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Abstract: In the last few years there have been a growing number of studies concerning the introduction of 

quaternions into neural networks, which demand a faster learning technique with superior performance. In this paper, 

we propose a fast, but novel quaternionic resilient propagation (ℍ-RPROP) algorithm for high dimensional problems. 

It achieves significantly faster learning over quaternionic domain back propagation (ℍ-BP) algorithm. The slow 

convergence and stability of weight update around the local minima are the main drawbacks of ℍ-BP. The gradient 

descent based ℍ-BP algorithm takes the value of partial derivative (error gradient) and scales the weight updates 

through a learning rate while ℍ-RPROP does not takes the value of partial derivatives, but it considers only the sign 

of partial derivatives that indicates the direction for each component of quaternionic weight update. The main aim of 

ℍ-RPROP is to eliminate the value which is a little increased by constant increasing factor in order to accelerate 

convergence in shallow regions. ℍ-RPROP computes an individual delta for each connection of the network, which 

determines the size of weight update. Therefore, the faster convergence and higher accuracy are the main key 

features of proposed algorithm. The intelligent behavior of the proposed learning approach is demonstrated through a 

wide spectrum of prediction problems with different statistical performance evaluation metrics. In order to illustrate 

the learning and generalization of 3D motion as its inherent behavior, a solid set of experiments is presented where 

the training is performed through input-output mapping over a line and the generalization ability is verified over 

various non-linear geometrical objects. The slow convergence problem of back-propagation algorithm has been well 

combated by ℍ-RPROP. It has always demonstrated drastic reduction in the training cycles. 

Keywords: Quaternion, Quaternionic resilient propagation, Time series prediction, Linear transformation, 3D 

motion. 

 

 

1. Introduction 

The processing of high dimensional information 

through conventional real-valued neural network 

(RVNN) is challenging, but a vital task because it 

requires a large number of neurons in network [1]. 

The structure of RVNN is not only complicated and 

unnatural, but it also leads to very slow processing 

and incapable to learn phase information among the 

intended components in high dimensions. This 

problem has been overcome by the extension of 

RVNN to complex-valued neural network (CVNN) 

for achieving the computational power of two 

dimensional information [2-4]. Further, the 

computational power of CVNN is achieved by the 

various methodologies such as the combination of 

gradient-descent and random-search algorithm [5], 

along with development of higher order neurons [6, 

7]. But, the field of neural network with quaternion 

for three or four dimension problems is still not 

investigated thoroughly. The quaternionic-valued 

neural network (QVNN) will not only efficiently 

solve the difficult learning and generalization 

problems in high dimension with lesser number of 

neurons, but will yield a natural way of processing 

of high dimension information. Although, the 

conventional learning can be achieved by error 

backpropagation (BP) methodology in quaternionic 

domain, but the basic drawbacks of this method is 

still prevailing in high dimension [3, 5]. Therefore, 

we propose a quaternionic domain resilient 
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propagation algorithm (ℍ-RPROP) for the faster 

convergence with better accuracy. The successive 

weight updates during learning in BP depends on the 

value of derivatives of error function. The basic 

principle in ℍ-RPROP algorithm is to eliminate the 

harmful influence of the size of partial derivatives of 

error function with respect to quaternionic weight, 

and adaptation is made dependent on the sign of its 

derivative. ℍ-RPROP is based on the signs of 

successive partial derivatives of error function with 

respect to each component of quaternionic weight 

update. The basic idea of resilient propagation 

algorithm [9, 10] is further boosted by error-

dependent weight backtracking step in the 

quaternionic weights updation. This correction will 

not only accelerates the training speed appreciably 

and provide better approximation accuracy but also 

establish the logical way of adaptation for the 

proposed ℍ-RPROP algorithm. 

The processing in quaternionic-valued neural 

network (QVNN) is as simple as conventional 

neural networks and error back-propagation 

algorithm in quaternionic domain (ℍ-BP) [11] has 

been obtained using the concept of gradient-decent 

optimization. The superiority and capability of 

QVNN are verified by the recent publications in the 

area of inverse kinematics of robot manipulator [12], 

nonlinear adaptive filtering [13], spoken language 

understanding [14], PolSAR land classification [15]. 

In QVNN, the split type activation functions is used 

instead of analytic because of its merit investigated 

in past for complex-valued neural networks [3, 7, 8]. 

The split type activation function, though, has a lack 

of analyticity concerned, appeared to be suitable tool 

for high dimension learning algorithm because of its 

boundedness. In this paper, the proposed ℍ-RPROP 

algorithm is compared with ℍ-BP through a wide 

spectrum of simulation experiments. The learning 

algorithm has an inherent ability to learn and 

generalize 3D motion because the signal flowing 

through the network is quaternion which possesses 

the values of different components and phase 

information is embedded among them. This strong 

point of the proposed method is further boosted by 

fast learning which results drastic reduction in 

training epochs. The main advantages of the results 

over others are clearly demonstrated through 

different statistical parameters in predication 

problems. The new features of the proposed ℍ-

RPROP algorithm is to learn 3D motion or 

transformation through a set of points lying on a line 

which further emulates the generalization over 

complicated geometrical objects in space. In real life 

applications, the different transformations facilitate 

the viewing of 3D objects from different 

orientations as well as their motion interpretation in 

space. The proposed ℍ-RPROP algorithm has 

demonstrated its superiority over ℍ-BP in all 

perspectives. 

The rest of the paper is organized as follows: 

Section 2 formally presents the proposed resilient 

propagation algorithm in quaternionic domain and 

also explains the theoretical reason why the 

proposed technique is better than existing techniques. 

The Section 3 mainly focuses on a comparative 

analysis through variety of statistical parameters of 

the proposed algorithm over ℍ-BP with a wide 

spectrum of prediction problems. Section 4 presents 

a solid set of experiments to demonstrate the 

capability of proposed ℍ-RPROP algorithm in 

learning and generalization of motion or 

transformations. The final inferences and discussion 

is given in the section 5. 

2. Fast learning in quaternionic domain 

The resilient propagation learning algorithm in 

real domain [10] and in complex domain [7, 9] are 

very popular to exhibit the fast and robust learning 

scheme because the only sign of the partial 

derivatives in successive steps is used to perform 

adaptation. It accomplishes the local adaptation of 

weight updates (∆𝑤)  according to the nature of 

error at each iteration, instead of value, to overcome 

the disadvantages of pure gradient descent approach 

[10]. A quaternion is a four-dimensional hyper-

complex number system discovered by Hamilton 

[16]. It is capable to treat and operate three or four 

dimensional vector as one entity where phase 

information is imbedded within it. Therefore, it is 

highly desirable to propose a resilient propagation 

learning algorithm so that fast and effective 

information processing can be achieved through the 

operations on quaternionic variables.  In this paper a 

three layer feed-forward network ( 𝐿 -  𝑀 -  𝑁)  is 

considered in quaternionic domain that employs 

𝐿 inputs, 𝑀  and 𝑁  neurons in hidden and output 

layers respectively. All inputs, outputs, weights and 

biases are quaternion. Let quaternion 𝒒𝑙  be the 

𝑙𝑡ℎ (𝑙 = 1 …  𝐿)  input at the input layer of the 

network, presented as 

 

𝒒𝑙 = ℜ(𝒒𝑙) + ℑ1(𝒒𝑙)𝒊 + ℑ2(𝒒𝑙)𝒋 + ℑ3(𝒒𝑙)𝒌 (1) 

 

where, ℜ  and ℑ𝑖 (𝑖 = 1, 2, 3)  denote the real and 

imaginary parts of 𝒒𝑙. The bases (𝒊, 𝒋 and 𝒌) follow 

the properties [16] 𝒊2 = 𝒋2 = 𝒌2 = 𝒊𝒋𝒌 = −1 and 

𝒊𝒋 = −𝒋𝒊 = 𝒌, 𝒋𝒌 = −𝒌𝒋 = 𝒊, 𝒌𝒊 = −𝒊𝒌 = 𝒋. 
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Let 𝑽  is internal potential and 𝑓 is a suitable 

activation function. The output of 𝑚𝑡ℎ(𝑚 =
1 … 𝑀) hidden neuron can be given as  

 

𝒀𝑚 = 𝑓ℍ(𝑽𝑚) = 𝑓ℍ(∑ 𝒘𝑙𝑚
𝐿
𝑙=1 𝒒𝑙 +  𝜶𝑚)    (2) 

 

where, symbols  , 𝒘𝑙𝑚  and 𝜶𝑚 denote quaternion 

multiplication which follow the Hamilton properties 

as mentioned above, the synaptic weight that 

connects 𝑙𝑡ℎ  input to 𝑚𝑡ℎ  hidden neurons and bias 

of the 𝑚𝑡ℎ  hidden neuron respectively. A split type 

function in quaternionic domain can be expressed as 

 

𝑓ℍ(𝑽𝑚) = 𝑓(ℜ(𝑽𝑚)) + 𝑓(ℑ1(𝑽𝑚))𝒊 +
𝑓(ℑ2(𝑽𝑚))𝒋 + 𝑓(ℑ3(𝑽𝑚))𝒌      (3) 

 

Similarly, the output of 𝑛𝑡ℎ(𝑛 = 1 … 𝑁) output 

neuronwith internal potential (𝑉𝑛) 

 

𝒀𝑛 = 𝑓ℍ(𝑽𝑛) = 𝑓ℍ(∑ 𝒘𝑚𝑛
𝑀
𝑚=1 𝒀𝑚 + 𝜷𝑛)  (4) 

 

where, 𝒘𝑚𝑛 and 𝜷𝑛 denote the synaptic weight and 

bias in output layer respectively. 

2.1 Backpropagation learning in quaternionic 

domain 

The gradient based error backpropagation 

learning for feed-forward network in quaternionic 

domain is recapitulated here. Let the error 𝑒𝑛 be the 

difference between desired 𝑌𝑛
𝐷 and actual 𝑌𝑛 output 

of 𝑛𝑡ℎoutput neuron, then 

 

 𝑒𝑛 = 𝑌𝑛
𝐷 − 𝑌𝑛 = ℜ(𝑒𝑛) + ℑ1(𝑒𝑛)𝑖 +

ℑ2(𝑒𝑛)𝑗 + ℑ3(𝑒𝑛)𝑘                                               (5) 

 

The weight update equation can be obtained by 

minimizing the mean square error (MSE) function 

 

𝐸 =
1

2𝑁
∑ (𝑒𝑛 𝑒̅𝑛)𝑁

𝑛=1                                       (6) 

 

where, (. )̅̅ ̅̅  denotes the quaternion conjugate. The 

update rules for weight and bias at output layer can 

be computed by a gradient of error function as 

 

∆𝑤𝑚𝑛 = −𝜂∇(𝑤𝑚𝑛)𝐸 = −𝜂 (
∂𝐸

∂ℜ(𝑤𝑚𝑛)
+

∂𝐸

∂ℑ1(𝑤𝑚𝑛)
𝒊 +

∂𝐸

∂ℑ2(𝑤𝑚𝑛)
𝒋 +

∂𝐸

∂ℑ3(𝑤𝑚𝑛)
𝒌)  

   =
𝜂

𝑁
(𝑒𝑛 ⊙ 𝑓ℍ

′ (𝑉𝑛))𝑌̅𝑚                         (7) 

 

∆𝛽𝑛 = −𝜂∇(𝛽𝑛)𝐸 =
𝜂

𝑁
𝑒𝑛 ⊙ 𝑓ℍ

′ (𝑉𝑛)                 (8) 

 

where, 𝜂 ∈ ℝ+denotes learning rate and ⊙ denotes 

the component wise multiplication. The derivative 

of quaternion-split type function 𝑓ℍ
′ (𝑉𝑛) is given as 

 

𝑓ℍ
′ (𝑉𝑛) = 𝑓′(ℜ(𝑉𝑛)) + 𝑓′(ℑ1(𝑉𝑛))𝒊 +

𝑓′(ℑ2(𝑉𝑛))𝒋 + 𝑓′(ℑ3(𝑉𝑛))𝒌                                 (9)  

 

The weight and bias update rules at hidden layer:  

 

∆𝑤𝑙𝑚 = −𝜂∇(𝑤𝑙𝑚)𝐸 =
𝜂

𝑁
((∑ 𝑤̅𝑚𝑛(𝑒𝑛 ⊙𝑁

𝑛=1

𝑓ℍ
′ (𝑉𝑛))) ⊙ 𝑓ℍ

′ (𝑉𝑚))𝑞̅𝑙                        (10) 

 

∆𝛼𝑚 = −𝜂∇(𝛼𝑚)𝐸 =
𝜂

𝑁
(∑ 𝑤̅𝑚𝑛(𝑒𝑛 ⊙𝑁

𝑛=1

𝑓ℍ
′ (𝑉𝑛))) ⊙ 𝑓ℍ

′ (𝑉𝑚)               (11) 

2.2 Resilient propagation algorithm in 

quaternionic domain 

 Resilient propagation in quaternionic domain 

(ℍ-RPROP) depends only on the sign of gradient of 

error function that indicates the direction of weight 

update. The main aim of ℍ-RPROP is to find weight 

update by a constant factor in order to accelerate the 

convergence in shallow regions. It computes an 

individual update value (∆) for each connection of 

the network, which determines the size of weight 

update. The aim of this paper is to present a resilient 

propagation algorithm in quaternionic domain (ℍ-

RPROP) with error-dependent weight backtracking 

step. The theoretical reason for the need of error-

dependent weight backtracking step and why the 

proposed technique is better than the existing one 

can be logically explained by the examination of 

successive partial derivatives. If the signs of 

successive partial derivatives are both positive that 

means error is increasing then the weight is 

decreased by the update value. Similarly, if the signs 

of successive partial derivatives are both negative 

that means error is decreasing then the weight is 

increased by the update value. If the signs of 

successive partial derivatives are opposite that 

means a minima is missing in between, then the 

weight is reverted to previous state and the previous 

partial derivatives is set to be zero otherwise 

updated weight will reflect the same changes 

repeatedly.  Thus ℍ-RPROP algorithm is boosted by 

error-dependent weight backtracking step in which 

accelerates the training speed appreciably and also 

provides better approximation accuracy. Thus, the 

faster convergence and higher accuracy are the main 

key features of the proposed algorithm. 

The sign of partial derivatives of the error 

function with respect to each part of quaternionic 



Received:  May 14, 2017                                                                                                                                                    208 

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017           DOI: 10.22266/ijies2017.0831.22 

 

weight determines the direction of weight update 

ℜ (∆𝑤(𝑡)), ℑ1(∆𝑤(𝑡)), ℑ2(∆𝑤(𝑡)) and ℑ3(∆𝑤(𝑡). 

Each component of quaternionic weight is modified 

by an amount ∆ (update value) with a view to 

decrease the overall error in learning cycles. Each 

update value determines the size of weight update. 

The ℍ-RPROP algorithm uses various parameters, 

initial step size (∆0), increase factor (𝜇+), decrease 

factor ( 𝜇− ), minimum step size ( ∆𝑚𝑖𝑛 ) and 

maximum step size (∆𝑚𝑎𝑥) to initiate the process. 

The step size (update value) is modified according 

to gradient direction. For the sake of simplicity a 

generalized symbol 𝔊 is used to denote the all parts 

of quaternionic weight. The weight updates are 

determined individually as follows 

 

𝔊(∆𝒘(𝑡)) = −sign (
𝜕𝐸(𝑡)

𝜕𝔊(𝒘)
) 𝔊(∆(𝑡))            (12) 

 

The proposed learning algorithm depends on the 

signs of successive partial derivatives of the error 

function with respect to each component of 

quaternionic weight update. If the signs of 

successive partial derivatives are both positive that 

means error is increasing then the weight is 

decreased by the update value. Similarly, if the signs 

of successive partial derivatives are both negative 

that means error is decreasing then the weight is 

increased by the update value, presented as 

 

if (
𝜕𝐸(𝑡−1)

𝜕𝔊(𝑤)
×

𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
> 0) then  

{𝔊(∆(𝑡)) = min (𝔊(∆(𝑡 − 1)) × 𝜇+, 𝔊(∆𝑚𝑎𝑥)) ;  

𝔊(𝑤(𝑡 + 1)) = 𝔊(𝑤(𝑡)) − sign (
𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
) 𝔊(∆(𝑡));} 

                 (13) 

 

The important element is to investigate whether 

the error is increasing or decreasing in case of 

change in sign of partial derivatives in successive 

steps, caused by weight update. When the partial 

derivatives for each part of error in successive step 

are opposite in sign and the overall error increases, 

then only the previous weight update is reverted as 

 

if (
𝜕𝐸(𝑡−1)

𝜕𝔊(𝑤)
×

𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
< 0) then  

{𝔊(∆(𝑡)) = max (𝔊(∆(𝑡 − 1)) × 𝜇−, 𝔊(∆𝑚𝑖𝑛)) ; 

if (𝐸(𝑡) > 𝐸(𝑡 − 1)) then 

𝔊(𝑤(𝑡 + 1)) = 𝔊(𝑤(𝑡)) − 𝔊(∆𝑤(𝑡 − 1));                        
𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
= 0 ; }                                                        (14) 

 

The abstract pseudo code of proposed ℍ-

RPROP algorithm is as follows: 

 

𝑡 = 1;   0 < 𝜇− < 𝜇+ < 1.2  

 parts of quaternion𝔊(∆(𝑡)) = ∆0 ; 
𝜕𝐸(𝑡−1)

𝜕𝔊(𝑤)
= 0 ; 

𝔊(∆𝑚𝑎𝑥) = ∆𝑚𝑎𝑥; 𝔊(∆𝑚𝑖𝑛) = ∆𝑚𝑖𝑛 

Repeat { parts of quaternionic weights, compute 
𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
 

Do {If (
𝜕𝐸(𝑡−1)

𝜕𝔊(𝑤)
×

𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
> 0) then  

{𝔊(∆(𝑡)) = min (𝔊(∆(𝑡 − 1)) × 𝜇+, 𝔊(∆𝑚𝑎𝑥)) ;  

𝔊(𝑤(𝑡 + 1)) = 𝔊(𝑤(𝑡)) − sign (
𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
) 𝔊(∆(𝑡));} 

If (
𝜕𝐸(𝑡−1)

𝜕𝔊(𝑤)
×

𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
< 0) then  

{𝔊(∆(𝑡)) = max (𝔊(∆(𝑡 − 1)) × 𝜇−, 𝔊(∆𝑚𝑖𝑛)) ; 

If (𝐸(𝑡) > 𝐸(𝑡 − 1)) then 

𝔊(𝑤(𝑡 + 1)) = 𝔊(𝑤(𝑡)) − 𝔊(∆𝑤(𝑡 − 1));  

 
𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
= 0 ; } 

If (
𝜕𝐸(𝑡−1)

𝜕𝔊(𝑤)
×

𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
= 0) then 

𝔊(𝑤(𝑡 + 1)) = 𝔊(𝑤(𝑡)) − sign (
𝜕𝐸(𝑡)

𝜕𝔊(𝑤)
) 𝔊(∆(𝑡));}  

While (for all parts (𝔊(. )) of quaternionic weight)  

𝑡 = 𝑡 + 1; } until (converged). 

3. Performance analysis of ℍ-RPROP 

through prediction problems 

In order to estimate the learning and 

generalization effectiveness of proposed ℍ-RPROP 

algorithm; the performance evaluation has been 

carried out on different prediction and function 

approximation problems. All synaptic weights and 

biases of a three layer network are randomly 

initialized between -1 to 1 with bias input (1 + 𝑖 +
𝑗 + 𝑘 ) in quaternionic domain. The hypertangent 

activation function is used for analysis purpose. An 

intelligent choice of RPROP parameters and weight 

initialization gives good results. The computational 

power and approximation capability have been 

compared in terms of number of epochs, learning 

parameters, network topology along with other 

statistical performance evaluation metrics like 

correlation, error variance, and Akaike’s 

information criteria (AIC) [17]. The proposed ℍ-

RPROP algorithm with error dependent weight 

backtracking step accelerates the training speed 

significantly with better approximation accuracy. 

3.1 Chua’s circuit as time series prediction 

Chua’s circuit is the simplest autonomous 

electronic circuit containing registers, capacitors and 

inductors that exhibit the chaotic behaviour [18].  
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Figure.1 3D plot of Chua’s circuit tested by the network 

trained by ℍ-BP 

 

 
Figure.2 3D plot of Chua’s circuit tested by the network 

trained by ℍ-RPROP 

 

This circuit satisfies the chaotic criteria that contain 

one or more non-linear elements, one or more active 

registers and three or more energy storage devices. 

The presented model uses the one Chua’s diode 

as non-linear element, one locally active register and 

two capacitors and one inductor as energy storage 

devices, whose dynamics is given as state equations: 

 
𝑑𝑥

𝑑𝑡
= 𝛼[𝑦 − 𝑥 − ℎ(𝑥)]   

𝑑𝑦

𝑑𝑡
= 𝑥 − 𝑦 + 𝑧  

𝑑𝑧

𝑑𝑡
= −𝛽𝑦 − 𝛾𝑧                               (15) 

 

where, ℎ(𝑥) presents the electrical response of non-

linear register and defined as 

ℎ(𝑥) = 𝑚1𝑥 +
1

2
(𝑚0 − 𝑚1)(|𝑥 + 1| − |𝑥 − 1|)

                (16) 

 

 
Table 1. Comparison of training and testing performance 

of Chua’s circuit 

 ℍ-BP ℍ-RPROP 

Network 1-4-1 1-4-1 

Parameters 13 13 

MSE Training 0.0074 0.0010 

Average Epoch 12000 2100 

MSE Testing 0.0075 0.0044 

Error Variance 0.0038 0.0009 

Correlation 0.9893 0.9910 

AIC -4.8843 -6.8858 

 

where 𝛼 , 𝛽 , 𝛾 , 𝑚0  and 𝑚1  denote the constant 

parameters. The symbols 𝑥, 𝑦 and 𝑧 are the voltages 

across two capacitors and an inductor respectively, 

and combination of them shows the chaotic attractor 

in three dimensions. The double scrolled chaotic 

attractor is obtained with the parameters 𝛼 = 15.6, 

𝛽 = 28 , 𝛾 = 0 , 𝑚0 = −1.143  and 𝑚1 = −0.714 . 

The chaotic time series has been obtained from the 

simulation of the system (Eq. 15 and Eq. 16) with 

time step 0.1 Sec and initial voltages 𝑥=0.1, 𝑦 = 0.1 

and 𝑧 = 0.1. The normalized input-output values in 

the range -0.8 to 0.8 are considered in imaginary 

quaternion (real part is set to zero).  

A time series containing 500 terms obtained 

from simulated system has been used to train a three 

layer neural network (1-4-1) in quaternion domain 

using ℍ-BP and ℍ-RPROP algorithms. Table 1 

demonstrates that the proposed ℍ-RPROP algorithm 

requires a significantly lesser number of training 

epochs than ℍ-BP algorithm. The next 500 terms of 

the series have been tested through trained network 

by both the algorithms. The 3D plot in Fig. 1 and 

Fig. 2 present the comparisons of desired and actual 

pattern for Chua’s circuit. The superiority of ℍ-

RPROP over ℍ-BP is demonstrated through 

different statistical parameters like error variance, 

correlation, and AIC in Table 2. This experiment 

reveals the better approximation capability of 

proposed technique over ℍ-BP. 

3.2 Lorenz system as time series prediction 

The chaotic behaviour of Lorenz’s system [19] 

is presented by the system of differential equations: 

 
𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥)   

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦   

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧               (17) 
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where, the symbols 𝜎, 𝜌 and 𝛽 denote the Lorenz’s 

parameters. Let 𝜎 = 15 , 𝜌 = 28  and 𝛽 = 8/3 , the 

system (Eq. (17)) generates 6537 terms of the time 

series in 100 seconds with initial condition (𝑥 = 0.7, 

𝑦 = 0.1, 𝑧 = 0.1); which are further normalized in 

the range -0.8 to 0.8. 
The first 500 terms of the time series have been 

used to train the networks using ℍ-BP and ℍ-

RPROP learning algorithms and the rest of the terms 

used for testing. The Table 2 presents better 

performance by ℍ-RPROP algorithm in comparison 

to ℍ-BP with drastic reduction in training epochs.  

 

 
Figure.3 3D plot of the Lorenz system tested by the 

network trained through ℍ-BP 

 

 
Figure.4 3D plot of the Lorenz system tested by the 

network trained through ℍ-RPROP learning 

 

 

 

Table 2. Comparison of training and testing performance 

for Lorenz system 

 ℍ-BP ℍ-RPROP 

Network 1-4-1 1-4-1 

Parameters 13 13 

MSE Training 0.0015 0.0006 

Average Epoch 11000 3100 

MSE Testing 0.0024 0.0008 

Error Variance 0.0016 0.0004 

Correlation 0.9871 0.9982 

AIC -6.4503 -7.3666 

 

The testing results for the prediction of Lorenz 

time series by ℍ-BP and ℍ-RPROP are presented in 

Fig. 3 and Fig. 4 respectively. The results again 

reveal the excellent superiority of ℍ-RPROP over 

ℍ-BP. 

3.3 Channel equalization problem 

The equalization problem establishes the 

assessment of input signals using received signals 

𝑞(𝑛) and desired delayed signals 𝑞(𝑛 − 𝜏) . An 

experiment is conducted here to evaluate the 

comparative performance of ℍ-BP and ℍ-RPROP 

learning algorithms for highly complex non-linear 

quaternionic-valued channel model, defined as:      

 

𝑦(𝑛) = 𝑂(𝑛) + 0.1[𝑂(𝑛)]2 + 0.05[𝑂(𝑛)]3 + 𝜗𝑛 ,

  𝜗𝑛~𝑁(1, 0.1569)                                  (18) 

 

where, 

 

𝑂(𝑛) = (0.34 − 𝑖 ∗ 0.27 + 𝑗 ∗ 0.50 + 𝑘 ∗
0.62)𝑞(𝑛) + (0.87 + 𝑖 ∗ 0.43 + 𝑗 ∗ 0.72 + 𝑘 ∗
0.22)𝑞(𝑛 − 1) + (0.34 − 𝑖 ∗ 0.21 + 𝑗 ∗ 0.64 +
𝑘 ∗ 0.44)𝑞(𝑛 − 2)               (19) 

 

In this experiment, the transmitted signals are 4-

QAM with input constellations 0.7 ∗ (0 ± 𝑖 ± 𝑗 +
𝑘 ∗ 0) and in equalizer the received signal are in one 

of the four possible classes. The equalization model 

is of order three with decision delay 𝜏 = 1. The 200 

samples with 16 dB SNR from Eq. 18 and 19 were 

considered for the training of equalizer through ℍ-

BP and ℍ-RPROP algorithms. The 1000 samples 

for testing set by the noisy channel distribution are 

presented in Fig. 5. 

In order to demonstrate the effectiveness of 

channel equalization using different algorithms, the 

equalizer output distribution of the test set is 

presented by eye diagram in Fig. 6 and Fig. 7. The 

relative analysis through different parameters 

presented in Table 3 demonstrates the 

outperformance of ℍ-RPROP algorithm along with 
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significant faster learning. The superiority of ℍ-

RPROP is again observed in this experiment. 

 

 
Figure.5 A test set of input signals 

 

 
Figure.6 Eye diagram of the outputs of the ℍ-BP 

algorithm based equalizer 

 
Table 3. Comparison of equalizers based on ℍ-BP and ℍ-

RPROP algorithms 

 ℍ-BP ℍ-RPROP 

Network 3-14-1 3-14-1 

Parameters 71 71 

MSE Training 0.0016 0.0010 

Average Epoch 30000 9000 

MSE Testing 0.0005 0.0003 

Error Variance 0.0013 0.0006 

Correlation 0.9945 0.9978 

AIC -6.4555 -6.9111 

 

 
Figure.7 Eye diagram of the outputs of the ℍ-RPROP 

algorithm based equalizer 

4. Performance analysis of ℍ-RPROP 

through transformations 

In order to compare training and testing 

performance of proposed ℍ-RPROP algorithm with 

ℍ-BP for three dimensional motion or 

transformation, we consider a three layer (2-6-2) 

QVNN which contains two inputs, six hidden 

neurons and two output neurons. For training, an 

input-output mapping over a straight line and a 

reference point (middle point of the line) has been 

considered in all experiments. First input on the 

network takes a set of point lying on a straight line 

and second input passes the reference point. The 

learning of a three layer network is done by both 

algorithms for different class of transformations. 

The input-output training mapping is used for three 

cases of transformations; scaling factor ½ in first 

case; scaling with factor ½ followed by 0.3 unit 

translation along the positive z-direction in second 

case; and scaling factor ½ followed by 0.3 unit 

translation along the positive z-direction and /2 

radian rotation around the unit vector (𝒊) in third 

case. All the mappings are defined over straight line 

containing 21 points and referenced at (0, 0, 0). The 

error convergence curves in Fig. 8 compare the 

learning process of proposed ℍ-RPROP with ℍ-BP 

in above three cases of transformations. The training 

of network through ℍ-RPROP considers parameters, 

initial step size (∆0= 0.01), increase factor (𝜇+ =
1.2), decrease factor (𝜇− = 0.5), minimum step size 

( ∆𝑚𝑖𝑛= 10−6 ) and maximum step size ( ∆𝑚𝑎𝑥=
0.005). All weights and biases are initialized in the 

range -0.05 to +0.05. 

 

 



Received:  May 14, 2017                                                                                                                                                    212 

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017           DOI: 10.22266/ijies2017.0831.22 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure.8 The MSE convergence through ℍ-BP and 

proposed ℍ-RPROP learning algorithm for: (a) scaling, 

(b) scaling and translation (c) scaling, translation and 

rotation 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure.9 The generalization through ℍ-BP algorithm: 

Transformation with scaling factor ½ over (a) Sphere (b) 

Cylinder (c) Torus 
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(a) 

 

 
(b) 

 

 
(c) 

Figure.10 The generalization through ℍ-RPROP 

algorithm: Transformations with scaling factor ½; over 

(a) Sphere (b) Cylinder (c) Torus 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure.11 The generalization through ℍ-BP algorithm: 

Transformations with scaling factor ½ and 0.3 unit 

translation in positive z-direction; over (a) Sphere (b) 

Cylinder (c) Torus 
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(a) 

 

 
(b) 

 

 
(c) 

Figure.12 The generalization through ℍ-RPROP 

algorithm: Transformations with scaling factor ½ and 0.3 

unit translation in positive z-direction; over (a) Sphere (b) 

Cylinder (c) Torus 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure.13 The generalization through ℍ-BP algorithm: 

Transformations with scaling factor ½, 0.3 unit 

translation in positive z-direction, and /2 radian rotation 

around the unit vector (𝒊); over (a) Sphere (b) Cylinder 

(c) Torus 
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(a) 

 

 
(b) 

 

 
(c) 

Figure.14 The generalization through ℍ-RPROP 

algorithm: Transformations with scaling factor ½, 0.3 unit 

translation in positive z-direction, and /2 radian rotation 

around the unit vector (𝒊); over (a) Sphere (b) Cylinder 

(c) Torus 

 

The hyperbolic tangent function is used as 

activation function. The different networks converge 

significantly faster in case of ℍ-RPROP than ℍ-BP 

(𝜂 = 0.001); as shown in Fig. 8.  

The testing of trained networks through both 

algorithms has been done over complicated 3D 

objects like sphere (4141 data points), cylinder 

(2929 data points) and torus (10201 data points). 

The generalizations over complicated 3D objects for 

networks trained by ℍ-RPROP in a different class 

of transformations are presented in Fig. 10, Fig. 12 

and Fig. 14 respectively; and for networks trained 

by ℍ-BP is presented in Fig. 9, Fig. 11 and Fig. 13. 

Testing processes demonstrate the accuracy and 

superiority of ℍ-RPROP over ℍ-BP and also reveal 

its effective generalization ability. The ℍ-RPROP 

drastically reduces the number of training epochs 

with comparable and better generalization accuracy 

in all classes of transformations. The theoretical 

reason for fast convergence lie behind the basic 

approach of ℍ-RPROP algorithm which considers 

only sign of partial derivatives to indicate the 

direction of weight update and eliminate the value 

which is a little increased by constant increasing 

factor in order to accelerate convergence in shallow 

regions. Since, quaternion is the unit of learning in 

quaternionic-valued neural networks therefore it has 

ability to learn different intended components in 

high dimension along with their phase information 

while any real-valued neural network does not have. 

5. Inferences and discussions 

In this paper, we propose a fast and efficient 

learning algorithm ℍ-RPROP (resilient propagation 

in quaternionic domain); and its superiority over 

back-propagation algorithm (ℍ-BP) has been 

verified through a wide spectrum of benchmark 

problems. The ℍ-RPROP algorithm not only 

reduces the number of training epochs drastically, 

but presents its outperformance through different 

statistical performance evaluation metrics like 

correlation, error variance, and Akaike’s 

information criteria in all prediction problems. 

The extremely faster convergence of the 

proposed algorithm is also seen in case of different 

classes of transformations. The ℍ-RPROP algorithm 

smartly learns the different compositions of basic 

transformations (translation, scaling, and rotation) 

through input-output mapping over straight line. The 

trained network is well capable to generalize the 

considered transformations over non-linear 

geometrical structures like sphere, cylinder, and 

torus possessing huge point cloud dataset. It presents 

the intelligent behaviour in motion interpretation in 
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space as it also maintains phase information in 

learning and subsequent generalization. The 

proposed ℍ-RPROP algorithm will definitely 

provide a new direction to prospective researchers in 

various scientific and engineering applications for 

3D and 4D datasets where faster training and higher 

accuracy are required. 
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