
Received: April 30, 2017 175

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.19

Energy Aware Resource Management and Job Scheduling in Cloud Datacenter

Shyamala Loganathan1*, Renuka Devi Saravanan1, Saswati Mukherjee2

1Vellore Institute of Technology University Chennai, India

2Anna University, India

* Corresponding author’s Email: shyamalal@vit.ac.in

Abstract: A cloud system uses virtualization technology to provide cloud resources (e.g. CPU, memory) to users in

form of virtual machines. Job requests are assigned on these VMs for execution. Efficient job assignment on VMs

will reduce the number of hosts used. Hence, it is essential to achieve energy optimization in cloud computing

environments. Therefore, in this paper, a job scheduling mechanism is proposed to assign job to a VM of the existing

active hosts itself by considering job classification and preemption. So that minimizing the number of host used in

allocation intern reduces the energy consumption in the Cloud datacenter. In our proposed job scheduling algorithm,

categorizing the job in to three different types and assigned based on preemption policy with the earliest available

time of the resource (VM) which is attached to a host. Thereby, we reduce the energy consumption by making less

number of hosts in the active state and increase the utilization of active host. Finally, we conduct simulations using

CloudSim and compare our algorithm with other existing methods. Significant energy savings can be obtained

depending on system loads. Energy saving is about 2% to 46% with respect to the non-energy aware algorithm, 1%

to 7% than the energy aware algorithms.

Keywords: Energy saving, Job allocation, Scheduling, Job types, Advanced reservation.

1. Introduction

Cloud computing is an internet based distributed

computing technology. It is becoming adoptable

technique by its dynamic scalability and usage of

virtualized resources for many of the organizations.

Thus, it represents a new paradigm for the dynamic

provisioning of computing services, typically

supported by state-of-the-art datacenters [1]. More

recently, energy-efficient resource management in

cloud system has attracted the attention of both the

research community as well as the industry. Since

Cloud requires that the provider should ensure the

satisfaction of QoS (e.g. performance, resource

availability on time, etc.) of its users, the problem of

energy efficiency in cloud becomes a challenge in

trade-off between performance and energy

consumption. A well-known example is that Google

datacenters consume more energy as would be

required by a small city [2]. If nothing is done, the

energy costs to run these datacenters may even

overtake the huge initial installation costs, which in

itself is prohibitive. In this regard, cloud datacenters

consume more electricity since in many cases these

are permanently switched on even when they are not

used due to the expected usage. These servers, while

not doing any tangible work, still consume about

70% of its peak power [3]. To reduce wastage of

energy in a cloud environment, perhaps more effort

needs to be spared for this waste of idle power.

A large part of the existing research has been

directed towards finding suitable solutions that

would contribute to the reduction of excessive

energy consumption. Many research efforts, such as

Intel’s Cloud Computing 2015 Vision [4] draw the

attention of the researchers towards the need for

exploring avenues to improve power efficiency of

data centers using dynamic resource scheduling

approaches. We have attempted to minimize the

energy consumption by allocating jobs to the VMs

of existing active host thereby making unused idle

host to get turned off. The challenge here is to be

able to identify the servers as idle or near idle so that

Received: April 30, 2017 176

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.19

these can become suitable candidates for turning off.

A key consideration that needs to be addressed is

how to assign an appropriate job to a suitable VM.

To this end, we need to understand the type of the

request being handled. Based on the user’s need, a

job request may be a time (deadline) sensitive or not.

Hence we have made use of this time dependency as

a key to classify the job request [5] in to three

different categories. These are:

 Advance Reservation jobs (AR): Resources

are reserved in advance. They must be made

available at the specified time.

 Immediate jobs (IM): When a client submits

a request, based on the resource availability,

either the required resources are provisioned

immediately, or the request is rejected.

 Best effort jobs (BE): These jobs are kept in

a queue and resources are provided only

when it is available without affecting the

execution of the other two types of jobs. It

can be batch jobs also.

Preemption in job scheduling increases the

completion time of a submitted job. Hence a

deadline sensitive request cannot be preempted.

However, the same is not applicable for non-

deadline sensitive requests and hence they are

preemptible. We propose to exploit this and queue

such jobs to be scheduled later when the resources

are free or idle, thereby resulting in lesser number of

idle servers in the system. Thus we exploit a

combination of job request classification based on

time along with preemption in job scheduling to

achieve performance improvement as well as energy

saving for our research.

Our contributions in the proposed system are as

follows:

 First, we propose that hosts can exist in three

different states.

 Second, we propose preemption aware

scheduling using job classification to achieve

performance improvement such as success

rate and CPU utilization.

 We have developed an algorithm for job

mapping to a VM of a host in a datacenter,

with an aim of maximizing the contradictory

requirements of resource utilization and

energy saving.

 The remainder of this paper is organized as

follows. Section 2 provides a brief related work in.

Next, Section 3 presents our energy model and the

assumptions made in the system model while 4 give

the problem formulation with our proposed

algorithm. Section 5 provides the methodology and

simulation models employed to evaluate our

algorithm and test its efficacy. The evaluation results

are analyzed in this section along with a comparison

of our work with two existing works. Section 6

brings the rear with Conclusion where we

summarize our key contributions.

2. Related work

Over the last few years, energy efficient resource

management has extensively been studied. Many of

these studies have employed VM consolidation for

energy conservation. The authors in [6] applied

limited look ahead control in order to maximize the

datacenter profit via energy consumption

minimization in work based on VM consolidation.

The controller decides the number of physical and

virtual machines to be allocated for each request.

However, they have not considered how preemption

can affect energy consumption where requests have

preemptive priority. Authors in [7] consolidate

servers using modified best-fit decreasing (MBFD)

algorithm in their scheduling. They sort the hosts

based on the host utilization and migrate the VM

with double threshold method. Authors in [8] argues

that VM migration may help to achieve successfully

various resource management needs such as load

balancing, power management, fault tolerance, and

system maintenance. But the migration itself

involves practical difficulties such as transfer delay,

performance degradation etc which gives rise to lot

of overhead and cost. Authors in [9] considered

dynamic voltage and frequency scaling (DVFS) and

deadline constraint of a job for scheduling. Optimal

performance–power ratio of each host is calculated

and deadline constraint jobs are given to those VM

of a host. Finally consolidation is used for reduce

energy where migration is used. This method is not

very well suitable for a datacenter which consists of

heterogeneous systems.

As part of scheduling algorithms, Selvarani [10]

proposed an improved cost-based scheduling

algorithm for making efficient mapping of jobs to

the available resources by grouping them based on

capacity in cloud. Jiayin Li [11] proposed a feedback

pre-emptible task scheduling algorithm to generate

scheduling with the shortest average execution time

of jobs. In [12], Yang presented V-heuristics such as

V-MCT for job allocation, which allocates every job

in an arbitrary order of minimum completion time of

the virtualized resource. In this, the completion time

of the executing jobs is considered, but not the

assigned jobs in the queue. Antony Thomas [13]

presented a credit job scheduling in cloud computing

by using user priority and task length. As part of

job request types, algorithms proposed in [14]

Received: April 30, 2017 177

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.19

discussed advance reservation and non-preemptive

task scheduling in a grid environment. Kaushik et al.

proposed a flexible reservation window scheme [15].

But it does not address the issue of low resource

utilization by considering only advance reservation

requests. In our proposed method, we consolidate

VM based on types of requests, availability of a host

and avoiding VM migration.

3. Proposed system model

The following are assumptions of the proposed

model:

 Host (server) can be in one of the three states

viz., Active (running) state A, idle state idle and

standby state S. The energy consumption at each

state is different. The active state is a high-

energy state in which the hosts process users’

requests and consume a lot of energy. Standby

state consumes power only about 10% of

the running state. The idle state is a state

between the working state and the

standby state in which a host consumes power

about 70% of active state [16]. The system

ensures that a minimum number of nodes in idle

state remain within the threshold MinNum in

order to respond quickly as well as to avoid the

delay in the transition from standby to idle state.

 To start the system, 50% of the hosts are idle

state. The other 50% hosts are in Standby state.

Hosts are scaled up from Standby to Idle and

Active based on the incoming requests.

 Jobs are classified into three types as

advanced reservation, immediate and best

effort [5] where advanced reservation and

immediate can preempt the best effort jobs.

 The best effort jobs are backfilled in a queue and

scheduled when the resources are free or

underutilized.

 State transitions of a host are taken care of by

the administrator by monitoring host utilization.

 Idle time threshold is a threshold value based on

how long a system can be in idle state set by the

administrator which is denoted as Ith. The values

of Ith, MinNum are set by the administrator of

the datacenter. These values are changed based

on the incoming requests and resource usage

through resource monitoring depending upon the

workload of a datacenter.

Notations used in this system model are

described in Table 1.

Table 1. Notations used in the system.

Notation Description

{A},{idle},{S} Sets of nodes in states active, idle

and standby respectively.

CUavg Average CPU utilization of hosts

in active state

Ith Idle time threshold of a host in

idle state.

Ht ‘t’-th possible host (server) from a

set of {A}and {idle} in a

datacenter.

rkt Kth VM in tth host.

JQ Job queue maintained in the

datacenter.

RQkt Job assigned queue on a kth VM

of tth host.

 X(Ht) Y(Ht) Server Ht changes state from X

toY.

The power consumption of the tth host during a

time period T = (tA+ tidle + tS) can be expressed as

 E(Ht) = PA tA + Pidle tidle + PS tS (1)

where tA, tidle , tS are the time and PA , Pidle, PS are

the power consumptions per unit time of a host in

states active, idle, and standby respectively.

The following are the state transitions in the

system.
States: {S, Idle, A}

Actions: {Up, Down, Activate, Deactivate}

Up: When | {Idle}| < MinNum && CUavg > 90%

 ∀Ht Ꞓ {S}, till | {Idle}| >= MinNum,

 S(Ht) --> idle(Ht)

Down: If {Idle} ≠ Ø && idle_time(HꞒ{Idle})> Ith,,

idle (Ht) --> S(Ht)

Activate: The following transition happens

automatically in the scenario described as on job

arrival, scheduler finds a suitable node for

scheduling the incoming job. When a job is

scheduled on Ht Ꞓ{Idle},

 idle(Ht) -->A(Ht)

Deactivate: Hosts transit automatically if the

following condition is satisfied:

If RQkt == 0 for HtꞒ {A} && JQ== Ø,

 A(Ht) --> idle(Ht)

Received: April 30, 2017 178

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.19

4. System model

In Cloud, the end user’s service requests are

considered as job and each job is assigned to a

virtual machine VM. The hosts are the homogeneous

physical machines (or servers) that contain the

computational power where the VMs run. In the

proposed Cloud model shown in Fig.1, a datacenter

consists of m hosts interconnected properly with the

CMS (Control Management System). Based on the

number of cores in a VM request, VM has different

sizes as small, medium, Large, Xlarge. Each host

consists of n number of VMs with different sizes,

attached with the host. Job requests are assigned to

these VMs and can execute in parallel on different

cores of a host with different finish time. Each

VM in a host maintains a request queue RQk,

where jobs assigned by the CMS to that VM are

queued.

The proposed CMS is a centralized server

controlling all the hosts present in the datacenter

deployed in the web portal for job submission.

Clients submit their jobs to the CMS. The CMS

maintains an incoming job queue JQ where all the

submitted jobs to be scheduled are queued and CMS

is further responsible for scheduling classifies the

queued jobs based on the policy as advanced

reservation, best effort and immediate. Incoming

jobs to the VMs of different hosts by finding the

availability of the resource (VM) and schedules

based on the proposed preemption policy. The

proposed scheduling process chooses the host

based on the VM availability as per the

algorithm in section 4.1. The main components

of the proposed CMS are described below.

A. Client Request Handler

Client request handler presents a GUI for job

submission. It receives the incoming requests and

sends to the job classifier to identify the job type.

B. Job Classifier

Generally a job request consists of a tuple

<Num_core, a_Ram, a_D, BW, Exe_time, St_time,

End_time> as their requirement given by the user,

St_time is start time and End_time is completion

time Job classifier component in CMS helps to

classify the incoming requests as any one of the

following type.

Figure.1 System Architecture

Datacenter

Client Request

Handler

Job Classifier

Service Scheduler
Scheduler

Resource Monitor

User Request

Information

DC Information

 information

InInINInformat

ion

CMS

MSM

Scheduling
Updating State Transition

Host

Received: April 30, 2017 179

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.19

Depending on the kind of information submitted

by the user during request, a job is identified as

described below:

 Advance Reservation - Job request =

<Num_core, a_Ram, a_D, BW, Exe_time,

St_time, End_time>

 Best Effort -Job request = <Num_core,

a_Ram, a_D , BW, Exe_time, Nil, Nil>

 Immediate –Job request = <Num_core,

a_Ram, a_D , BW, Exe_time, St_time,Nil>

 Each job is labeled by the CMS and queued in

job list JQ to be scheduled.

C. Resource Monitor

This component monitors the hosts and gathers

any necessary information. Hosts change states as

discussed earlier. During the running of the cloud,

Resource Monitoring component monitors the

required parameters and handles the necessary state

changes of a host. It also maintains a resource list of

active (running) hosts and updates it whenever state

changes occur. The list contains the details of each

host, details of all the VMs in the hosts and the

Available Time (AT) of VMs. It calculates AT of a

VM and updates the list whenever a new job is

assigned. It updates AT as in Eq. (2), (5) as,

If free VM available in a host,

AT(rkt) = CT(Ht) (2)

where AT(rkt) denotes the available time of a kth VM

in tth host and CT(Ht) is the current time of the tth

host. If none of the free VM of any host is available,

we need to calculate the next available time of a VM

for the incoming job ji by considering its job queue

RQK.

Let jrkt(exec) represent a job in exeution on a kth

VM rk on tth host. Let ST be the starttime, ET be the

execution time and FT be the finishtime of this job.

Let Job jrkt(x) represent the job assigned in the Xth

position of RQk. Finish time FT of an executing job

is given as in Eq.(3):

 FT(jrkt(exec)) = ST(jrkt(exec)) + ET(jrkt(exec)) (3)

ST of job in the queue is given as in Eq.(4) as

 ST(jrkt(1)) = FT(jrkt(exec)) + Ɛ (4)

Where Ɛ is a small slack value added for delay for

next job to start. Therefore,

 AT(rkt) = {𝑚𝑎𝑥(𝐹𝑇(𝑗(𝑟𝑘𝑡(𝑥)))}

 Ɐ j(rkt(x)) Ꞓ RQk (5)

AT(rkt) is the time in which VM rkt is available for

next incoming job. This value is updated in the

resource list from the host whenever any new job is

assigned in the VM’s RQk. Resource monitoring

also maintains a separate list of AR jobs (ARlist)

with assigned VM list of each host. ARlist is used

by the scheduler during scheduling to check whether

any AR request is already assigned in one of the

VM-s. Apart from this, for the incoming job request,

resource monitoring creates a list called

Available_VMlist containing all VM-s matching the

requirements of the job along with AT, the

availability information.

Algorithm 1: Creation of Available_VMlist

Input: Resource list, Requested VMsize, AR list.

Output: List of matching VMs with AT.

 1. For t: Host Ht D t =1 to m

 Do For k: VM rk Ht k=1 to t do

 a. Find VMsize = Requested VMsize from

 the resource list.

 b. Find the AT using Eq. 2, 5.

 c. Add the VM which has not assigned any

 future AR request to available_VMlist.

 End for

 End for

 2. Return matching available_VMlist.

D. Scheduler

Scheduler component in CMS identifies a

suitable VM for an incoming request and assigns the

job for execution. This is done by obtaining a

matching VM list from the resource monitoring

component and applying the proposed algorithm to

assign the job on a VM rkt. From the VM list the

corresponding host is identified and scheduled to

execute the job.

E. Service Scheduler

The service scheduler dispatches the job request

to the corresponding host for execution.

F. Databases

The information about the incoming requests in

JQ is stored in the user request information database.

DC resource information database, on the other hand,

maintains the resource list, ARlist, and the

available_VM list, which gets updated whenever

new jobs are assigned to a VM on a host.

Received: April 30, 2017 180

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.19

4.1 Job scheduling in datacenter

 The objective of the scheduler is to minimize

the number of servers to save energy. To this end,

we propose Energy Aware VM Available Time

(EAVMAT) scheduling algorithm. When an AR or

IM request comes, CMS will first check the resource

availability in one of the active hosts from the list it

holds and allocates the request to the hosts. If no

free availability exists then checks for the earliest

available host and assigns to it. If none of the

possibility exists then pre-empts the request to

allocate in the existing host itself without switching

on the new host. If more workload comes and

existing active hosts are not enough then the off

state hosts are bring into on state. Since AR/IM jobs

can preempt BE request the only scenario where an

AR/IM job is rejected is when resources are

reserved by other AR jobs at the required time and

not enough resources left for the current job in any

active host and idle hosts.

Algorithm 2: Energy Aware VM Available Time

(EAVMAT) scheduling algorithm.

Input: Incoming job j in a list JQ, resource list,

available_VMlist.

 Output: Job allocation to a host.

1. For Each incoming job ji ∈ JQ ∀ i= 1 to J

2. IF type== BE request THEN

3. IF free resource is available in active

host at the requested time then allocate the

request.

4. ELSE IF find the Ht from active or idle

host with minimum EAT which is not

assigned any AR request

5. Allocate the request.

6. ELSE put in the backfill queue.

7. IF type== IM request THEN

8. IF free resource is available in a active

host at the requested time then allocate the

request.

9. ELSE IF find the Ht from active or idle

with minimum EAT which is not assigned

any AR request

10. IF available (EAT(Vkt)==ST(ji))

THEN

11. Allocate the request.

12. ELSE call preemption();

13. IF type== AR request THEN

14. Pick first host from the list.

15. IF available resource is

 ST(ji) !≤ ST(jARassigned)t !≤ FT(ji) &&

(ST(ji) !≤ FT(jARassigned)k !≤T(ji)) THEN

16. Allocate the request.

17. ELSE call preemption();

18. ELSE reject the request.

19. Update the job list RQ

20. End while

Preemption()

21. Get all BE job in the host for the time

interval T and check for flag status 1.

22. For(s=1 to number of BE jobs in a host

23. IF type==IM request THEN

24. IF (EAT(Vkt)==ST(ji)) THEN

25. Preempt the current BE request

and schedule the incoming request on Ht

26. ELSE type==AR request

27. IF (ST(jassigned)t==ST(ji)

 jassigned RQt THEN

28. Preempt the current BE request

and schedule the incoming request on Ht

29. End for.

5. Experiments and results

 In this section we present an evaluation for

our algorithm in terms of energy benefits and

performance. In order to evaluate our algorithm in a

large scale set up and calculate energy efficiency

thereof, we expanded the CloudSim toolkit [17] to

simulate Cloud architecture and perform our

experiments.

5.1 Simulation set up

 The implementation has been accomplished

by modifying the original source code of the

simulator that was written in the Java. We

considered the workload as [18] having AR and BE

mode requests. An additional set of IM jobs are

interleaved in between to generate the mix of the

three modes (AR, IM, BE) of requests randomly.

From that we employed 3 sets of 1000 jobs and

evaluated. Energy parameters are taken from [19]

which depicts the real time values. Values assigned

in simulation are given in Table 2.These parameters

are kept constant at these values between different

runs while comparing the results. We compared

the result with four existing algorithms to see the

scheduling performance and energy saving. Since

the adopted method of V-MCT [12] and credit

Scheduling [13] which are non-energy aware

Received: April 30, 2017 181

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.19

Table 2. Values assigned in simulation.

Specification Value

Number of host 50

Number of VMs 100 (30 small, 30 medium, 20

large, 20 X- large)

Number of

requests

100-1000

Energy at active

state -HP Xeon

315(Watts)

Idle state 259.5(Watts)

Stand by state 18(Watts)

existing algorithm are relatively similar to our

proposed work. We considered these two algorithms

for comparing our scheduling performance. To

check the energy efficacy, MBFD scheduling [7]

and DVFS [9] energy algorithm are considered,

which exploits host utilization and migration of VM

for energy saving.

5.2 Performance metrics

Various performance metrics were taken into

consideration in order to measure and evaluate

the proposed scheduling algorithms. These metrics

include makespan, success rate, throughput, CPU

utilization, energy consumption and energy saving.

Success rate:
 The success rate is the ratio of number of jobs

executed successfully to the total number of jobs

submitted.

Makespan:
 The makespan represent the maximum

finishing time among all received jobs per unit

time. This parameter shows the quality of job

assignment to resources from the execution time

perspective.

CPU utilization:
It is a ratio between the used capacity of CPU to

the total CPU capacity of a host of a given time.

Energy Consumption:
 Summation of the energy consumption of hosts

in on state at a time.

5.3 Result analysis

 We have conducted the simulation three times

with the randomly generated workload and the

results are obtained. These results are plotted as

graphs and analyzed. The number of AR job and

average duration of AR job highly influences the

scheduling decision which, in true, affects the

successful execution of the submitted requests [20].

In order to find the percentage of AR job in our

workload, we conducted an experiment where the

percentage of AR request varied to observe the

effect of different percentage of AR jobs in a

workload. We have taken a total of 100 requests,

which contains a mix of three types of requests (AR,

IM, BE) and the success percentage of these sets is

plotted as shown. We find that the success rate

drastically reduced for IM request when more AR

requests are present in the workload due to the

unavailability of the resource. Hence we consider

the number of AR jobs in our workload submitted

list is 20% for further evaluation of other metrics. It

can be observed from Fig. 2, in that our algorithm

has high success rate for AR request. We attained

the guaranteed service for the AR request by

preemption, which is our goal.

However, since the other two algorithms didn’t

consider the job classification, we analyzed metrics

commonly used for the evaluation of scheduling

algorithms. To find out the number of jobs executed

successfully (throughput) we increased the number

of incoming jobs as multiples of 100 and calculated

the values for other metrics to evaluate our proposed

algorithm.

Success rate of the algorithms are plotted in Fig.

3, where our proposed algorithm shows better

results than other two algorithms due to pre-emption

nature of the proposed algorithm. When AR and IM

request needs to be scheduled, the BE request is

preempted and kept in the backfill queue and hence

the same host can accommodate more requests than

the other two algorithms.

Figure.2 Success rate of proposed algorithm

0

20

40

60

80

100

200 400 600 800 1000

S
u
cc

es
s

ra
te

 i
n
 p

er
ce

n
ta

g
e

Number of submitted requests

AR request IM request BE request

Received: April 30, 2017 182

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.19

Figure.3 Success rate of scheduling algorithms

Figure.4 Comparison of utilization in percentage

Figure.5 Comparison of makespan

In order to achieve better CPU utilization, we

have considered the earliest available time of the

resource to accommodate more number of requests

on a same host, which is reflected in Fig. 4. Though

VMCT employs minimum completion time, VMCT

performs worse than others in utilization, because it

takes the completion time of VM but not of same

host. Therefore it schedules the requests across all

the nodes arbitrarily reducing the CPU utilization of

the hosts.

On the other hand, since credit scheduling uses

user priority and task length to allocate a VM, it

ensures the utilization by taking VM of finishing

Host. However, they schedule based only on the

lower task length of the host, thereby not fulfilling

the basic requirements of assigning jobs to hosts.

Therefore we conclude, EAVMAT has achieved the

highest success rate and utilization in all cases

compared to the other algorithms. This is mainly

due to the fact that EAVMAT attempts to select

the most suitable host that can rapidly respond

and execute the given job.

 Generally, the cost for preemption is an

increased makespan. From Fig. 5, we notice that for

EAVMAT, the makespan is higher than the other

two algorithms when the number of jobs increases.

Because, when more requests are submitted, BE

request gets preempted and backfilled. Therefore

finish time increases, which results in increase in

total completion time. But it does not affect the

performance, since BE jobs are non-deadline

sensitive requests. VMCT algorithm performed

better in makespan for more requests compared to

the proposed algorithm since it does not consider

preemption of any request, and arbitrarily chooses

the finishing VM to assign the job. But it delays the

other jobs to execute if any BE job is assigned.

Hence, the success rate and throughput decreases

which results in more failed job requests.

From the results we observe that the credit

algorithm performs the worst among all algorithms

considered with respect to makespan, success rate

and utilization. This is because the credit algorithm

attempts to pick a host from a computed value based

on user priority and task length. For each job it

computes a priority vector where the less priority

jobs are preempted. This leads to the starvation and

failure of jobs having less priority. Also, computing

priority and accessibility lists take time, which

further contribute to the increased makespan.

Proposed EAVMAT algorithm shows improvement

over the other two algorithms in terms of success

rate and resource utilization since it takes the

advantage of preemption and earliest available

resources to achieve better results.

0

20

40

60

80

100

100 200 300 400 500 600 700 800 900 1000

S
u
cc

es
s

ra
te

 i
n

%

Number of Requests

EAVMAT VMCT Credit

0

10

20

30

40

50

60

70

80

90

100

200 400 600 800 1000

C
P

U
 U

ti
li

za
ti

o
n
 i

n
 %

Number of Requests

EAVMAT VMCT Credit

0

2000

4000

6000

8000

10000

12000

M
ak

es
p

an
 i

n
 m

se
c

Number of Requests

EAVMBT VMCT Credit

Received: April 30, 2017 183

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.19

Figure.6 Comparison of energy consumption

Figure.7 Comparison of energy saving

Energy metrics related results are shown in Fig.

6, 7. In order to show the energy efficacy of the

proposed algorithm, 50 hosts are considered and the

numbers of requests are gradually changed. The

performance is compared with two energy aware

existing algorithms and one non energy aware

algorithm. Credit algorithm is non-energy aware

algorithm.
In energy consumption, our proposed algorithm

consumes lesser than DVFS and similar to MBFD

algorithm. The advantage of our algorithm is that it

does not take into consideration of VM migration,

which is definitely a performance tradeoff. DVFS

considers optimal frequency of each host and

calculates a performance–power ratio of each host to

allocate VM. Employing this in a highly

heterogeneous environment is time consuming

process. We achieved a similar energy saving like

MBFD without migration, more than DVFS without

consolidation which involves migration by

considering job type, preemption and earliest

available time of a host. It can be observed that the

energy saving is about 2% to 46% with respect to

credit algorithm which is a significant improvement

over the non-energy aware algorithm, 1% to 7%

than the energy aware algorithms.

6. Conclusion

In this paper, we presented an energy aware job

scheduling algorithm in a cloud environment,

EAVMAT. This paper explored the problem of job

to VM mapping in cloud providers’ datacenter. Our

original contribution is that the proposed scheduling

algorithm minimizes energy consumption and

maximizes the resource utilization. We exploited job

preemption as a way to reduce energy consumption

in datacenters, where some requests have

preemptive priority over the others. Significant

energy savings can be obtained depending on

system loads. At low load the gain is 46% which is

significant. However, although at high loads the

savings is less, it still remain sufficiently valuable.

From the results we could conclude that our

algorithm performs better in other metrics such as

makespan, throughput, and success rate as well.

Further investigation could be in the direction of the

utility of this algorithm in other cloud scenario such

as in a federated cloud environment including

deadline sensitive request type also.

References

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud

Computing: State-Of-The-Art and Research

Challenges”, Journal of internet services and

applications, Vol.1, No.1, pp.7-18, 2010.

[2] J. Leverich and C. Kozyrakis, “On The Energy

(In) Efficiency of Hadoop Clusters”, ACM

SIGOPS Operating Systems Review, Vol.44,

No.1, pp.61-65, 2010.

[3] W. Lang and J.M. Patel, “Energy Management

for Mapreduce Clusters”, Proceedings of the

VLDB Endowment, Vol. 3, No.1-2, pp.129-139,

2010.

[4] K.X. Miao and J. He, “Cloud Computing and

Open Datacenters”, Intel®Technology Journal,

Vol.16, No.4, 2012.

[5] S. Loganathan and S. Mukherjee,

“Differentiated Policy Based Job Scheduling

with Queue Model and Advanced Reservation

Technique in a Private Cloud Environment”, In:

Proc. of International Conf. On Grid and

Pervasive Computing, pp. 32-39, 2013.

[6] D. Kusic, N. Kandasamy, and G. Jiang,

“Combined Power and Performance

Management of Virtualized Computing

Environments Serving Session-Based

1000
3000
5000
7000
9000

11000
13000
15000
17000

100 300 500 700 800 900 1000

E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 i

n
 K

J

Number of requests

Credit DVFS EAVMAT MBFD

0

10

20

30

40

50

60

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

E
n
er

g
y
 S

av
in

g
 i

n
 %

Number of Requests

EAVMAT MBFD DVFS Credit

Received: April 30, 2017 184

International Journal of Intelligent Engineering and Systems, Vol.10, No.4, 2017 DOI: 10.22266/ijies2017.0831.19

Workloads”, IEEE Transactions on network and

service management, Vol.8, No.3, pp.245-258,

2011.

[7] A. Beloglazov, J. Abawajy, and R. Buyya,

“Energy-Aware Resource Allocation Heuristics

for Efficient Management of Data Centers for

Cloud Computing”, Future Generation

Computer Systems, Vol.28, No.5, pp.755-768,

2012.

[8] R.W. Ahmad, A. Gani, S.H.A. Hamid, M.

Shiraz, A. Yousafzai, and F. Xia, “A Survey on

Virtual Machine Migration and Server

Consolidation Frameworks for Cloud Data

Centers”, Journal of Network and Computer

Applications, Vol.52, pp.11-25, 2015.

[9] Y. Ding, X. Qin, L. Liu, and T. Wang,

“Energy Efficient Scheduling of Virtual

Machines in Cloud with Deadline

Constraint”, Future Generation Computer

Systems, Vol.50, pp.62-74, 2015.

[10] S. Selvarani and G.S. Sadhasivam, “Improved

Cost-Based Algorithm for Task Scheduling in

Cloud Computing”, In: Proc. of International

Conf. On Computational intelligence and

computing research, pp. 1-5, 2010.

[11] J.Li, M. Qiu, J. Niu, W. Gao, Z. Zong, and

X.Qin, “Feedback Dynamic Algorithms for

Preemptable Job Scheduling in Cloud Systems”,

In: Proc. of International Conf. On Web

Intelligence and Intelligent Agent Technology,

Vol.1, pp. 561-564, 2010.

[12] Y. Yang, Y. Zhou, Z. Sun, and H. Cruickshank,

“Heuristic Scheduling Algorithms For

Allocation Of Virtualized Network And

Computing Resources”, Journal of Software

Engineering and Applications, Vol.6, No.1,

pp.1-13, 2013.

[13] A. Thomas, G. Krishnalal, and V.J. Raj, “Credit

Based Scheduling Algorithm in Cloud

Computing Environment”, Procedia Computer

Science, Vol.46, pp.913-920, 2015.

[14] W. Smith, I. Foster, and V. Taylor,

“Schedulling with Advanced Reservations”, In:

Proc. of International Conf. On CCGrid, pp.

127 – 132, 2000.

[15] N.R. Kaushik, S.M. Figueira, and S.A.

Chiappari, “Flexible Time-Windows for

Advance Reservation Scheduling”, In: Proc. of

International Conf. On Modeling, Analysis, and

Simulation of Computer and

Telecommunication Systems, pp. 218-22, 2006.

[16] D.Meisner, B.T. Gold, and T.F. Wenisch,

“Powernap: Eliminating Server Idle Power”,

ACM Sigplan Notices, Vol.44. No.3, pp. 205-

216, 2009.

[17] R.N.Calheiros, R.Ranjan, A. Beloglazov, C.A

De Rose, and R. Buyya, “Cloudsim: A Toolkit

for Modeling and Simulation of Cloud

Computing Environments and Evaluation of

Resource Provisioning Algorithms”, Software:

Practice and experience, Vol. 41, No.1, pp.23-

50, 2011.

[18] B. Sotomayor Basilio, Provisioning

Computational Resources Using Virtual

Machines And Lease, Report, University of

Chicago, 2010.

[19] S. Long, Y. Zhao, and W. Chen, “A Three-

Phase Energy-Saving Strategy for Cloud

Storage Systems”, Journal of Systems and

Software, Vol. 87, pp.38-47, 2014.M.A. Salehi,

P.R Krishna, K.S. Deepak and R. Buyya,

“Preemption-Aware Energy Management in

Virtualized Data Centers”, In: Proc. of

International Conf. on CLOUD, pp. 844-85,

2012.

