
Received: May 29, 2017 226

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.24

Numerical Similarity Algorithms for Cloud Service Discovery and Selection

System

Samer Hasan1* Vatsavayi Valli Kumari1

1Department of Computer Science & System Engineering,

College of Engineering (A), Andhra University, India
* Corresponding author’s Email: samer.hasan@yahoo.com

Abstract: Cloud computing delivers computing services over the Internet based on pay as you use financial model.

Cloud service providers publish service advertisements in different formats on the Internet. Thus, cloud consumers

should explore all provider websites using available search engines to find the appropriate cloud service.

Unfortunately, existing search engines give a huge list of unrelated results that makes consumers spend a lot of time

and effort to find the best matched cloud service. In this paper, we present a layered architecture for cloud service

discovery and selection system to automate cloud service discovery and selection process, and remove the barriers

between cloud service providers and consumers. Additionally, we present novel numerical algorithm for cloud

services matching and compare it with existing algorithms. Proposed algorithm (XNSim) is independent of any

external attribute value, while existing algorithm (SNSim) depends on the max and min values of the service

attribute and (MNSim) algorithm depends on the max value of the service attribute. Comparison is done based on

four parameters (number of matched services, execution time, average score and recall) to find the advantages and

disadvantages of each one. XNSim algorithm showed better performance and more effectiveness over MNSim and

SNSim.

Keywords: Cloud service, Service Discovery, numerical similarity, cloud computing.

1. Introduction

 Cloud computing [1] enables ubiquitous and on-

demand network access to a shared pool of

configurable computing resources. There are three

basic abstract delivery models for cloud services

(SaaS, PaaS and IaaS). In Software as a Service

(SaaS), consumers use applications running on

providers’ infrastructure. In Platform as a Service

(PaaS), consumers deploy applications onto

providers’ infrastructure. Finally, in Infrastructure as

a Service (IaaS), consumers deploy and arbitrary

software and have a full access to the operating

system. Nowadays, finding the appropriate cloud

service is a time-consuming and tedious task. Firstly,

Consumer should use the available search engines

like (Google, Bing and Yahoo) with the appropriate

keywords to find all cloud provider websites.

Secondly, consumer should make a list of all

available services with their features. Finally,

consumer selects the best appropriate cloud service

and uses it. Unfortunately, available search engines

are not designed to give a small set of exact matched

cloud services. On the contrary, existing search

engines show all the websites that have the search

keywords without any semantic like (ParkCloud,

CurrencyCloud). In addition to this, Cloud

computing have some special characteristics [2] that

makes the discovery process a hard and time

consuming process. Some of these characteristics

are: lack of standards, varied types and architectures

of cloud services, dynamic behaviour of the cloud

services and interoperable between cloud providers,

tremendous growth in the number of cloud service

providers and the geographical distribution of the

cloud infrastructures that cross the country borders.

Buyya et al. [3] wrote in 2013 “The discovery of

cloud services is mostly done by human

Received: May 29, 2017 227

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.24

intervention: a person (or a team of people) looks

over the Internet to identify offerings that meet his

or her needs. We imagine that in the near future it

will be possible to find the solution that matches our

needs by simply entering our request in a global

digital market that trades cloud computing services.”

They added “In this cloud marketplace, cloud

service providers and consumers, trading cloud

services as utilities”. In this paper, we present a

layered architecture for cloud service discovery and

selection systems to i) automate cloud service

discovery and selection process, ii) reduce the time

and effort of finding cloud services, iii) make

service providers more visible to all consumers, iv)

create a shared understanding of cloud service

domain and v) improve the overall user experience.

Additionally, we present novel numerical algorithm

(XNSim) for cloud services matching that is

independent of any external attribute values. XNSim

algorithm reduces cloud services matching time and

increases system efficiency. Furthermore, we

compare between proposed algorithm and two

existing algorithms. First one SNSim is presented in

[4] depends on the max and min values of the

service attribute and the second one is MNSim

algorithm that depends on the max value of the

service attribute only. Comparison is done based on

four parameters (number of matched services,

execution time, average Score and recall) to find the

advantages and disadvantages of each one. The rest

of this paper is organized as follows. Section 2

demonstrates cloud services discovery and selection

challenges. Section 3 presents a layered architecture

for cloud service discovery. Section 4 presents

related works. Section 5 presents problem definition

and matching algorithms. Section 6 presents the

experiment results. Section 7 presents a conclusion

and future works.

2. Cloud service discovery and selection

challenges

 Cloud services have some special characteristics

that make their discovery process different from

normal web service discovery process. Firstly, lack

of standards for cloud service advertisement and

discovery where each cloud service provider

advertises cloud services without any standards. On

the other hand, Web services adopt standard

languages (Unified Service Description Language

(USDL) and Web Services Description Language

(WSDL)) to expose service interface and adopt the

Universal, Description, Discovery and Integration

(UDDI) to publish service advertisement to

Figure.1 Architecture for cloud service discovery and

selection system

registries. Secondly, cloud providers supply cloud

services at different levels (data logic, business logic

and infrastructure) with varied features that make

Cloud service identification and categorization a

complicated problem. Thirdly, finding the

appropriate cloud service using general search

engine is a time-consuming process with

tremendous growth of the cloud services. Fourthly,

legal challenge due to geographical distribution of

cloud provider data centres that cross the country

borders. Fifthly, dynamic behaviour of cloud

services where new services appear around the clock

while the old ones disappear. Sixthly, interoperable

issue between cloud service providers. Seventhly,

Cloud service is a membership service [3] where

each cloud consumer should have an account with

cloud provider for authentication and authorization.

3. Layered architecture for cloud service

discovery and selection system

 As shown in Fig. 1, the proposed architecture is

divided into four layers.

 First layer uses crawler search engine or

registry (or both) to collect cloud service

advertisements from cloud providers.

 Second layer consists of domain ontology

that creates a shared understating of cloud

service domain and service repository that

stores the collected cloud service

advertisements.

 Third layer contains two components

service matching component and Service

ranking component. Service matching

component matches between consumer

Received: May 29, 2017 228

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.24

request and available cloud services. Service

ranking component ranks the matched

results.

 Forth layer contains three components:

query receiver component, results viewer

component and user profile component.

Query receiver component receives user

queries and translate them into appropriate

format. Results viewer component displays

the ordered matched list of cloud services.

User profile component stores the user

behaviour and feedback to improve the

search results.

3.1 System operations

 Fig. 2 shows in details cloud service discovery

and selection operations as follows:

a) Cloud service providers advertise cloud

service descriptions in two approaches:

central registry and /or websites.

b) Service Identifier classifies and categorizes

the detected cloud services into predefined

categories.

c) Service Identifier stores the identified cloud

services into services repository or database.

d) Cloud service consumer enters query (text

or predefined parameters) through the user

Interface.

Figure.2 System operations

e) Service Matching component receives

consumer translated queries.

f) Service Ranking component receives the

matched services list.

g) Results Viewer displays the ranked list to

the cloud consumer.

h) Cloud consumer selects the best matched

service based on the task requirements.

4. Related works

Researchers proposed different architectures and

frameworks for cloud services discovery and

selection systems as following: [5, 6] presented an

XML framework to model the existing cloud

services in XML documents and query these

documents using XQuery. [7] proposed a framework

for comparing and ranking cloud services based on

Service Measurement Index (SMI) identified by

Cloud Service Measurement Index Consortium

(CSMIC). In [8] Semantic search engine matches

services based-on SPARQL language. [9] presented

a Cloud Recommender System based on Owl

ontology and SQL matching approach where

consumers’ requests are expressed as SQL queries.

[10] built an Ontology based on Web Ontology

Language (OWL) and uses SPARQL as query

language with Protégé built-in semantic reasoner,

unfortunately SPARQL language need experienced

users. [11, 12, 13] treated cloud service discovery as

Multi-Criteria Decision Making (MCDM) and apply

different methods of MCDM like Analytic

Hierarchy Process (AHP) to select the matched

services. [14] matched between cloud service and

user request based on SQL semantics, procedures

and views. To overcome the limitation of SPARQL

language [15] used WordNet ontology to expand the

service description and user request semantically. In

[16] user Interface receives user requests then

generates SPARQL quires based-on natural

language processing approach. [17] presented cloud

service search and selection system based-on

Skyline algorithm and SQL to meet user

requirements. In [18] system used regular

expressions, algebraic operations and SQL for

matching user requests to service descriptions. [19]

Presented four matching methods based-on ontology

and QoS attributes: same comparison, equivalence

matching, containing reasoning and similarity

matching. [20] used cosine similarity for semantic

matching. In [21] providers advertise their services

based-on common metadata description and system

use Description Logics (DLs) for service matching.

[22] Calculated the cosine similarity between

demand vector and each cluster centre. To overcome

the limitations of proposed architectures and

Received: May 29, 2017 229

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.24

automate the cloud service discovery and selection

process, we presented a distributed layered

architecture where user can enter a request for cloud

service and get a ranked list of best matched cloud

services. Although the large number of researches

was done in the field of cloud service discovery and

selection in the past few years, numerical similarity

gained very low interest from researchers. [4, 19, 23,

24, 25] developed a cloud service discovery and

selection systems and proposed three types of cloud

services matching: similarity reasoning,

compatibility reasoning, and numerical reasoning.

[26] implemented three methods of service

matching: Similarity, Equivalent and Numerical

reasoning. [27] proposed three types of reasoning:

numerical, similarity and compatibility. Numerical

matching algorithms in all above proposed systems

are dependent on external values of cloud service

attribute, which increase search time and reduce

system efficiency. To overcome those limitations,

we present a novel algorithm for cloud services

matching that is independent of any external

attribute value.

5. Cloud services numerical similarity

5.1 Problem definition

The problem is finding the best matched

cloud services (MCS) advertised by the cloud

providers to satisfy the cloud user request (UR)

in distributed and heterogeneous environment

with the lowest effort and time. We represent

the cloud services matching problem in

mathematical model as follows:

1- We define each cloud service advertised by cloud

provider as a set of attributes as follows:

 𝐶𝑆𝑖 = {𝑠𝑎1, 𝑠𝑎2, 𝑠𝑎3 … . 𝑠𝑎𝑛 } (1)

|CSi| = n represents the total number of cloud

service attributes. i represents cloud service unique

ID. sa1, sa2 … san represent cloud service

attributes like: RAM, Storage, CPU, Price , etc.

2- We define user request as a set of attributes as

follows:

 𝑈𝑅 = {𝑢𝑎1, 𝑢𝑎2, 𝑢𝑎3 … . 𝑢𝑎𝑚 } (2)

|UR|=m represent the total number of cloud service

attributes in user request. ua1 , ua2 … uam represent

cloud service attributes like: RAM, Storage, CPU,

Price , etc.

3- We define the matching score (ms) between user

request UR and cloud service CSi as follows:

 𝑚𝑠(𝑈𝑅, 𝐶𝑆𝑖) =
∑ 𝑆𝑖𝑚(𝑢𝑎𝑗,𝑠𝑎𝑗)𝑘

𝑗=1

𝑘
 (3)

uaj and saj represent the attribute value in user

request and cloud service respectively. K= Max (n,

m) the max number between number of attributes in

user request and available cloud service.

𝑆𝑖𝑚(𝑢𝑎𝑗, 𝑠𝑎𝑗) represents the similarity algorithm

adopted by the system.

4- We define the following:

a) Th is matching threshold for cloud services

discovery and selection system.

b) Ideal matching 𝑚𝑠 = 1 then Cloud service

is exactly matching the user request.

c) Anti-Ideal matching 𝑚𝑠 = 0 then Cloud

service is not related to the user request.

d) Matched service: 𝑚𝑠 ≥ 𝑡ℎ.

e) Unmatched service: 𝑚𝑠 ≤ 𝑡ℎ

5- We define matched cloud services list MCS as a

list of all available services that have a matching

scores bigger than threshold. ms> th.

5.2 Numerical similarity algorithms

 Numerical similarity is responsible for

similarity between the attribute values of cloud

services. It determines how much a value of

attribute A is similar to another value of the same

attribute A?. As an example, assume that cloud

consumer is looking for a solution with 10 GB RAM

and EC2 offers a solution with 12GB RAM while

GoGrid offers a solution with 1GB RAM. It’s very

clear that EC2 solution is more similar to consumer

request than GoGrid solution. Numerical similarity

algorithm for cloud service discovery and selection

system should be a symmetrical function with

respect to user requested value. As a result to

symmetrical function, values that have the same

distance from user requested value should have the

same similarity score. As an example, if user request

is 10 GB RAM, GoGrid offer is 15 GB RAM and

Amazon offer is 5 GB RAM then GoGrid distance is

5 and amazon distance is 5, so the two offers should

have the same similarity score: Sim(10, 15, RAM) =

Sim(10, 5, RAM). Cloud service discovery and

Received: May 29, 2017 230

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.24

selection system need to retrieve all alternatives

with matching score (ms) bigger than threshold.

Numerical similarity gained less interest from

researchers than Semantic similarity. One of the

early works on the numerical matching problem for

cloud services is presented in [4]. Proposed

algorithm increase the search time by considering

min and max value of cloud attribute when

calculating matching score ms between user request

and cloud service. To overcome these limitations,

we present two algorithms for numerical matching

in cloud services. First one is MNSim which depend

only on max value of cloud service attribute and the

second one is XNSim which is independent of any

external value. The following paragraphs explain

each algorithm in details and paragraph 6 will show

the experimental results for each algorithm.

5.2.1 Sim numerical similarity (SNSim)

 In [4] Kang and Sim presented an algorithm (We

refer it as SNSim in this paper) to calculate the

Numerical Similarity between two attribute values

as follows:

𝑆𝑁𝑆𝑖𝑚(𝑥, 𝑦, 𝑎) = 1 −
|𝑥−𝑦|

𝑚𝑎𝑥 ((𝑚𝑎𝑥 𝑎−𝑥),(𝑥−𝑚𝑖𝑛 𝑎))
 (4)

 As shown in fig. 3 |𝑥 − 𝑦| represents the distance

between user requested value x and alternative

service value y. max a and min a represent the max

and min value in service attribute a for all available

cloud services respectively. (𝑚𝑎𝑥 𝑎 − 𝑥)

represents the distance between user requested value

and max value of attribute a in all alternative

services. (𝑥 − 𝑚𝑖𝑛 𝑎) represents the distance

between consumer requested value and min value of

attribute a in all alternative services. SNSim

algorithm need to consider the max and min values

of cloud service attribute in all available cloud

services to calculate the similarity with user request.

SNSim is not the best algorithm for dynamic domain

like cloud services.

5.2.2 Max numerical similarity (MNSim)

 As a first improvement of SNSim presented in

[4] We define MNSim algorithm between two

attribute values based on the max value of this

attribute only as follows:

𝑀𝑁𝑆𝑖𝑚(𝑥, 𝑦, 𝑎) = 1 −
|𝑥−𝑦|

𝑚𝑎𝑥 𝑎
 (5)

Figure.3 Sim numerical similarity

max a is the max value for attribute (a) in all

available cloud services. Max numerical similarity

(MNSim) algorithm need only to find the max value

of cloud service attribute in all available cloud

services to calculate the similarity with user request.

5.2.3 X numerical similarity (XNSim)

 Cloud services are dynamic domain where new

cloud services appear around the clock, while

others disappear. Using dependent algorithms like

SNSim [4] and MNSim for numerical matching in

cloud services will increase the search time and

reduces the system efficiency. Dependent algorithms

need to consider external values to calculate the

numerical similarity between user request and

available cloud service. To overcome the

limitations and disadvantages of dependent

algorithms we present X numerical similarity

algorithm (XNSim). XNSim algorithm is an

independent algorithm that calculates the numerical

similarity between user requested value and

available cloud service value without considering

any external values like (min and max). Proposed

algorithm is based only on the requested attribute

value and cloud service attribute value. It’s

independent of any external values as follows:

 𝑋𝑁𝑆𝑖𝑚 (𝑥, 𝑦) = {
1 −

|𝑥−𝑦|

𝑥
, 𝑦 < 2𝑥

0, 𝑦 ≥ 2𝑥
 (6)

X represent the attribute value of user request and y

represent the attribute value of available cloud

service. If 𝑦 < 2𝑥 then y is similar to x and the

similarity value is 𝑋𝑁𝑆𝑖𝑚(𝑥, 𝑦). If 𝑦 ≥ 2𝑥 then the

distance between attributes is big and similarity is

zero, thus cloud consumer need to change the query

to get different results. XNSim calculates the

numerical similarity with user request directly

without any additional values like (min and max).

XNSim is independent of any external attribute

values.

Received: May 29, 2017 231

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.24

6. Results and discussion

 We collected 187 cloud service advertisements

from cloud provider websites using Google search

engine and we used a core I5 laptop with 4 GB Ram

for Experiments. We determined four parameters to

compare proposed algorithms (MNSim and XNSim)

with SNSim numerical matching algorithm

presented in [4]. Comparison parameters are:

number of matched services, execution time,

average score and recall. Comparison is done based

on one user request (VCPU=4, Ram=10GB,

Storage=75GB, Availability=99%, Price=30

USD/month) and threshold values {0.01, 0.2, 0.4,

0.6, 0.8, 0.9}. Fig. 4 shows matched cloud services

(MCS) list for X numerical similarity algorithm for

threshold=0.9.

6.1 Number of matched services

 The total number of matched services represents

the number of services that will be displayed as a

response for cloud service request. The bigger

number of matched services needs more effort and

time from consumers to find the best one. On the

other hand, the smaller number of matched services

means less chance for user to find the appropriate

service. Fig. 5 shows the total number of matched

services for each algorithm based on different values

of threshold. MNSim algorithm shows the biggest

number of matched services for all thresholds, on

the other hand, SNSim algorithm shows the lowest

Figure.5 Total matched services per threshold

Figure.6 Execution time per threshold

number of matched services. XNSim algorithm

shows an average number for matched services for

all thresholds.

6.2 Execution time

 Execution time is an important factor for any

information retrieval system. The success of cloud

service discovery and selection system is depending

on the time that it takes to retrieve the matched

cloud services. Execution time is the period between

submitting the query and displaying the results on

the screen for cloud consumer. It’s not include the

time needed to collect cloud service advertisements,

identify and classify those cloud service. Fig. 6

shows the execution time for each algorithm based

on different values of threshold. SNSim algorithm

shows high execution time for all the thresholds

because it calculates the distance between x value

and the max and min values of cloud service

attribute. MNSim shows high execution time at

threshold = 0.8 and threshold = 0.9 because of the

large number of matched services. Finally, XNSim

sustains the lowest values of execution time for all

thresholds because it is independent of min and max

value of the cloud service attribute.

Figure.4 System output for XNSim algorithm

Received: May 29, 2017 232

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.24

6.3 Average Score

 Average matching score is an important

parameter for cloud service discovery and selection

algorithms. It’s playing the main role in determining

the best matching threshold (th) for cloud service

discovery and selection system to satisfy cloud

consumer requirements with lowest time and effort.

Fig. 7 shows the average score for each algorithm

based on the different values of threshold. Matching

score affects the total number of matched services

for each threshold. MNSim shows the highest

average score for all the thresholds. On the other

hand, SNSim and XNSim show almost the same

values of average score for all thresholds.

6.4 Recall

 Number of matched service doesn’t show the

accuracy and efficiency of information retrieval

system. Recall and precision evaluate the

completeness and effectiveness of information

retrieval system [28]. Recall represents the number

of matched services out of the total number of

Figure.7 Average score per threshold

Figure.8 Recall per threshold

relevant services. As shown in fig. 8 MNSim

algorithm shows the highest recall percent for all

thresholds while SNSim shows the lowest percent.

XNSim shows an average percent between MNSim

and SNSim for all thresholds.

7. Conclusion

 Cloud computing becomes an important part of

human life as an individual or organizations. The

current process of finding the appropriate cloud

service is tedious and time consuming for the end

user. In this work we presented a layered

architecture for cloud service discovery and

selection system to automate cloud service discovery

and selection process and remove the barriers between

cloud providers and consumers. In proposed

architecture cloud service provider and consumer

can trade cloud service as a utility where cloud

consumer can enter a request and get an ordered list

of matched services. Proposed architecture

automates cloud service discovery and selection

process and makes service providers more visible to

all consumers. Additionally, we presented a novel

algorithm (XNSim) for numerical matching in cloud

services which is independent of any external value.

XNSim showed better results for cloud service

discovery and selection system. XNSim algorithm

reduced the search time and improved system

efficiency in comparison with SNSim algorithm

presented in [4] that depends on the max and min

values of the service attribute, and MNSim that

depends on the max value of the cloud service

attribute. For the future work, we would like to

collect more cloud service advertisements to expand

our dataset and we would like to examine more

cloud service matching algorithms to enhance the

performance and the results.

References

[1] The NIST Definition of Cloud Computing

(SP 800-145), 2011, is available at:

http://dx.doi.org/10.6028/NIST.SP.800-145.

[2] J. Gracia and E. Mena, “Semantic heterogeneity

issues on the web”, IEEE Internet Computing,

Vol.16, No.5, pp. 60-67, 2012.

[3] R. Buyya, C. Vecchiola, and S. Thamarai Selvi,

“Mastering cloud computing: Foundations and

applications programming”, Morgan Kaufmann

Publishers Inc., San Francisco, CA, 2013.

[4] J. Kang, and K. M. Sim, “Towards agents and

ontology for cloud service discovery”, In:

Proc. of 2011 International Conference on

Cyber-Enabled Distributed Computing and

http://dx.doi.org/10.6028/NIST.SP.800-145

Received: May 29, 2017 233

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.24

Knowledge Discovery, China, pp. 483–490,

2011.

[5] H. Ma, K. Schewe and H. Xie, “Using XML

for cloud specification and XQuery for service

discovery”, In: Proc. of the 12th International

Conference on Information Integration and

Web-based Applications & Services, Paris,

France, pp. 603-611, 2010.

[6] A. Ruiz-Alvarez and M. Humphrey, “An

automated approach to cloud storage service

selection”, In: Proc. of the 2nd International

Workshop on Scientific Cloud Computing,

San Jose, CA, USA, pp. 39-48, 2011.

[7] S. Garg, S. Versteeg, and R. Buyya,

“SMICloud a framework for comparing and

ranking cloud services”, In: Proc. of Fourth

IEEE International Conference on Utility and

Cloud Computing, Washington, DC, USA, pp.

210-218, 2011.

[8] M. Rodrguez-Garca, R. Valencia-Garca, F.

Garca-Snchez, J. Samper-Zapater, and I. Gil-

Leiva, “Semantic annotation and retrieval of

Services in the cloud”, Distributed Computing

and Artificial Intelligence, Advances in

Intelligent Systems and Computing, Vol. 217,

pp. 69-77, 2013.

[9] M. Zhang, R. Ranjan, A. Haller, D.

Eorgakopoulos, M. Menzel, and S. Nepal, “An

ontology-based system for cloud infrastructure

services discovery”, In: Proc. of the 8th

International Conference on Collaborative

Computing: Networking, Applications and

Worksharing, Pittsburgh, Pennsylvania, United

States, pp. 524- 530, 2012.

[10] A. Tahamtan, S. A. Beheshti, A. Anjomshoaa,

and A. M. Tjoa, “A cloud repository and

discovery framework based on a unified

business and cloud service ontology”, 2012

IEEE Eighth World Congress on Services,

pp. 203-210, 2012.

[11] Z. U. Rehman, O. K. Hussain, and F. K.

Hussain, “Iaas cloud Selection using MCDM

methods”, In: Proc. of IEEE Ninth

International Conference on e-Business

Engineering, China, pp. 246-251, 2012.

[12] M. Godse and S. Mulik, “An approach for

selecting software-as-a-service (SaaS) product”,

In: Proc. of IEEE International Conference on

Cloud Computing, Bangalore, India, pp. 155-

158, 2009.

[13] J. Park, and H. Jeong, “The QoS-based MCDM

system for SaaS ERP applications with social

network”, Journal of Supercomputing, Vol. 66,

No. 2, pp. 614-632. 2012.

[14] M. Zhang, R. Ranjan, S. Nepal, M. Menzel,

and A. Haller, “Declarative recommender

system for cloud infrastructure services

selection”, In: Proc. of the 9th International

Conference on Economics of Grids, Clouds,

Systems, and Services, pp. 102–113, 2012.

[15] Y. Afify, I. Moawad, N. Badr, and M. Tolba,

“A semantic-based software-as-a-service (saas)

discovery and selection system”, In: Proc. of

the 8th International Conference on Computer

Engineering & Systems, Cairo, Egypt, pp.57-

63, 2013.

[16] B. Saravana Balaji, N. Kb. Karthikeyan, R. S.

RajKumar, “Fuzzy service conceptual ontology

system for cloud service recommendation”,

Computers and Electrical Engineering, pp. 1–

12, 2016.

[17] M. Abourezq, and A. Idrissi, “A cloud services

research and selection system”, In: Proc. of

International Conference on Multimedia

Computing and Systems (ICMCS), Morocco, pp.

1195 – 1199, 2014.

[18] G. Khan, S. Sengupta, and A. Sarkar, “WSRM:

a relational model for Web service discovery

in enterprise cloud bus (ECB)”, In: Proc. of

3rd International Conference on Eco-friendly

Computing and Communication Systems

(ICECCS), Mangalore, India, pp. 217-222,

2014.

[19] L. Liu, X. Yao, L. Qin, and M. Zhang,

“Ontology based service matching in cloud

computing”, In: Proc. of IEEE International

Conference on Fuzzy Systems, Beijing, China,

pp. 2544-2550, 2014.

[20] M. A. Rodríguez-García, R. Valencia-García,

F. G. Sánchez, and J. J. S. Zapater, “Ontology-

based annotation and retrieval of services in

the cloud”, Knowledge Based Systems, Vol.

56, pp. 15-25, 2014.

[21] A. V. Dastjerdi, S. G. H. Tabatabaei, and R.

Buyya, “An effective architecture for

automated appliance management system

applying ontology-based cloud discovery”, In:

Proc. of 2010 10th IEEEACM International

Conference on Cluster Cloud and Grid

Computing, Melbourne, Australia, pp. 104-112,

2010.

[22] H. Jia-jing, W. Jin-dong, W. Na, and N. Kan,

“Service discovery method based on two-step

clustering”, In: Proc. of the 4th International

Conference on Computer Science and Network

Technology (ICCSNT), Harbin, China, pp.

220 – 224, 2015.

Received: May 29, 2017 234

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.24

[23] K. M. Sim, “Agent-based cloud computing”,

IEEE Transactions on Services Computing,

Vol. 5, No. 4, pp. 564-577, 2012.

[24] J. Kang and K. M. Sim, “Ontology and search

engine for cloud computing system”, In:

Proc. of International Conference on System

Science and Engineering, China, pp. 276- 281,

2011.

[25] J. Kang and K. M. Sim, “Cloudle a multi-

criteria cloud service search engine”, In: Proc.

of the 2010 IEEE Asia-Pacific Services

Computing Conference, China, pp. 339-346,

2010.

[26] T. Han and K.M. Sim, “An ontology-enhanced

cloud service discovery system”, In: Proc. of

the International Multi-Conference of

Engineers and Computer Scientists Conference,

Hong Kong, pp. 17-19, 2010.

[27] M. Barati and R. St-Denis, “An architecture for

semantic service discovery and realizability in

cloud computing”, In: Proc. of the 6th

International Conference on the Network of the

Future (NOF), Montreal, Canada, pp.1-6, 2015.

[28] V. Raghavan, P. Bollmann, and G. Jung, “A

critical investigation of recall and precision as

measures of retrieval system performance,

ACM Transactions on Information Systems,

Vol.7, No.3, p.205-229, 1989.

