback of this method is the test reduction 

which may have a negative impact on fault detection. 

Wang S et al. [3] have proposed a fitness function in 

conjunction with ten multi-objective search 

algorithms, to minimize the test suites in the context 

of product line testing. This method does not work 

at other industrial case studies. In [4], they 

introduced a family of similarity-based test case 

selection techniques for test suites generated from 

state machines called similarity-based test case 

selections (STCS), which minimize the similarity 

among selected test cases to increase the chance of 

detecting more faults. This method has high 

execution cost. Shaccour E et al. [5] presented a 

coverage specification language and a methodology 

to preserve the intent of test cases in a regression 

test suite. The drawback of this method is the 

specification language which has some weaknesses. 

The minimization technique discussed in [6] can 

be used for more efficient program revalidation by 

selecting only a few effective regression tests to be 

re-executed after each software revision. M. J. 

Harrold et al. [7] presented a technique that selects a 

representative set of test cases from a test suite that 

provides the same measure of coverage as the test 

suite. A program modification may cause a change 

in a program’s testing requirements.    Stephen W et 

al. [8] proposed a static black-box TCP technique. 

This method does not work on distance 

maximization algorithms, such as hill climbing, 

genetic algorithms, and simulated annealing. 

Here, an important consideration is how to 

reduce the test suite in a better way by satisfying 

tradeoffs: When we minimize test suites, test 

requirements are not satisfied completely. When we 

increase test suites, test requirements are satisfied 

but computational cost is more. To balance these 

two things, better methods are needed for the test 

suite reduction which simultaneously satisfies the 

test case requirement as well as cost reduction. In 

light constraints, few of algorithms are presented in 

the literature. One of the algorithms presented 

recently is given in [1] where, they introduced two 

metrics called, Irreplaceability and EIrreplaceability 

for test suite selection. The selection process is done 

with the greedy search algorithm. Their motivation 

of research is to improve coverage as well as cost 

aware-coverage for better performance it has the 

advantage of generating the representative set with 

the lowest cost because the ratio metric failed to 

take into consideration the above mentioned trade-

off. A representative set does yield the lowest 

execution cost if it includes test cases with high 

replaceability. 

The objective of this research is to develop an 

effective test suite reduction approach for regression 
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testing. Here, two challenges are identified, i) Right 

inclusion of parameters to test case metrics for test 

case evaluation, ii) selection of a right algorithm for 

searching test cases. In the previous work [1], they 

have additionally included a parameter called, 

number of test cases that satisfy in 

contributionTosuite. When we analyze a parameter 

called, EIrreplaceability [1], the degree of 

contribution in the overall pool is considered. But, 

this measure completely missed out the strategy of 

bringing deviation in terms of measurement among 

test cases which are already considered for 

evaluation. So, it requires a perfect mathematical 

formula for test suite reduction to easily select the 

test cases. For the second challenge, literature 

presents various algorithms [19-22] for reducing test 

suite. From the recent work [1], they proved that 

greedy search algorithm which seems little faster 

and produced good results in EIrreplaceability [1] 

out of other nine various algorithms. So, a greedy 

search algorithm is also taken here to provide a 

more robust solution with less computational effort. 

The main contributions of the paper is given as 

follows, 

 TAP measure is newly proposed for finding 

the importance of test cases using two 

parameters, called the number of test cases 

that can satisfy availed test requirement 

(total test cases which does not satisfy any 

test requirement until the current iteration) 

and the number of test cases that already 

satisfied test requirement (total test cases 

which already satisfy any one of test 

requirements until the current iteration). 

 GTAP algorithm is newly designed 

including TAP measure and greedy search 

algorithm. The proposed GTAP algorithm 

enables the finding of test cases using the 

objective measure called, TAP-measure. 

3. Proposed cost-aware test suite 

minimization approach using TAP 

measure and greedy search algorithm  

This section presents the proposed method for 

automatic test suite selection with a novel measure 

for test suite evaluation using greedy search 

algorithm in getting the optimal solution without 

violating trade-offs. In this measure, a number of 

test requirement satisfied in previous iterations, the 

number of test cases that to be satisfied and cost, all 

are effectively included to develop new formulae for 

test suite evaluation. It is done with the perspective 

of the information-theoretic measure which can 

bring more deviation for every test case to easily 

evaluate the results. Then, a greedy search algorithm 

is utilized to search over the test requirement until it 

reaches the better trade-off. 

3.1 Test pool 

The input for the proposed test case selection is 

test pool which contains the test cases and its cost. A 

test case is a set of input variables required for 

software with the desired output results and test case 

requirement is about to employ a specific software 

function, loop and branch to be executed for a test 

case. Here, test case requirement is taken as branch 

coverage which provides the output whether the 

given test case is covered the specific branch or not. 

Let us assume that the number of test case for the 

algorithm is n and number of test requirement is m. 

Then, test pool con be indicted as,  

}0  ;  0  ;    { mjnitT ij 
       (1)

 

The cost value of each test case is computed by 

finding the execution time of the test case. For each 

test case t, there is an execution time which denotes 

the cost value of the test cases. 

3.2 New TAP measure for test suite reduction 

Test case selection is an important step in 

regression testing to satisfy two constraints, such as 

i) satisfying all test requirements, ii) Minimizing the 

cost value. These two constraints are very important 

when developing test metrics for test case selection. 

In this new TAP measure, the cost is inversely 

proportional to ratio and coverage is directly 

proportional to ratio. 

 

a) Existing EIrreplaceability metrics 

Recently, EIrreplaceability [1] was developed 

for test case selection using a parameter called, a 

contribution which considers the number of test 

cases that satisfies rs in the test pool. The number of 

test cases that satisfies the test requirement is 

inversely proportional to the contribution which 

obtains the higher value if less number of test cases 

can do the same task covering the test requirements. 

On the other hand, the high value of contribution 

denotes that the finding of test cases to satisfy those 

test requirements is tough. Along with this, the 

execution cost of a test is inversely included with 

the contribution to evaluate the test cases. Also, they 

assigned high priority if a test case that can only 

fulfill a test requirement by giving infinity. The 

EIrreplaceability is computed as follows: 
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b) Proposed TAP measure 
In previous work [1], EIrreplaceability selects 

test cases using contribution or goodness which is 

measured based on the characteristics of the test 

case whether it can satisfy the test requirement. Here, 

we included two parameters such as Ta and Ts for 

effective measurement of test cases. Every 

algorithm chooses the test cases in an iterative way 

of changing measures. Accordingly, Number of test 

cases that can satisfy availed test requirement (Ta) 

and Number of test cases that already satisfied test 

requirement (Ts) are the two parameters included in 

the proposed TAP measure. Ta is inversely 

proportional to the contribution and it provides less 

value to the contribution if many test cases can 

satisfy the same test requirement. Ts is also inversely 

proportional to the moving contribution but it 

controls the value of  Ts based on a number of test 

cases that already satisfied the same test requirement 

with decrement factor, Fd. This means that even if a 

test requirement is already satisfied by a test case, it 

can contribute to additional test requirement. If so, 

the value of the moving contribution for a test case 

is slightly reduced. The moving contribution 

signifies zero if the test case cannot satisfy the test 

requirement and a factor is computed if the test case 

satisfies the test requirement according to the 

following equation. 
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where MC is moving contribution, Ta is a 

number of test cases that can satisfy availed rs, Ts is 

a number of test cases that already satisfied rs and Fd 

is decrement factor. Fd is named as decrement factor 

because it reduces the moving contribution which is 

inversely proportional to the Ta. Fd is fixed threshold 

which will not change into every iteration. The 

selection and fixing of the right value for Fd
 
affect 

the performance severely. The value suggested here 

is selected based on trial and error method. The 

numerical example shown here is the justification of 

fixing the value to two.  

The contribution is directly proportional with 

TAP-measure which increases when the 

contribution is increased. Cost is inversely 

proportional to TAP-measure which increases when 

the contribution is decreased. Also, if any test cases 

that can be satisfied only one test requirement, then 

the value is infinity. The TAP-measure is computed 

as follows: 


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Where k is the number of test requirement 

availed and l is the number of test requirement 

already satisfied. 

3.3 GTAP search algorithm for test suite 

reduction 

1 Algorithm: GTAP 

2 Input:      TTest pool,  CCost vector, TR Test 

requirement vector 

3 Output: 

4              ST  Selected test cases  

5 Begin 

6         ST = { }; 

7          While (TR!=NULL) 

8          { 

9           for each t     

10                  for each r 

11                       if (t does not cover the requirement r) 

12                       { 

13                       TAP=0; 

14                        } 

15                        elseif(r is only covered by t) 

15                        { 

17                        TAP=infinity; 

18                         } 

19                        Else 

20                       { 

22                       Find  TAP- measure(t) 

23                       } 

24               Endfor 

25               TAP(T)=TAP/cost(t) 

26         Endfor 

27         Select tMAX which is a test case having maximum 

TAP  

28         Get rc which is requirements by the selected tMAX 

29         Add tMAX  to ST  

30         Remove rc  from TR  

31         } 

32 End 

Figure. 1 GTAP search algorithm for test suite reduction 

The proposed GTAP search algorithm given in 

Fig. 1 is used for test case selection using the 
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proposed TAP measure and greedy search algorithm. 

The Greedy algorithm is a well-known algorithm for 

finding the near-optimal solution to the test suite 

reduction problem. This simple algorithm frequently 

traverses to the test pool to include uncovered test 

requirements from the test pool until all of the 

requirements are covered. The input for GTAP 

algorithm is a test pool T which contains test cases 

and its coverage. The elements in the test pool have 

an only binary number where zero indicates that the 

corresponding test requirement is not solved by that 

test case and one indicates that the test requirement 

is solved by that test case. Along with the test pool, 

cost vector C and the test requirement vector TR 

requirement are given as input to the proposed 

algorithm. The iterative process of the proposed 

algorithm is terminated only if the test requirement 

vector TR is empty.  

In the initial step, TAP is found out for all the 

input test cases based on three constraints. Only if 

test case t does not cover any input requirements, 

zero is assigned to TAP and only if test case t covers 

only one input requirement which is not covered by 

any other test cases, infinity is assigned to TAP. If 

these two constraints are not satisfied, the usual 

procedure of finding MC is applied and TAP 

measure is computed. In the second step, tMAX which 

is a test case having maximum TAP is selected from 

the input test pool and put it into ST. If two test cases 

will have the same TAP value, we select any one of 

the test case. This situation will mostly happen only 

if the two test cases are duplicates. So, the selection 

of any one test case from the two test cases will not 

have much influence on the results. Then, a set of 

requirements covered by tMAX is given into rc. The 

solved test requirements rc through test case tMAX   is 

removed from the test requirement vector TR. Then, 

an element which is related to satisfied test 

requirement is incremented with one in the input test 

pool. This assumption is for easily find out Ts which 

is the number of test cases that already satisfied rs in 

TAP computation. This process is repeated until the 

termination criterion is satisfied and the selected test 

cases can be obtained from ST. 

4. Running example and comparison  

This section discusses a numerical example of 

the greedy GreedyEIrreplaceability algorithm [5] 

and proposed GTAP algorithm. Table 1 shows 

running example of a GreedyEIrreplaceability 

algorithm. The input has seven test cases and seven 

test requirements. The cost of every test requirement 

is also given in the table. In the first step, 

EIrreplaceability is computed for all the seven test 

cases. For an example, t1 covers two requirements 

such as r1 and r2, where r1 is covered by two test 

cases and r2 is covered by two test cases. So, the 

contribution is 1 (1/2+1/2) and cost value is 1 for t1. 

EIrreplaceability is the ratio of contribution to cost 

so, EIrreplaceability for the test case t1 is 1. For the 

test case t7, r7 is covered only by this test case so 

the value is assigned to infinity. Similarly, 

EIrreplaceability can be found out for all other test 

cases. After completing step 1, maximum value 

obtained by the test case is t7 which is selected and 

test requirement r7 which is satisfied by t7 is 

removed from the test pool. The same procedure is 

continued until all the requirements are obtained. 

For this example, six steps are needed to obtain the 

entire test requirement. Finally, selected test cases 

are (t1,t2,t3,t4,t5,t7) and requirements solved are 

(r1,r2,r3,r4,r5,r6,r7), The total cost required is 52 

(1+2+5+11+23+10) which is obtained by doing the 

summation of all the cost values of selected test 

cases. 

Table 2 explains a running example of GTAP 

algorithm. The same input is also applied to GTAP 

algorithm with seven test cases and seven test 

requirements. The first step is exactly similar to the 

existing algorithm as the number of test cases that 

already satisfied is zero. From the first step, r7 is 

only satisfied by the selected test case t7 so the 

second step is also same as like the existing 

algorithm because we do not have availed and 

satisfied test requirement which contributes the 

value of MC to zero. Let we discuss the procedure 

of finding TAP measure for a test case t2 as already 

t1 and t7 are selected.  Test case t2 can satisfy test 

requirements r2 and r3. As r2 is already solved by 

the test case t1, the number of test cases have 

already been satisfied by requirement r2 is two and 

number of test cases that can satisfy availed 

requirement r3 is two. So, C(t, rs) is 0.5 and MC(t, 

rs)  is 0.25 when the decrement factor is fixed as 

two using trial and error approach. Finally, TAP-

measure for the test case t2 is 0.125 which is 

obtained by dividing it by the cost of t2. After 

completing step 3, t3 is selected but in the previous 

algorithm, t2 is selected. The same procedure is 

applied until the entire test requirement is solved. 

The test cases selected based on this proposed 

procedure is (t1,t3,t5,t7) which can solve all the test 

requirements, R= (r1,r2,r3,r4,r5,r6,r7). The total 

Cost required for this test case is only 39 

(1+5+23+10). 
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Table 1.Running example of the GreedyEIrreplaceability algorithm 

Step 1  r1 r2 r3 r4 r5 r6 r7 Cost EIrreplaceability 

 

t1 . .      1 EI (t1)=(1/2+1/2)/1=1 

t2  . .     2 EI (t2)= (1/2+1/2)/2=0.5 

t3   . .    5 EI (t3)=(1/2+1/2)/5= 0.2 

t4    . .   11 EI (t4)= (1/2+1/2)/11=0.09 

t5     . .  23 EI (t5)=(1/2+1/2)/23=0.043 

t6 .     .  40 EI(t6)= (1/2+1/2)/40=0.025 

t7       . 10 EI (t7)= ∞ 

Step 2 t1 . .       EI (t1)=(1/2+1/2)/1=1 

 

t2  . .      EI (t2)= (1/2+1/2)/2=0.5 

t3   . .     EI (t3)=(1/2+1/2)/5=0.2 

t4    . .    EI (t4)= (1/2+1/2)/11=0.09 

t5     . .   EI (t5)=(1/2+1/2)/23=0.043 

t6 .     .   EI(t6)= (1/2+1/2)/40=0.025 

t7       -  Selected 

Step 3 t1 - -       Selected 

 

t2  - .      EI(t2)= (1/2)/2=0.25 

t3   . .     EI(t3)=(1/2+1/2)/5= 0.2 

t4    . .    EI(t4)= (1/2+1/2)/11=0.09 

t5     . .   EI(t5)=(1/2+1/2)/23=0.043 

t6 -     .   EI(t6)= (1/2)/40=0.012 

t7       -  Selected 

Step 4 t1 - -       Selected 

 

t2  - -      Selected 

t3   - .     EI(t3)=(1/2)/5=0.1 

t4    . .    EI(t4)= (1/2+1/2)/11=0.09 

t5     . .   EI(t5)=(1/2+1/2)/23=0.043 

t6 -     .   EI(t6)= (1/2)/40=0.012 

t7       -  Selected 

Step5 t1 - -       Selected 

 

t2  - -      Selected 

t3   - -     Selected 

t4    - .    EI(t4)= (1/2)/11=0.045 

t5     . .   EI(t5)=(1/2+1/2)/23=0.043 

t6 -     .   EI(t6)= (1/2)/40=0.01 

Step6 t7       -  Selected 

 

t1 - -       Selected 

t2  - -      Selected 

t3   - -     Selected 

t4    - -    Selected 

t5     - .   EI(t5)=(1/2)/23=0.021 

t6 -     .   EI(t6)= (1/2)/40=0.0125 

t7       -  Selected 

S=(t1,t2,t3,t4,t5,t7); R=( r1,r2,r3,r4,r5,r6,r7); Total Cost=1+2+5+11+23+10=52 

 

5. Results and discussion  

This section discusses the subject programs 

taken for experimentation and detailed analysis of 

the proposed TAP measure with existing algorithm 

[5] using different evaluation metrics. 

5.1 Experimental setup 

a) Subject programs for evaluation  

The proposed GTAP algorithm experiments with 

eleven subject programs taken from Software-

artifact Infrastructure Repository (SIR) [15] which 

contains Java, C, C++, and C# programs for 

experimentation with testing and analysis techniques. 

From the repository, we have taken eleven different 

subject programs such as median, elevator, trityp, 

Apollo, pool3, printtokens, printokens2, space, 

replace, schedule and schedule2. The proposed 

algorithm is implemented in JAVA. 
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Table 2.Running example of GTAP algorithm 

Step 1  r1 r2 r3 r4 r5 r6 r7 Cost TAP-measure 

 

t1 . .      1 TAP(t1)=(1/2+1/2)/1=1  =1 

t2  . .     2 TAP(t2)= (1/2+1/2)/2=0.5 

t3   . .    5 TAP(t3)=(1/2+1/2)/5= 0.2 

t4    . .   11 TAP(t4)= (1/2+1/2)/11=0.09 

t5     . .  23 TAP (t5)=(1/2+1/2)/23=0.043 

t6 .     .  40 TAP(t6)= (1/2+1/2)/40=0.025 

t7       . 10 TAP-measure (t7)= ∞ 

Step 2 t1 . .       TAP (t1)=(1/2+1/2)/1= 1 

 

t2  . .      TAP(t2)= (1/2+1/2)/2=0.5 

t3   . .     TAP(t3)=(1/2+1/2)/5=0.2 

t4    . .    TAP(t4)= (1/2+1/2)/11=0.09 

t5     . .   TAP(t5)=(1/2+1/2)/23=0.043 

t6 .     .   TAP(t6)= (1/2+1/2)/40=0.025 

t7       -  Selected 

Step 3 t1 - -       Selected 

 

t2  - .      TAP(t2)= 0.5-(0.5/2)/2 =0.125 

t3   . .     TAP(t3)=(1/2+1/2)/5=0.2 

t4    . .    TAP(t4)= (1/2+1/2)/11=0.09 

t5     . .   TAP(t5)=(1/2+1/2)/23=0.043 

t6 -     .   TAP(t6)= 0.5-0.25/40 =0.00625 

t7       .  Selected 

Step 4 t1 - -       Selected 

 

t2  - -      TAP(t2)=0 

t3   - -     Selected 

t4    - .    TAP(t4)= 0.5-(0.5/2)/11 =0.0227 

t5     . .   TAP(t5)=(1/2+1/2)/23=0.0434 

t6 -     .   TAP(t6)= 0.5-(0.5/2)/40 =0.00625 

t7       -  Selected 

S=(t1,t3,t5,t7); R=( r1,r2,r3,r4,r5,r6,r7); Total Cost=1+5+23+10=39 

 
b) Evaluation metrics 

The performance of the proposed GTAP and the 

existing algorithm is evaluated using the following 

four evaluation metrics. SuiteCost is a metric to 

compute the total execution time required for 

executing test suite. SuiteCostreduction is a metric 

used to compute the percentage of reduction 

capability of the algorithm versus the original 

computation time required for the input test suite. 

Improvement (cost) is utilized to find the cost 

improvement of the proposed algorithm while 

compared with the existing algorithm. Improvement 

(%) is a percentage of improvement for the proposed 

algorithm in test suite reduction as compared with 

the existing algorithm.  






n

t

timeExecutionTTSuiteCost

1

)()(

   (7) 

%100
)(

)()(
)(Re 




TSuiteCost

RSsuiteCostTSuiteCost
SCRductionSuiteCost

 (8)
 

    2)ithmcost(algor1algorithmcostttImprovemen cos
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 
 

 
%100

1algorithmcost

2)ithmcost(algor1algorithmcost
%tImprovemen 




                      

(10) 

5.2 Performance analysis 

The proposed GTAP algorithm is implemented 

using Java 1.7 with netbeans IDE 7.3. The 

experimentation is conducted on Windows 7 

machines with Intel Core Duo processors and 2 GB 

of memory. The measurement of execution time and 

the generation of test suites are completely based on 

the reference paper given in [1].  

 

a) Analysis 1: Reduction capability of algorithms 

Test pool is directly given to both the algorithms, 

GTAP and GreedyEIrreplaceability. The ultimate 

aim of both the algorithms is to select test cases 

which should satisfy all the test requirements. 

Accordingly, test cases are selected by both the 

algorithms and the cost for all the selected test cases 

are computed and plotted in table 3. Reduction 

capability of the algorithms is analyzed through the 

SCR and cost. According to table 3 for Te of 0.5, the 

proposed GTAP algorithm provides a minimum cost 
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for the selected eleven programs. The total cost of 

12.4 msec for the proposed GTAP algorithm in 

median program as compared the value of 66.2 for 

the existing algorithm. Similarity, while comparing 

with the original cost required for all the test pool, 

the proposed GTAP achieved 92.7% improvement 

as compared with the existing algorithm which 

improves only 61.3%. Similarly, the performance of 

the proposed GTAP is better than the 

GreedyEIrreplaceability in printtokens, printtokens2 

and space. Table 4 describe the Reduction capability 

of algorithms (in msec) for input Te of 0.75. From 

table 4, the proposed GTAP obtained the cost of 

5.2ms, 3555ms, 34ms, 2.9E6, 1.3E8 against the 

existing algorithm which requires 28.8ms, 53329 ms, 

74.8 ms, 5.9E6, 2.6E8 for the eleven subject 

programs. In terms of SCR, the proposed GTAP 

achieved the reduction improvement of 96.6%, 93.9, 

74.2%, 54.6 and 98.18% against the existing 

algorithm which reached the improvement of 81.7%, 

9.4%, 44.2%, 8.1% and 96.3%. Overall, the 

proposed algorithm proved that reduction of test 

suites is much possible as compared with the 

existing algorithm.   

Table 3. Reduction capability of algorithms (in msec) for 

input threshold (Te) of 0.5 

Program Original 
GTAP

-Cost 

GreedyEIr

replaceabil

ity-Cost 

GTAP-

SCR 

GreedyE

Irreplace

ability-

SCR 

Median 171.3 12.4 66.2 92.7 61.3 

Elevator 115359.3 7201.3 107976.5 93.7 6.3 

Trityp 436.8 7.6 68.6 98.2 84.2 

Apollo 6.5E6 2.9E6 6.0E6 54.3 7.6 

Pool3 1.7E11 1.0E8 2.0E8 99.9 99.8 

printtokens 1350 40.8 69.4 96.9 94.8 

printtokens2 932 46.6 46.7 94.9 94.9 

Space 106281 118.72 211.6 99.88 99.8 

replace 2143 113.87 109.36 94.68 94.9 

schedule 613 36.18 38.16 94.0 93.68 

Schedule2 845 42.08 43.52 95.02 94.85 

Table 4. Reduction capability of algorithms (in msec) for 

input threshold of 0.75 

Program 
Origin

al 

GTAP-

Cost 

GreedyEIrr

eplaceabilit

y-Cost 

GTAP

-SCR 

GreedyE

Irreplac

eability-

SCR 

Median 157.9 5.2 28.8 96.6 81.7 

elevator 58896.9 3555.3 53329.4 93.9 9.4 

trityp 134.4 34.5 74.8 74.2 44.2 

Apollo 6.4E6 2.9E6 5.9E6 54.6 8.1 

Pool3 7.3E9 1.3E8 2.6E8 98.1 96.3 

printtokens 1341 39.8 53.4 97 96.0 

printtokens2 921 44.6 45.1 95.1 95.1 

space 105186 116 210 99.88 99.80 

replace 21455 118 115 99.45 99.46 

schedule 650 38 36 94.15 94.46 

Schedule2 827 50 44 93.95 94.67 

Table 5. Relative Reduction capability of algorithms for 

input threshold 0.5 

Program 
GTAP-

Cost 

GreedyEIrrepl

aceability-Cost 

Improvem

ent(cost) 

Improvem

ent (%) 

Median 12.4 66.2 53.7 81.1 

elevator 7201.3 107976.5 100775.2 93.3 

trityp 7.6 68.6 60.9 88.8 

Apollo 2.9E6 6.0E6 3.0E6 50.5 

Pool3 1.0E8 2.0E8 1.0E8 50.2 

printtokens 40.8 69.4 28.6 41.1 

printtokens2 46.1 46.7 0.1 0.2 

space 118.72 211.6 92.8 43.8 

replace 113.87 109.36 4.51 3.96 

schedule 36.18 38.16 1.98 3.13 

Schedule2 42.08 43.52 1.44 3.42 

Table 6. Relative Reduction capability of algorithms for 

input threshold 0.75 

Program 
GTAP-

Cost 

GreedyEIrrepl

aceability-Cost 

Improvem

ent (cost) 

Improvem

ent (%) 

Median 5.2 28.8 23.5 81.6 

elevator 3555.3 53329.4 49774.186 93.3 

trityp 34.5 74.8 40.32 53.8 

Apollo 2.9E6 5.9E6 3.0E6 50.5 

Pool3 1.3E8 2.6E8 1.3E8 50.2 

printtokens 39.8 53.4 13.5 25.4 

printtokens2 44.6 45.1 0.5 1.1 

space 116 210 94 44.7 

replace 118 115 3 2.5 

schedule 38 36 2 5.26 

Schedule2 50 44 6 12 

Table 7. Reduced test suite size of algorithms for input 

threshold 0.5 

Program 
Original 

test suite 

GTAP-

suite size 

GreedyEIrre

placeability-

suite size 

Median 150 10 58 

elevator 2500 156 2340 

Trityp 300 5 47 

Apollo 20000 9130 18500 

Pool3 10000 5 11 

printtokens 1200 40 64 

printtokens2 1100 56 56 

Space 6300 100 200 

replace 5211 425 430 

schedule 2254 305 310 

schedule2 2345 240 250 

Table 8. Reduced test suite size algorithms for input 

threshold 0.75 

Program 
Original 

test suite 

GTAP-

suite size 

GreedyEIrre

placeability-

suite size 

Median 145 4 26 

Elevator 2300 139 2082 

Trityp 2850 73 158 

Apollo 19000 8620 17444 

Pool3 9160 166 333 

Printtokens 1110 40 64 

printtokens2 1021 55 56 

Space 5100 97 197 

replace 5301 601 625 

schedule 2120 254 263 

schedule2 2125 220 231 



Received:  January 10, 2017                                                                                                                                                 68 

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017          DOI: 10.22266/ijies2017.0831.07 

 

Table 9. Comparative discussion with existing algorithms 

Program 
GreedyCo

verage [1] 

GreedyEIrrepl

aceability [1] 

DIVGA 

 [26] 

GTAP 

Median 80.2 81.7 80.5 96.6 

Elevator 8.3 9.4 85.36 93.9 

Trityp 83.5 84.2 83.75 98.2 

Apollo 80.2 8.1 80.3 54.6 

Pool3 85.3 99.8 87.8 99.9 

Printtokens 96.76 96.0 96.98 97 

printtokens2 94.83 95.1 94.88 95.1 

Space 99 99.80 99.8 99.88 

replace 94.9 99.46 94.68 99.45 

schedule 93.68 94.46 94 94.15 

schedule2 94.85 94.85 95.02 95.02 

 

b) Analysis 2: Relative Reduction capability of 

algorithms 

Table 5 provides Relative Reduction capability 

of algorithms for input threshold of 0.5. Relative 

Reduction capability provides the improvement of 

the proposed algorithm with respect to the existing 

algorithm. From table 5, the proposed GTAP 

achieved the cost improvement of 53.7, 1007755.2, 

60.9, 3041487.1 and 1.0E8 for all the subject 

programs. The percentage of improvement for the 

proposed GTAP as compared with existing one is 

81.1%, 93.3%, 88.8%, 50.5% and 50.2% in all the 

programs. When analyzing the proposed GTAP with 

respect to the GreedyEIrreplaceability in printtokens, 

the proposed GTAP shows the cost value of 40.8 as 

compared with the value of 69.4 which is obtained 

by GreedyEIrreplaceability. In terms of 

improvement (%), the proposed shows the better 

value of 41.1% and 0.2% for printtokens and 

printtokens2. Overall, the proposed GTAP shows 

the better performance than the existing method. 

Table 6 shows the Relative Reduction capability of 

algorithms for input threshold of 0.75. The 

improvement is 81.6%, 93.3%, 53.8%, 50.5% and 

50.2% for median, elevator, trityp, Apollo and pool3 

programs. For input threshold of 0.75, the cost 

improvement is 23.5, 49774, 40.3, 3E6 and 1.3E8 

for Median, elevator, trityp, Apollo, pool3 programs. 

 

c) Analysis 3: Reduced size of test suite  

From the table 7, we understand that the original 

test suite is reduced from 150 to 10 for median 

program if the proposed GTAP algorithm is applied. 

On the other hand, the suite size is reduced from 

20,000 to 9130 for the Apollo program. For 

printtokens, the original test suite size of 1200 is 

reduced to 40 for the proposed GTAP and 64 for the 

GreedyEIrreplaceability. This analysis clearly shows 

the size of the test suite is comparatively less for the 

proposed GTAP algorithm as compared with 

GreedyEIrreplaceability. Similarly, Table 8 shows 

the reduced test suite size of algorithms for input 

threshold 0.75. This table clearly indicates that the 

original test suite of 9160 is reduced to 166 for 

GTAP and 333 for the GreedyEIrreplaceability in 

Pool3. Also, for printtokens2, the test suite size of 

1021 is reduced to 55 for the proposed GTAP and 

56 for GreedyEIrreplaceability. 

 
d) Comparative discussion 

Table 9 provides the comparative discussion of 

the proposed algorithm with the existing algorithms 

such as, GreedyCoverage [1], 

GreedyEIrreplaceability [1] and DIVGA [26]. In 

terms of SCR, the proposed GTAP achieved the 

reduction improvement of 96.6%, 93.9%, 98.2%, 

54.6%, 99.9%, 97%, 95.1%, 99.88%, 99.45%, 

94.15%, and  95.02% for all the programs Median, 

Elevator, Trityp, Apollo, Printtokens, Printtokens2, 

Space, replace, schedule, and schedule2 respectively. 

The GreedyCoverage algorithm achieves the 

reduction improvement of 80.2%, 8.3%, 83.5%, 

80.2%, 85.3%, 96.76%, 94.83%, 99%, 94.9%, 

93.68%, 94.85% for all the subject programs. The 

GreedyEIrreplaceability algorithm achieves the 

reduction improvement of 81.7%, 9.4%, 84.2%, 

8.1%, 99.8%, 96.0%, 95.1%, 99.80%, 99.46%, 

94.46%, 94.85% for all the programs. Overall, the 

proposed GTAP algorithm proved that the test suite 

is much reduced as compared with the existing 

algorithms. The reason of this much reduction is 

happened because of the TAP measure integrated 

within the greedy algorithm.  

6. Conclusion 

We have presented an effective test case 

reduction approach for regression testing using TAP 

measure and greedy search algorithm. The proposed 

test reduction approach, called GTAP algorithm is 

newly designed including two additional parameters 

such as, the number of test cases that can satisfy 

much availed test requirement and number of test 

cases that already satisfied test requirement for 

identifying the important test cases available in test 

suite. Also, the proposed GTAP algorithm can yield 

the representative set of test cases with the lowest 

cost. The experimentation of the proposed algorithm 

is done using eleven subject programs available in 

SIR repository. The effectiveness of the proposed 

GTAP and the existing algorithm is evaluated using 

reduction capability and relative capability. From 

the experimentation, the average performance of the 

proposed GTAP algorithm in all the programs is 

93.07% which is higher than the DIV-GA which 

obtained the value of 90.27%. The future work can 

be done using an optimization algorithm to select 
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test cases more optimally and the fault detection 

capability will be extensively studied based on the 

reduced test suite. 
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