
Received: January 10, 2017 60

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.07

A Cost-Aware Test Suite Minimization Approach Using TAP Measure and

Greedy Search Algorithm

Shounak Rushikesh Sugave1* Suhas Haribhau Patil2 B. Eswara Reddy3

1MIT College of Engineering, Pune, MH, India

 2Bharati Vidyapeeth University College of Engineering, Pune MH, India
3JNTUA College of Engineering, kalikiri, chittor district, AP, India

* Corresponding author’s Email: shounaksugave16@gmail.com

Abstract: Software testing is required to detect the faults and to ensure the quality of the software under

development. Usually, test suites are used to evaluate the software system during the software development cycle.

But often test suites contain more redundant test cases due to overlapped test objectives. So, the test-suite reduction

is an important step to reduce the number of test cases so as to satisfy the entire objectives with less computational

cost. Literature presents different methods to select the suitable test suites of optimal subsets for regression testing.

Accordingly, this research aims to develop an effective test suite reduction approach for regression testing. The

proposed algorithm (GTAP) is newly designed using TAP measure and greedy search algorithm. This algorithm uses

TAP-measure which is specially developed for measuring the importance of test cases. The performance of the

GTAP algorithm is evaluated using four different evaluation metrics with eleven subject programs available in SIR

repository. From the experimentation, the average performance of the proposed GTAP algorithm in all the programs

is 93.07% which is higher than the DIV-GA which obtained the value of 90.27%.

Keywords: Testing, Test case, Coverage, Test suite, Greedy search, Test suite reduction.

1. Introduction

Generally, a test suite minimization problem [1-

5] can be simplified as a minimum set cover

problem, which Karp has asserted as an NP-

complete problem. Numerous techniques have been

reported in the literature. This technique exploits

many software metrics to converge the test suite

minimization problem to the near-optima. Test suite

minimization technique produce a representative set

of test cases but are unable to reduce test suite size

significantly and are not efficient in reducing the

execution time. W. E. Wong et al. 1995 [6] and M. J.

Harrold et al. 1993 [7] have presented test suite

minimization approaches for fault detection

effectiveness. It is also observed that majority of the

minimization algorithms did not consider the

important deviations among the test cases in terms

of execution penalties [1]. When these algorithms

attempt to minimize the cost in terms of execution

time, they fail to achieve the effective rate of fault

detection. This interprets the strong need to have a

technique which provides a good trade-off between

the effectiveness and cost metrics such as test

coverage, execution time and fault detection

capability [3].

If the literature is examined, coverage can be

deemed as a conventional approach that employs the

Greedy Search algorithm for decreasing the number

of test cases. A thorough description of the coverage

specifications and the likewise test suite reduction

schemes were presented in [4] and [5]. In [8],

modelling-based test suite minimization problem is

covered. The various search-based algorithms

resulting in test suite reduction are dealt in [3, 9-18]

and [19, 20] which briefs about several cost-

effective algorithms. A two-step test-suite reduction

scheme is elucidated in [21] and the three weight-

based Genetic Algorithms are depicted in [3]. In

most of the algorithms, the test metrics allow

Received: January 10, 2017 61

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.07

choosing the test cases using decreased value of cost.

Jones and Harrold [22], in their preceding work,

have specified that the choice of a test case in the

test suite reduction algorithms can be made in

relation to its contribution or goodness. Some

researchers have utilized a metric, termed as a ratio,

to assess the test cases. A more recent metric,

known as EIrreplaceability metric, enables

decrementing the number of test cases via greedy

search algorithm [1].

This paper aims to develop an effective test suite

reduction approach for regression testing. Here,

TAP measure is newly proposed for finding the

importance of test cases using two parameters,

called the number of test cases that can satisfy

availed test requirement and the number of test cases

that already satisfied test requirement and the GTAP

algorithm is designed including TAP measure and

greedy search algorithm. The proposed GTAP

algorithm enables the finding of test cases using the

objective measure called, TAP-measure.

In the proposed work, GTAP algorithm is

devised for test suite reduction using TAP measure

(Test cases which Already included in Pool-based

Measure). TAP measure includes three different

constraints to find the goodness of a test case. TAP

measure does the selection of test cases in GTAP

algorithm for multiple iterations. The selected test

cases can satisfy the entire test requirement with

much-reduced cost. The proposed GTAP algorithm

can yield the representative set of test cases with the

lowest cost and the reduction capability of the

proposed algorithm is higher than the existing

algorithm. The paper is organized as follows:

section 2 provides the problem statement and

section 3 proposes cost-aware test suite

minimization approach using TAP measure and

greedy search algorithm. Section 4 explains the

running example and comparison and section 5

presents results and discussion. Finally, the

conclusion is given in section 6.

2. Problem statement

Software testing is an important field of current

days due to wide usage of a software system. Before

delivering any software products, testing is required

to fix the faults that may exist in the module.

Testing can be done through different test suite

generation methods with so many techniques which

are available in the literature. In [2], dubbed

RZOLTAR was proposed for test suite minimization.

RZOLTAR can significantly reduce the original test

suite, while still maintaining the full code coverage.
The drawback of this method is the test reduction

which may have a negative impact on fault detection.

Wang S et al. [3] have proposed a fitness function in

conjunction with ten multi-objective search

algorithms, to minimize the test suites in the context

of product line testing. This method does not work

at other industrial case studies. In [4], they

introduced a family of similarity-based test case

selection techniques for test suites generated from

state machines called similarity-based test case

selections (STCS), which minimize the similarity

among selected test cases to increase the chance of

detecting more faults. This method has high

execution cost. Shaccour E et al. [5] presented a

coverage specification language and a methodology

to preserve the intent of test cases in a regression

test suite. The drawback of this method is the

specification language which has some weaknesses.

The minimization technique discussed in [6] can

be used for more efficient program revalidation by

selecting only a few effective regression tests to be

re-executed after each software revision. M. J.

Harrold et al. [7] presented a technique that selects a

representative set of test cases from a test suite that

provides the same measure of coverage as the test

suite. A program modification may cause a change

in a program’s testing requirements. Stephen W et

al. [8] proposed a static black-box TCP technique.

This method does not work on distance

maximization algorithms, such as hill climbing,

genetic algorithms, and simulated annealing.

Here, an important consideration is how to

reduce the test suite in a better way by satisfying

tradeoffs: When we minimize test suites, test

requirements are not satisfied completely. When we

increase test suites, test requirements are satisfied

but computational cost is more. To balance these

two things, better methods are needed for the test

suite reduction which simultaneously satisfies the

test case requirement as well as cost reduction. In

light constraints, few of algorithms are presented in

the literature. One of the algorithms presented

recently is given in [1] where, they introduced two

metrics called, Irreplaceability and EIrreplaceability

for test suite selection. The selection process is done

with the greedy search algorithm. Their motivation

of research is to improve coverage as well as cost

aware-coverage for better performance it has the

advantage of generating the representative set with

the lowest cost because the ratio metric failed to

take into consideration the above mentioned trade-

off. A representative set does yield the lowest

execution cost if it includes test cases with high

replaceability.

The objective of this research is to develop an

effective test suite reduction approach for regression

Received: January 10, 2017 62

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.07

testing. Here, two challenges are identified, i) Right

inclusion of parameters to test case metrics for test

case evaluation, ii) selection of a right algorithm for

searching test cases. In the previous work [1], they

have additionally included a parameter called,

number of test cases that satisfy in

contributionTosuite. When we analyze a parameter

called, EIrreplaceability [1], the degree of

contribution in the overall pool is considered. But,

this measure completely missed out the strategy of

bringing deviation in terms of measurement among

test cases which are already considered for

evaluation. So, it requires a perfect mathematical

formula for test suite reduction to easily select the

test cases. For the second challenge, literature

presents various algorithms [19-22] for reducing test

suite. From the recent work [1], they proved that

greedy search algorithm which seems little faster

and produced good results in EIrreplaceability [1]

out of other nine various algorithms. So, a greedy

search algorithm is also taken here to provide a

more robust solution with less computational effort.

The main contributions of the paper is given as

follows,

 TAP measure is newly proposed for finding

the importance of test cases using two

parameters, called the number of test cases

that can satisfy availed test requirement

(total test cases which does not satisfy any

test requirement until the current iteration)

and the number of test cases that already

satisfied test requirement (total test cases

which already satisfy any one of test

requirements until the current iteration).

 GTAP algorithm is newly designed

including TAP measure and greedy search

algorithm. The proposed GTAP algorithm

enables the finding of test cases using the

objective measure called, TAP-measure.

3. Proposed cost-aware test suite

minimization approach using TAP

measure and greedy search algorithm

This section presents the proposed method for

automatic test suite selection with a novel measure

for test suite evaluation using greedy search

algorithm in getting the optimal solution without

violating trade-offs. In this measure, a number of

test requirement satisfied in previous iterations, the

number of test cases that to be satisfied and cost, all

are effectively included to develop new formulae for

test suite evaluation. It is done with the perspective

of the information-theoretic measure which can

bring more deviation for every test case to easily

evaluate the results. Then, a greedy search algorithm

is utilized to search over the test requirement until it

reaches the better trade-off.

3.1 Test pool

The input for the proposed test case selection is

test pool which contains the test cases and its cost. A

test case is a set of input variables required for

software with the desired output results and test case

requirement is about to employ a specific software

function, loop and branch to be executed for a test

case. Here, test case requirement is taken as branch

coverage which provides the output whether the

given test case is covered the specific branch or not.

Let us assume that the number of test case for the

algorithm is n and number of test requirement is m.

Then, test pool con be indicted as,

}0 ; 0 ; { mjnitT ij
 (1)

The cost value of each test case is computed by

finding the execution time of the test case. For each

test case t, there is an execution time which denotes

the cost value of the test cases.

3.2 New TAP measure for test suite reduction

Test case selection is an important step in

regression testing to satisfy two constraints, such as

i) satisfying all test requirements, ii) Minimizing the

cost value. These two constraints are very important

when developing test metrics for test case selection.

In this new TAP measure, the cost is inversely

proportional to ratio and coverage is directly

proportional to ratio.

a) Existing EIrreplaceability metrics

Recently, EIrreplaceability [1] was developed

for test case selection using a parameter called, a

contribution which considers the number of test

cases that satisfies rs in the test pool. The number of

test cases that satisfies the test requirement is

inversely proportional to the contribution which

obtains the higher value if less number of test cases

can do the same task covering the test requirements.

On the other hand, the high value of contribution

denotes that the finding of test cases to satisfy those

test requirements is tough. Along with this, the

execution cost of a test is inversely included with

the contribution to evaluate the test cases. Also, they

assigned high priority if a test case that can only

fulfill a test requirement by giving infinity. The

EIrreplaceability is computed as follows:

Received: January 10, 2017 63

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.07

 rs satisfies t if

rs satisfy

that cases test of no

rs satisfy cannot t if

rstonContributi ;
.

1

;0

),(

(2)

 otherwise

tt

rstonContributi

yd by t onle satisfie; rs can b.

tabilityEIrreplace

m

s ;
)(cos

),()(

1

 (3)

b) Proposed TAP measure
In previous work [1], EIrreplaceability selects

test cases using contribution or goodness which is

measured based on the characteristics of the test

case whether it can satisfy the test requirement. Here,

we included two parameters such as Ta and Ts for

effective measurement of test cases. Every

algorithm chooses the test cases in an iterative way

of changing measures. Accordingly, Number of test

cases that can satisfy availed test requirement (Ta)

and Number of test cases that already satisfied test

requirement (Ts) are the two parameters included in

the proposed TAP measure. Ta is inversely

proportional to the contribution and it provides less

value to the contribution if many test cases can

satisfy the same test requirement. Ts is also inversely

proportional to the moving contribution but it

controls the value of Ts based on a number of test

cases that already satisfied the same test requirement

with decrement factor, Fd. This means that even if a

test requirement is already satisfied by a test case, it

can contribute to additional test requirement. If so,

the value of the moving contribution for a test case

is slightly reduced. The moving contribution

signifies zero if the test case cannot satisfy the test

requirement and a factor is computed if the test case

satisfies the test requirement according to the

following equation.

s

a

s

r satisfies t if
T

r satisfy cannot t if

rstC
;

1

;0

),(

 (4)

s

sd

s

r satisfies t if
TF

r satisfy cannot t if

rstMC
;

*

1

;0

),(

 (5)

where MC is moving contribution, Ta is a

number of test cases that can satisfy availed rs, Ts is

a number of test cases that already satisfied rs and Fd

is decrement factor. Fd is named as decrement factor

because it reduces the moving contribution which is

inversely proportional to the Ta. Fd is fixed threshold

which will not change into every iteration. The

selection and fixing of the right value for Fd

affect

the performance severely. The value suggested here

is selected based on trial and error method. The

numerical example shown here is the justification of

fixing the value to two.

The contribution is directly proportional with

TAP-measure which increases when the

contribution is increased. Cost is inversely

proportional to TAP-measure which increases when

the contribution is decreased. Also, if any test cases

that can be satisfied only one test requirement, then

the value is infinity. The TAP-measure is computed

as follows:

 otherwise
tcost

rtMCrtC

 t onlytisfied by can be sa r ;

tmeasureTAP

l

s

s

k

s

s

s

;
)(

),(),()(

11

 (6)

Where k is the number of test requirement

availed and l is the number of test requirement

already satisfied.

3.3 GTAP search algorithm for test suite

reduction

1 Algorithm: GTAP

2 Input: TTest pool, CCost vector, TR Test

requirement vector

3 Output:

4 ST Selected test cases

5 Begin

6 ST = { };

7 While (TR!=NULL)

8 {

9 for each t

10 for each r

11 if (t does not cover the requirement r)

12 {

13 TAP=0;

14 }

15 elseif(r is only covered by t)

15 {

17 TAP=infinity;

18 }

19 Else

20 {

22 Find TAP- measure(t)

23 }

24 Endfor

25 TAP(T)=TAP/cost(t)

26 Endfor

27 Select tMAX which is a test case having maximum

TAP

28 Get rc which is requirements by the selected tMAX

29 Add tMAX to ST

30 Remove rc from TR

31 }

32 End

Figure. 1 GTAP search algorithm for test suite reduction

The proposed GTAP search algorithm given in

Fig. 1 is used for test case selection using the

Received: January 10, 2017 64

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.07

proposed TAP measure and greedy search algorithm.

The Greedy algorithm is a well-known algorithm for

finding the near-optimal solution to the test suite

reduction problem. This simple algorithm frequently

traverses to the test pool to include uncovered test

requirements from the test pool until all of the

requirements are covered. The input for GTAP

algorithm is a test pool T which contains test cases

and its coverage. The elements in the test pool have

an only binary number where zero indicates that the

corresponding test requirement is not solved by that

test case and one indicates that the test requirement

is solved by that test case. Along with the test pool,

cost vector C and the test requirement vector TR

requirement are given as input to the proposed

algorithm. The iterative process of the proposed

algorithm is terminated only if the test requirement

vector TR is empty.

In the initial step, TAP is found out for all the

input test cases based on three constraints. Only if

test case t does not cover any input requirements,

zero is assigned to TAP and only if test case t covers

only one input requirement which is not covered by

any other test cases, infinity is assigned to TAP. If

these two constraints are not satisfied, the usual

procedure of finding MC is applied and TAP

measure is computed. In the second step, tMAX which

is a test case having maximum TAP is selected from

the input test pool and put it into ST. If two test cases

will have the same TAP value, we select any one of

the test case. This situation will mostly happen only

if the two test cases are duplicates. So, the selection

of any one test case from the two test cases will not

have much influence on the results. Then, a set of

requirements covered by tMAX is given into rc. The

solved test requirements rc through test case tMAX is

removed from the test requirement vector TR. Then,

an element which is related to satisfied test

requirement is incremented with one in the input test

pool. This assumption is for easily find out Ts which

is the number of test cases that already satisfied rs in

TAP computation. This process is repeated until the

termination criterion is satisfied and the selected test

cases can be obtained from ST.

4. Running example and comparison

This section discusses a numerical example of

the greedy GreedyEIrreplaceability algorithm [5]

and proposed GTAP algorithm. Table 1 shows

running example of a GreedyEIrreplaceability

algorithm. The input has seven test cases and seven

test requirements. The cost of every test requirement

is also given in the table. In the first step,

EIrreplaceability is computed for all the seven test

cases. For an example, t1 covers two requirements

such as r1 and r2, where r1 is covered by two test

cases and r2 is covered by two test cases. So, the

contribution is 1 (1/2+1/2) and cost value is 1 for t1.

EIrreplaceability is the ratio of contribution to cost

so, EIrreplaceability for the test case t1 is 1. For the

test case t7, r7 is covered only by this test case so

the value is assigned to infinity. Similarly,

EIrreplaceability can be found out for all other test

cases. After completing step 1, maximum value

obtained by the test case is t7 which is selected and

test requirement r7 which is satisfied by t7 is

removed from the test pool. The same procedure is

continued until all the requirements are obtained.

For this example, six steps are needed to obtain the

entire test requirement. Finally, selected test cases

are (t1,t2,t3,t4,t5,t7) and requirements solved are

(r1,r2,r3,r4,r5,r6,r7), The total cost required is 52

(1+2+5+11+23+10) which is obtained by doing the

summation of all the cost values of selected test

cases.

Table 2 explains a running example of GTAP

algorithm. The same input is also applied to GTAP

algorithm with seven test cases and seven test

requirements. The first step is exactly similar to the

existing algorithm as the number of test cases that

already satisfied is zero. From the first step, r7 is

only satisfied by the selected test case t7 so the

second step is also same as like the existing

algorithm because we do not have availed and

satisfied test requirement which contributes the

value of MC to zero. Let we discuss the procedure

of finding TAP measure for a test case t2 as already

t1 and t7 are selected. Test case t2 can satisfy test

requirements r2 and r3. As r2 is already solved by

the test case t1, the number of test cases have

already been satisfied by requirement r2 is two and

number of test cases that can satisfy availed

requirement r3 is two. So, C(t, rs) is 0.5 and MC(t,

rs) is 0.25 when the decrement factor is fixed as

two using trial and error approach. Finally, TAP-

measure for the test case t2 is 0.125 which is

obtained by dividing it by the cost of t2. After

completing step 3, t3 is selected but in the previous

algorithm, t2 is selected. The same procedure is

applied until the entire test requirement is solved.

The test cases selected based on this proposed

procedure is (t1,t3,t5,t7) which can solve all the test

requirements, R= (r1,r2,r3,r4,r5,r6,r7). The total

Cost required for this test case is only 39

(1+5+23+10).

Received: January 10, 2017 65

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.07

Table 1.Running example of the GreedyEIrreplaceability algorithm

Step 1 r1 r2 r3 r4 r5 r6 r7 Cost EIrreplaceability

t1 . . 1 EI (t1)=(1/2+1/2)/1=1

t2 . . 2 EI (t2)= (1/2+1/2)/2=0.5

t3 . . 5 EI (t3)=(1/2+1/2)/5= 0.2

t4 . . 11 EI (t4)= (1/2+1/2)/11=0.09

t5 . . 23 EI (t5)=(1/2+1/2)/23=0.043

t6 . . 40 EI(t6)= (1/2+1/2)/40=0.025

t7 . 10 EI (t7)= ∞

Step 2 t1 . . EI (t1)=(1/2+1/2)/1=1

t2 . . EI (t2)= (1/2+1/2)/2=0.5

t3 . . EI (t3)=(1/2+1/2)/5=0.2

t4 . . EI (t4)= (1/2+1/2)/11=0.09

t5 . . EI (t5)=(1/2+1/2)/23=0.043

t6 . . EI(t6)= (1/2+1/2)/40=0.025

t7 - Selected

Step 3 t1 - - Selected

t2 - . EI(t2)= (1/2)/2=0.25

t3 . . EI(t3)=(1/2+1/2)/5= 0.2

t4 . . EI(t4)= (1/2+1/2)/11=0.09

t5 . . EI(t5)=(1/2+1/2)/23=0.043

t6 - . EI(t6)= (1/2)/40=0.012

t7 - Selected

Step 4 t1 - - Selected

t2 - - Selected

t3 - . EI(t3)=(1/2)/5=0.1

t4 . . EI(t4)= (1/2+1/2)/11=0.09

t5 . . EI(t5)=(1/2+1/2)/23=0.043

t6 - . EI(t6)= (1/2)/40=0.012

t7 - Selected

Step5 t1 - - Selected

t2 - - Selected

t3 - - Selected

t4 - . EI(t4)= (1/2)/11=0.045

t5 . . EI(t5)=(1/2+1/2)/23=0.043

t6 - . EI(t6)= (1/2)/40=0.01

Step6 t7 - Selected

t1 - - Selected

t2 - - Selected

t3 - - Selected

t4 - - Selected

t5 - . EI(t5)=(1/2)/23=0.021

t6 - . EI(t6)= (1/2)/40=0.0125

t7 - Selected

S=(t1,t2,t3,t4,t5,t7); R=(r1,r2,r3,r4,r5,r6,r7); Total Cost=1+2+5+11+23+10=52

5. Results and discussion

This section discusses the subject programs

taken for experimentation and detailed analysis of

the proposed TAP measure with existing algorithm

[5] using different evaluation metrics.

5.1 Experimental setup

a) Subject programs for evaluation

The proposed GTAP algorithm experiments with

eleven subject programs taken from Software-

artifact Infrastructure Repository (SIR) [15] which

contains Java, C, C++, and C# programs for

experimentation with testing and analysis techniques.

From the repository, we have taken eleven different

subject programs such as median, elevator, trityp,

Apollo, pool3, printtokens, printokens2, space,

replace, schedule and schedule2. The proposed

algorithm is implemented in JAVA.

Received: January 10, 2017 66

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.07

Table 2.Running example of GTAP algorithm

Step 1 r1 r2 r3 r4 r5 r6 r7 Cost TAP-measure

t1 . . 1 TAP(t1)=(1/2+1/2)/1=1 =1

t2 . . 2 TAP(t2)= (1/2+1/2)/2=0.5

t3 . . 5 TAP(t3)=(1/2+1/2)/5= 0.2

t4 . . 11 TAP(t4)= (1/2+1/2)/11=0.09

t5 . . 23 TAP (t5)=(1/2+1/2)/23=0.043

t6 . . 40 TAP(t6)= (1/2+1/2)/40=0.025

t7 . 10 TAP-measure (t7)= ∞

Step 2 t1 . . TAP (t1)=(1/2+1/2)/1= 1

t2 . . TAP(t2)= (1/2+1/2)/2=0.5

t3 . . TAP(t3)=(1/2+1/2)/5=0.2

t4 . . TAP(t4)= (1/2+1/2)/11=0.09

t5 . . TAP(t5)=(1/2+1/2)/23=0.043

t6 . . TAP(t6)= (1/2+1/2)/40=0.025

t7 - Selected

Step 3 t1 - - Selected

t2 - . TAP(t2)= 0.5-(0.5/2)/2 =0.125

t3 . . TAP(t3)=(1/2+1/2)/5=0.2

t4 . . TAP(t4)= (1/2+1/2)/11=0.09

t5 . . TAP(t5)=(1/2+1/2)/23=0.043

t6 - . TAP(t6)= 0.5-0.25/40 =0.00625

t7 . Selected

Step 4 t1 - - Selected

t2 - - TAP(t2)=0

t3 - - Selected

t4 - . TAP(t4)= 0.5-(0.5/2)/11 =0.0227

t5 . . TAP(t5)=(1/2+1/2)/23=0.0434

t6 - . TAP(t6)= 0.5-(0.5/2)/40 =0.00625

t7 - Selected

S=(t1,t3,t5,t7); R=(r1,r2,r3,r4,r5,r6,r7); Total Cost=1+5+23+10=39

b) Evaluation metrics

The performance of the proposed GTAP and the

existing algorithm is evaluated using the following

four evaluation metrics. SuiteCost is a metric to

compute the total execution time required for

executing test suite. SuiteCostreduction is a metric

used to compute the percentage of reduction

capability of the algorithm versus the original

computation time required for the input test suite.

Improvement (cost) is utilized to find the cost

improvement of the proposed algorithm while

compared with the existing algorithm. Improvement

(%) is a percentage of improvement for the proposed

algorithm in test suite reduction as compared with

the existing algorithm.

n

t

timeExecutionTTSuiteCost

1

)()(

 (7)

%100
)(

)()(
)(Re

TSuiteCost

RSsuiteCostTSuiteCost
SCRductionSuiteCost

 (8)

 2)ithmcost(algor1algorithmcostttImprovemen cos
 (9)

%100

1algorithmcost

2)ithmcost(algor1algorithmcost
%tImprovemen

(10)

5.2 Performance analysis

The proposed GTAP algorithm is implemented

using Java 1.7 with netbeans IDE 7.3. The

experimentation is conducted on Windows 7

machines with Intel Core Duo processors and 2 GB

of memory. The measurement of execution time and

the generation of test suites are completely based on

the reference paper given in [1].

a) Analysis 1: Reduction capability of algorithms

Test pool is directly given to both the algorithms,

GTAP and GreedyEIrreplaceability. The ultimate

aim of both the algorithms is to select test cases

which should satisfy all the test requirements.

Accordingly, test cases are selected by both the

algorithms and the cost for all the selected test cases

are computed and plotted in table 3. Reduction

capability of the algorithms is analyzed through the

SCR and cost. According to table 3 for Te of 0.5, the

proposed GTAP algorithm provides a minimum cost

Received: January 10, 2017 67

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.07

for the selected eleven programs. The total cost of

12.4 msec for the proposed GTAP algorithm in

median program as compared the value of 66.2 for

the existing algorithm. Similarity, while comparing

with the original cost required for all the test pool,

the proposed GTAP achieved 92.7% improvement

as compared with the existing algorithm which

improves only 61.3%. Similarly, the performance of

the proposed GTAP is better than the

GreedyEIrreplaceability in printtokens, printtokens2

and space. Table 4 describe the Reduction capability

of algorithms (in msec) for input Te of 0.75. From

table 4, the proposed GTAP obtained the cost of

5.2ms, 3555ms, 34ms, 2.9E6, 1.3E8 against the

existing algorithm which requires 28.8ms, 53329 ms,

74.8 ms, 5.9E6, 2.6E8 for the eleven subject

programs. In terms of SCR, the proposed GTAP

achieved the reduction improvement of 96.6%, 93.9,

74.2%, 54.6 and 98.18% against the existing

algorithm which reached the improvement of 81.7%,

9.4%, 44.2%, 8.1% and 96.3%. Overall, the

proposed algorithm proved that reduction of test

suites is much possible as compared with the

existing algorithm.

Table 3. Reduction capability of algorithms (in msec) for

input threshold (Te) of 0.5

Program Original
GTAP

-Cost

GreedyEIr

replaceabil

ity-Cost

GTAP-

SCR

GreedyE

Irreplace

ability-

SCR

Median 171.3 12.4 66.2 92.7 61.3

Elevator 115359.3 7201.3 107976.5 93.7 6.3

Trityp 436.8 7.6 68.6 98.2 84.2

Apollo 6.5E6 2.9E6 6.0E6 54.3 7.6

Pool3 1.7E11 1.0E8 2.0E8 99.9 99.8

printtokens 1350 40.8 69.4 96.9 94.8

printtokens2 932 46.6 46.7 94.9 94.9

Space 106281 118.72 211.6 99.88 99.8

replace 2143 113.87 109.36 94.68 94.9

schedule 613 36.18 38.16 94.0 93.68

Schedule2 845 42.08 43.52 95.02 94.85

Table 4. Reduction capability of algorithms (in msec) for

input threshold of 0.75

Program
Origin

al

GTAP-

Cost

GreedyEIrr

eplaceabilit

y-Cost

GTAP

-SCR

GreedyE

Irreplac

eability-

SCR

Median 157.9 5.2 28.8 96.6 81.7

elevator 58896.9 3555.3 53329.4 93.9 9.4

trityp 134.4 34.5 74.8 74.2 44.2

Apollo 6.4E6 2.9E6 5.9E6 54.6 8.1

Pool3 7.3E9 1.3E8 2.6E8 98.1 96.3

printtokens 1341 39.8 53.4 97 96.0

printtokens2 921 44.6 45.1 95.1 95.1

space 105186 116 210 99.88 99.80

replace 21455 118 115 99.45 99.46

schedule 650 38 36 94.15 94.46

Schedule2 827 50 44 93.95 94.67

Table 5. Relative Reduction capability of algorithms for

input threshold 0.5

Program
GTAP-

Cost

GreedyEIrrepl

aceability-Cost

Improvem

ent(cost)

Improvem

ent (%)

Median 12.4 66.2 53.7 81.1

elevator 7201.3 107976.5 100775.2 93.3

trityp 7.6 68.6 60.9 88.8

Apollo 2.9E6 6.0E6 3.0E6 50.5

Pool3 1.0E8 2.0E8 1.0E8 50.2

printtokens 40.8 69.4 28.6 41.1

printtokens2 46.1 46.7 0.1 0.2

space 118.72 211.6 92.8 43.8

replace 113.87 109.36 4.51 3.96

schedule 36.18 38.16 1.98 3.13

Schedule2 42.08 43.52 1.44 3.42

Table 6. Relative Reduction capability of algorithms for

input threshold 0.75

Program
GTAP-

Cost

GreedyEIrrepl

aceability-Cost

Improvem

ent (cost)

Improvem

ent (%)

Median 5.2 28.8 23.5 81.6

elevator 3555.3 53329.4 49774.186 93.3

trityp 34.5 74.8 40.32 53.8

Apollo 2.9E6 5.9E6 3.0E6 50.5

Pool3 1.3E8 2.6E8 1.3E8 50.2

printtokens 39.8 53.4 13.5 25.4

printtokens2 44.6 45.1 0.5 1.1

space 116 210 94 44.7

replace 118 115 3 2.5

schedule 38 36 2 5.26

Schedule2 50 44 6 12

Table 7. Reduced test suite size of algorithms for input

threshold 0.5

Program
Original

test suite

GTAP-

suite size

GreedyEIrre

placeability-

suite size

Median 150 10 58

elevator 2500 156 2340

Trityp 300 5 47

Apollo 20000 9130 18500

Pool3 10000 5 11

printtokens 1200 40 64

printtokens2 1100 56 56

Space 6300 100 200

replace 5211 425 430

schedule 2254 305 310

schedule2 2345 240 250

Table 8. Reduced test suite size algorithms for input

threshold 0.75

Program
Original

test suite

GTAP-

suite size

GreedyEIrre

placeability-

suite size

Median 145 4 26

Elevator 2300 139 2082

Trityp 2850 73 158

Apollo 19000 8620 17444

Pool3 9160 166 333

Printtokens 1110 40 64

printtokens2 1021 55 56

Space 5100 97 197

replace 5301 601 625

schedule 2120 254 263

schedule2 2125 220 231

Received: January 10, 2017 68

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.07

Table 9. Comparative discussion with existing algorithms

Program
GreedyCo

verage [1]

GreedyEIrrepl

aceability [1]

DIVGA

 [26]

GTAP

Median 80.2 81.7 80.5 96.6

Elevator 8.3 9.4 85.36 93.9

Trityp 83.5 84.2 83.75 98.2

Apollo 80.2 8.1 80.3 54.6

Pool3 85.3 99.8 87.8 99.9

Printtokens 96.76 96.0 96.98 97

printtokens2 94.83 95.1 94.88 95.1

Space 99 99.80 99.8 99.88

replace 94.9 99.46 94.68 99.45

schedule 93.68 94.46 94 94.15

schedule2 94.85 94.85 95.02 95.02

b) Analysis 2: Relative Reduction capability of

algorithms

Table 5 provides Relative Reduction capability

of algorithms for input threshold of 0.5. Relative

Reduction capability provides the improvement of

the proposed algorithm with respect to the existing

algorithm. From table 5, the proposed GTAP

achieved the cost improvement of 53.7, 1007755.2,

60.9, 3041487.1 and 1.0E8 for all the subject

programs. The percentage of improvement for the

proposed GTAP as compared with existing one is

81.1%, 93.3%, 88.8%, 50.5% and 50.2% in all the

programs. When analyzing the proposed GTAP with

respect to the GreedyEIrreplaceability in printtokens,

the proposed GTAP shows the cost value of 40.8 as

compared with the value of 69.4 which is obtained

by GreedyEIrreplaceability. In terms of

improvement (%), the proposed shows the better

value of 41.1% and 0.2% for printtokens and

printtokens2. Overall, the proposed GTAP shows

the better performance than the existing method.

Table 6 shows the Relative Reduction capability of

algorithms for input threshold of 0.75. The

improvement is 81.6%, 93.3%, 53.8%, 50.5% and

50.2% for median, elevator, trityp, Apollo and pool3

programs. For input threshold of 0.75, the cost

improvement is 23.5, 49774, 40.3, 3E6 and 1.3E8

for Median, elevator, trityp, Apollo, pool3 programs.

c) Analysis 3: Reduced size of test suite

From the table 7, we understand that the original

test suite is reduced from 150 to 10 for median

program if the proposed GTAP algorithm is applied.

On the other hand, the suite size is reduced from

20,000 to 9130 for the Apollo program. For

printtokens, the original test suite size of 1200 is

reduced to 40 for the proposed GTAP and 64 for the

GreedyEIrreplaceability. This analysis clearly shows

the size of the test suite is comparatively less for the

proposed GTAP algorithm as compared with

GreedyEIrreplaceability. Similarly, Table 8 shows

the reduced test suite size of algorithms for input

threshold 0.75. This table clearly indicates that the

original test suite of 9160 is reduced to 166 for

GTAP and 333 for the GreedyEIrreplaceability in

Pool3. Also, for printtokens2, the test suite size of

1021 is reduced to 55 for the proposed GTAP and

56 for GreedyEIrreplaceability.

d) Comparative discussion

Table 9 provides the comparative discussion of

the proposed algorithm with the existing algorithms

such as, GreedyCoverage [1],

GreedyEIrreplaceability [1] and DIVGA [26]. In

terms of SCR, the proposed GTAP achieved the

reduction improvement of 96.6%, 93.9%, 98.2%,

54.6%, 99.9%, 97%, 95.1%, 99.88%, 99.45%,

94.15%, and 95.02% for all the programs Median,

Elevator, Trityp, Apollo, Printtokens, Printtokens2,

Space, replace, schedule, and schedule2 respectively.

The GreedyCoverage algorithm achieves the

reduction improvement of 80.2%, 8.3%, 83.5%,

80.2%, 85.3%, 96.76%, 94.83%, 99%, 94.9%,

93.68%, 94.85% for all the subject programs. The

GreedyEIrreplaceability algorithm achieves the

reduction improvement of 81.7%, 9.4%, 84.2%,

8.1%, 99.8%, 96.0%, 95.1%, 99.80%, 99.46%,

94.46%, 94.85% for all the programs. Overall, the

proposed GTAP algorithm proved that the test suite

is much reduced as compared with the existing

algorithms. The reason of this much reduction is

happened because of the TAP measure integrated

within the greedy algorithm.

6. Conclusion

We have presented an effective test case

reduction approach for regression testing using TAP

measure and greedy search algorithm. The proposed

test reduction approach, called GTAP algorithm is

newly designed including two additional parameters

such as, the number of test cases that can satisfy

much availed test requirement and number of test

cases that already satisfied test requirement for

identifying the important test cases available in test

suite. Also, the proposed GTAP algorithm can yield

the representative set of test cases with the lowest

cost. The experimentation of the proposed algorithm

is done using eleven subject programs available in

SIR repository. The effectiveness of the proposed

GTAP and the existing algorithm is evaluated using

reduction capability and relative capability. From

the experimentation, the average performance of the

proposed GTAP algorithm in all the programs is

93.07% which is higher than the DIV-GA which

obtained the value of 90.27%. The future work can

be done using an optimization algorithm to select

Received: January 10, 2017 69

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.07

test cases more optimally and the fault detection

capability will be extensively studied based on the

reduced test suite.

References

[1] C.Lin, K.Tang, and G.M. Kapfhammer, “Test

suite reduction methods that decrease regression

testing costs by identifying irreplaceable tests”,

Information and Software Technology, Vol. 56,

pp. 1322–1344, 2014.

[2] J.Campos and R.Abreu, “Encoding Test

Requirements as Constraints for Test Suite

Minimization”, in proceedings of 10th

International Conference on Information

Technology: New Generations, 2013.

[3] S.Wang, S.Ali, and A.Gotlieb, “Cost-effective

test suite minimization in product lines using

search techniques”, The Journal of Systems and

Software, pp. 1–22, 2014.

[4] H.Hemmati, A. Arcuri, and L.Briand,

“Achieving Scalable Model-Based Testing

Through Test Case Diversity”, ACM

Transactions on Software Engineering and

Methodology (TOSEM), Vol. 22, No. 1, 2013.

 [5] E. Shaccour, F.Zaraket, and W.Masri,

“Coverage Specification for Test Case Intent

Preservation in Regression Suites”, in

proceedings of IEEE Sixth International

Conference on Software Testing, Verification

and Validation Workshops, 2013.

[6] W. E. Wong, J .R. Horgan, S. London, and A. P.

Mathur, “Effect of Test Set Minimization on

Fault Detection Effectiveness,” in Proceedings

of the 17th International Conference on

Software Engineering (ICSE), Seattle, WA,

USA, pp. 41-50, April 1995.

[7] M. J. Harrold, R. Gupta, and M. L. Soffa, “A

Methodology for Controlling the Size of A Test

Suite,” ACM Transactions on Software

Engineering and Methodology, Vol. 2, No.3, pp.

270-285, July 1993.

[8] W.Stephen, T.Hemmati, A.E. Hassan and D.

Blostein, “Static test case prioritization using

topic models”, Empir Software Eng, Vol. 19, pp.

182–212, 2014.

[9] M.Harman, S.A. Mansouri and Y.Zhang,

“Search Based Software Engineering: Trends,

Techniques and Applications”, Journal ACM

Computing Surveys(CSUR), Vol.45, No.1, 2012.

[10] R.E. Opez-Herrejon, F.Chicano, J.Ferrer,

A.Egyed and E.Alba, “Multi-objective optimal

test suite computation for software product line

pairwise testing”, International Conference on

Software Maintenance (ICSM), pp. 404–407,

2013.

[11] S.Yoo, and M.Harman, “Using hybrid

algorithm for Pareto efficient multi-objective

test suite minimisation”, J. Syst. Softw., Vol. 83,

No. 4, pp. 689–701, 2010.

[12] A.Arcuri and L.Briand, “A practical guide for

using statistical tests to assess randomized

algorithms in software engineering”, 33rd

ACM/IEEE International Conference on

Software Engineering, ACM, pp. 1–10, 2011.

[13] Software-artifact Infrastructure Repository

(SIR), http://sir.unl.edu/content/sir.php.

[14] T.Wang, R.Gao, Z.Chen, E. Wong and B. Luo,

“WAS: A weighted attribute-based strategy for

cluster test selection”, Journal of Systems and

Software, Vol. 98, pp. 44–58, 2014.

[15] G.Fraser, A.Arcuri and P. McMinn, “A

Memetic Algorithm for whole test suite

generation”, Journal of Systems and Software,

Vol. 103, pp. 311–327, 2015.

[16] S.Sampath and R.C. Bryce, “Improving the

effectiveness of test suite reduction for user-

session-based testing of web applications”,

Information and Software Technology, Vol. 54,

No. 7, pp. 724–738, 2012.

[17] J.Lin and C.Huang, “Analysis of test suite

reduction with enhanced tie-breaking

techniques”, Information and Software

Technology, Vol. 51, No. 4, pp. 679–690, 2009.

[18] I. Rodriguez, L.Llana and P.Rabanal, , “A

General Testability Theory: Classes, Properties,

Complexity, and Testing Reductions”, IEEE

Transactions on Software Engineering, Vol. 40,

No. 9, pp. 862 – 894, 2014.

[19] D.Jeffrey and N.Gupta, “Improving fault

detection capability by selectively retaining test

cases during test suite reduction”, IEEE Trans.

Softw. Eng., Vol. 33, No. 2 , pp. 108–123, 2007.

[20] C.T.Lin, K.W.Tang, C.D.Chen and G.M.

Kapfhammer, “Reducing the cost of regression

testing by identifying irreplaceable test cases”,

6th International Conference on Genetic and

Evolutionary Computing.

[21] G.Dandan, W.Tiantian, S.Xiaohong, M.Peijun,

“A test-suite reduction approach to improving

fault-localization effectiveness”, Computer

Languages, Systems & Structures, Vol. 39, pp.

95–108, 2013.

[22] J.A.Jones and M.J.Harrold, “Test-suite

reduction and prioritization for modified

condition/decision coverage”, IEEE Transaction

on Software Engineering, Vol. 29, No. 3, pp.

195– 200, 2003.

http://sir.unl.edu/content/sir.php

