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Abstract: Detection of malware has become more challenging today because of the advancements and technologies 

adapted to corrupt the network or the devices. Static, dynamic and hybrid malware detection analysis methods have 

failed to provide complete malware detection. Hence in this work, a bio inspired sequence alignment method used in 

bioinformatics to compare the similarity between amino acid sequences in protein structures has been adapted to 

give the best similarity score to detect malwares. The state of art sequence alignment methods like Smith Water Man 

Algorithm (SWMA) used in bio informatics suffers from the problem of more memory utilization and computation 

time which is in the order of n2 ie., (O(n2)) and hence in this work an efficient sequence alignment algorithm 

(ESSA) has been proposed to address the problem of memory utilization thereby making the memory utilization and 

computation time  to the order of n ie., (O(n)) there by making the detection rate higher. It is also clear from the 

results that the similarity score is high when the sequence length is small. The accuracy of the prediction rate of 

malware and benign increases. 
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1. Introduction 

If we get in to the history of malware analysis 

techniques, it started with static analysis then 

dynamic analysis and some researchers have worked 

on hybrid techniques also. Due to the influence of 

bio inspired methods and its similarity in analysing 

the DNA sequence, it has been deployed in the 

computer malware analysis and proved to be an 

interesting and an effective method. 

The McAfee labs report [1] on 2016 Threat 

predictions claims that behavioural analysis is the 

best suited approach for detecting the attacks. 

Unfortunately, there seems to be no solid analysis 

technologies available to gain the upper hand .It is 

predicted to take another five years. Behavioural / 

dynamic analysis is the next big weapon in the 

security defence tool kit. 

Behavioural analytics are still in its early stages 

and being challenging to extract meaningful 

information from massive dataset and will definitely 

mature quickly in the next five years if the skills in 

machine learning and analytics address the problem 

[1]. 

Static analysis: Malware detection at early stages 

used static analysis [2-3]. Static analysis identifies 

the malicious code without execution of binary 

codes [4].Hackers are clever enough to make the 

binary code analysis very difficult by emerging with 

more sophisticated techniques of obfuscation, 

polymorphism, encryption and packing [5-6]. 

Dynamic analysis: In dynamic analysis the 

benign and the malware executable are executed in a 

packed virtual environment called sandbox and there 

by their behaviour is traced. Dynamic analysis can 

be done using two techniques: Control flow graph 

analysis and API call sequence analysis. Researches 

claim that there is a research Gap in dynamic 

analysis since it is not accurate as static analysis and 

hence the researchers have ample challenges to 

reduce the False Positive Rate (FPR) thereby 

increasing the accuracy [6-7]. 
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DNA sequence Alignment: The DNA sequence 

alignment algorithm provides a solution to match 

the maximum common sequence of two target 

sequences. They are found to provide better 

accuracy than other methods [8]. The research gap 

available with this method is the use of memoization 

techniques for sequence alignment which suffers 

from space complexity. 

The organization of the report is as follows: 

In section 2 the survey of the related work is 

discussed, section 3 explains the proposed work and 

the methodology in detail, section 4 explains the 

proposed ESAA method with its working and 

calculation, sections 5&6 concludes the paper with 

experimental results.   

2. Literature survey 

Natani et al [8] proposed a method for the 

malware detection by using the API frequencies and 

ensemble based classifiers. In their work, authors 

had used multi-classifiers instead of a single 

classifier to analyze malware. They analyzed 100 

malicious behaviors and choose 24 APIs used for 

that malicious behaviors. Sand box were used to 

measure frequency of API. Finally the accuracy was 

measured. 

Wagener et al. [9] extracted the behavior 

information of malware by observing that malware 

invoked the system functions. Then, they compared 

the malware’ API invocation information and 

calculated similarities among malware variants. 

Their proposed method defined binary code for each 

API. The binary code was used to store API 

invocation patterns of malware. For similarity 

calculation, they used an edit distance matrix, and 

also used their own formula. Finally they calculated 

the similarities of malware variants. 

Xu et al [10] proposed the approach for the 

various malwares detection in the Windows 

platform. They extracted the API call sequences by 

analyzing PE binary code and calculated the 

similarities of the API sequences between the 

unknown malware and the known one. They 

implemented a PE binary parser tool themselves, 

because the third-party disassemblers extract some 

unnecessary features of malware samples and these 

unnecessary features made the performance of the 

analysis system very low. This tool generates the 

API sequences of malware, and if the malware are 

known, the sequences were stored in asignature 

database system. Those sequences are compared 

with the API sequences of unknown malware, then 

the similarity of the two sequences is calculated. 

Liu Wu et al [11] investigated techniques of 

malware behavior extraction based malicious API 

invocation, and presented the formal Malware 

Behavior Feature (MBF) extraction method. This 

Malware Behavior Feature was expressed in 

Boolean, and they proposed the malicious behavior 

feature based malware detection algorithm. Finally, 

they designed and implemented the MBF based 

malware detection system, and the experimental 

results showed that the accuracy rate of their MBF 

based detection system is high and it can detect 

newly appeared unknown malware. 

Martin Apel et al [12] investigated distance 

metrics to detect polymorphic malware effectively. 

Distance metrics are different distance measures in 

detail and they discussed desirable properties of a 

distance measure. They focused on behavioral 

features of malware and compared and 

experimentally evaluated different distance 

measures for malware behaviors. They selected an 

appropriate distance measure for grouping malware 

samples based on similar behaviors. 

Youngjoon Ki et al [13] in their work used the 

methods of DNA cluster alignment, MSA and used  

API and control flow as features to  detect malware 

based on similarity. Randomly taken 23,080 

malware samples from the malware dataset of 

malicia project and virus total were used as dataset. 

In this dataset 2727 kinds of API’s were used. Their 

method was able to overcome the need of time and 

memory of MSA. Kernel level API’s were not 

addressed. 

Eva Czabarka et al [14] had formulated their 

work using Chain termination method. This model 

allows determining how much sequencing of 

shortgun to be performed. The dynamic 

programming algorithm has been used. Their results 

show that Automated DNA sequencing and the 

analysis lead to efficiency gain. 

Kyeom Cho et al [15] had discussed in their 

work about MSA which is used to measure 

similarities among multiple malware variants. 

Sandbox tool is used to extract API call sequences 

of malware. Sandbox and modified clustal omega is 

used for experiments. Samples- 15 malware families 

are collected from VxHeaven. This system measures 

classification accuracy of API patterns of each 

malware families using clustering technique, if API 

call sequence of malware sample is long process 

then MSA is not suitable. 

Kyeom Cho et al [16] in their work used 

Sequence alignment method -n-gram-MBF 

extraction method-Local alignment method-Global 

alignment method-Malware similarity calculation 

method. Sequence alignment method detects 
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similarity in parts of the malware’s API call 

sequences-Malware variants have different 

structural static features like mnemonic frequencies 

controls flow graphs.Malware samples from 

VxHeaven.150 malware samples from 10 malware 

families,each family has 15 malware variants.  

Piero Fariselli et al [17] in their paper has 

describe a general dynamic programming-like 

algorithm (MaxSubSeq, Maximal SubSequence) 

specifically designed to optimize the number and 

length of segments with constrained length in a 

given protein sequence. 

Vivek Kumar et al [18] in their work had used 

Multiple Sequence analysis, Needleman-Wunsch, 

Smith waterman technique to conservation of 

variable length of biological sequences converted to 

fixed length sequences by inserting and deleting the 

gaps. Their tests fail with large amount of dataset. 

Yi Chen et al [19] proposed an experiment of 

converting the hexadecimal code of viruses and 

worms to amino acids and ASCII form are more 

effective and also separating worms from viruses. 

Further work is required to ensure that the insertion 

of gaps does not lead to such gaps being included in 

the rules for producing signatures.  

3. Proposed work 

In the proposed work, the detection of malware 

using sequence alignment given in Fig.1 is as 

follows: [20] 

a) Collection of malware and benign samples 

through dynamic execution 

b) API call sequence retrieval from the dynamic 

behaviour 

c) N-gram sequence feature extraction 

d) Application of ESAA algorithm to the n-gram 

sequence 

e) Testing the classifiers for accuracy with the 

test data 
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Figure.1 Architecture of malware analysis 
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Figure.2 Malware Log File (Excel Sheet containing API 

Call sequence data) 

 
File name N-gram Frequency 

XTrojan.Win32. 

Alcapul 

RegOpenKeyExW 

GetProcAddress 

HeapAlloc 

15 

Figure.3 Map data structure 

 

3.1 Methodology [20] 

Dataset creation: 1696 malware executable was 

collected from www.virusshare.com[20] and 1042 

benign files were collected from the windows 

applications tested under McAfee anti-virus.  The 

dataset was created by executing the malwares and 

logging the behaviour it by executing it in a virtual 

environment [20] using cuckoo sandbox [20].    

3.2 API call sequence extraction [20] 

The API call sequences were used as features by 

extracting it from the logs. 

3.3 Feature selection and data representation [20] 

The n-gram call sequence is extracted from the 

API. In this work, 3-grams & 4-grams were 

extracted for analysis. The data representation is 

made as a feature set with 645 columns and 482. 

The columns indicate 3- gram & 4- grams and the 

column indicate the classes. 

3.4 Classification by sequence alignment [20] 

The ESAA algorithm is applied on the extracted 

2-gram & 3-gram API call sequence in order to 

perform the classification by sequence alignment. 

3.5 Architecture 

The data collected from source[20] is given to a 

malware analyzer for the creation of log files and 

then the API call sequence is extracted from the 

executable. With the available API N-grams are 

extracted to form data representation from where the 

dynamic feature vector is created and training data is 

given for classification using ESAA . 

3.5.1. Malware Analyser [20] 

An Executable File is given as the input to this 

module in order to classify it as either Benign or 

Malware, this could be done by first gathering the 

behavioural data of that file. The Behavioural data is 

collected by dynamically executing the file in a 

secured environment called sandbox environment. 

The Malware Analyser module interprets the 

Hexadecimal code format got from the executable to 

API Call Sequence data shown in Fig.2.  

3.5.2. API Call Sequence Extractor [20] 

The excel file containing API Call sequence data 

is given as an input to this module.The process of 

creating a data structure is done here.The API Call 

sequence data presented by the malware analyser 

module  in the form of excel sheet is read using Java 

Apache POI library and a data Structure is created. 

The data Structure used to Store API Call Sequence 

Data is a HashMap. The final output of this module 

is API Call Sequence. 

3.5.3. N-Gram Extractor [20] 

This module takes the data Structure obtained 

from the extractor module containing API Call 

Sequence Data. The process of N-Grams creation is 

done and stored in Map Data structure. The output 

of the module is a map containing File name, its 

related n-grams and frequency of the n-gram as 

shown in Fig.3. 

3.5.4. Feature Selection and Feature Creation [20] 

The 3-Gram and 4-Gram API call presented in 

Map Data structure is given as an input to this 

module .The feature Vector is created ,which is the  

combination of 0’s and 1’s. If the 3-gram or 4-gram 

is present in the particular file then it is marked as 1 

else 0. The output obtained from this module is an 

excel file containing feature vector as shown in Fig. 

4. 

explorer0x6ACHeapAllochHeap:0x90000, dwFlags:0x0, dwBytes:0x2800xFD4E8

explorer0x6ACHeapFreehHeap:0x90000, dwFlags:0x0, lpMem:0xFD4E80xFD701

explorer0x6ACHeapAllochHeap:0x90000, dwFlags:0x8, dwBytes:0x4340x149BA8

explorer0x6ACHeapAllochHeap:0x90000, dwFlags:0x0, dwBytes:0x380xF7048

explorer0x6ACHeapFreehHeap:0x90000, dwFlags:0x0, lpMem:0xF70480xF6B01

explorer0x6ACHeapFreehHeap:0x90000, dwFlags:0x0, lpMem:0x149BA80x1

explorer0x6ACIsBadReadPtrlp:0xDEEF50, ucb:0x100x0

explorer0x6ACIsBadReadPtrlp:0xDEE8B4, ucb:0x100x0

explorer0x6ACIsBadReadPtrlp:0xDEE888, ucb:0x100x0

explorer0x6ACIsBadReadPtrlp:0xDEEAA0, ucb:0x100x0

explorer0x6ACIsBadReadPtrlp:0xDEECF8, ucb:0x100x0
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Figure.4 Feature Vector 

 

3.5.5. Similarity calculation  

The feature vector obtained from the previous 

module is given as input for similarity calculation. 

The Feature vector is provided to the Efficient 

Sequence Alignment Algorithm (ESAA) for finding 

the score and the similarity value for classifying the 

input executable as Benign or Malware.  

Similarity= Maximum score / Minimum sequence 

length 

4. Efficient sequence Alignment Algorithm 

(ESAA) 

Input: string s1 of length m, string s2 of length n 

1. The API features of the raw dataset are 

compared with the other features in the reduced 

feature vector called RFList. 

2. Two single dimension arrays are declared. 

2.1 First column in the matrix is taken as 

previous row that is first array 

2.2 Current row values are calculated in the 

second array. 

3. Initially, the first row and column values are 

marked zero. 

3.1 Let i==1 

3.2 Declare an array prevRow[], Let x=0 and 

x<seq2.length prevRow[x]=0; 

3.3 Declare  an array currRow[];  

 currRow[0]=0; 

4. Compute  the left value, up value and diagonal 

value of each cell using 

leftVal=currRow[j-1]; 

upVal=prevRow[j]; 

diagVal=prevRow[j-1];  

5. If  the sequence 1 and the sequence 2 

taken for matching are equal then 

temp = 

max(leftVal+GAP,upVal+GAP,diagVal+MATC

H);    else 

temp=max(leftVal+GAP,upVal+GAP,diagVal+

MIS_MATCH); 

6. If temp value computed in the previous 

step is less than zero then current row 

value is marked zero otherwise the temp 

value computed is take as the current 

row value.   

currRow[j] = temp<0 ? 0 : temp 

7. Compute the maximum score value using 

if(temp>max_score) 

max_score=temp; 

8. Output: value of optimal alignment 

4.1 Working of ESAA 

Consider an alignment of two sequences S and T. 

The computation is based on matrix say M. Create 

an NxN integer matrix. N is sequence length (both S 

and T).  Compute M[i][j] based on score matrix and 

optimum score. Consider the following two 

sequences:  

S: c c c t a g g t c c c a 

T: c g g g t a t c c a a 

Step 1: Computing matrix alignment, M is 

created as follows in Fig.5 by taking the string 

elements S in columns and T in rows. 

Step 2: Aligning S to gaps. The first values of 

the column are marked 0 by default as shown in 

Fig.6. 

T: - - - - - - - - - - - - 

S: c c c t a g g t c c c a 

 HeapAlloc HeapSize HeapAlloc GetCurrentThreadId LocalFree GetCurrentThreadId HeapFree HeapFree HeapAlloc HeapFree HeapAlloc HeapFree RegEnumKeyW GetCurrentThreadId GetCurrentProcessId GetCurrentThreadId GetCurrentProcessId GetCurrentThreadId GetCurrentThread RegOpenKeyExW HeapAlloc HeapSize HeapAlloc HeapSize IsBadWritePtr IsBadReadPtr IsBadReadPtr IsBadWritePtr GetCurrentThreadId RegEnumKeyExW GetCurrentThreadId GetCurrentThreadId HeapAlloc HeapFree RegQueryValueW GetCurrentThread GetCurrentThread RegQueryValueExW HeapAlloc LocalFree LocalFree RegCloseKey HeapAlloc HeapAlloc LocalAlloc

0 1 1 1 1 1 0 1 0 1 1 1 1

0 1 1 1 0 1 0 0 0 1 1 1 1

0 1 1 1 0 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1

0 1 1 1 0 1 0 1 0 1 1 1 1

0 1 1 1 0 1 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1
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Figure.5 Initial matrix alignment 

 

 
Figure.6 Filling first column with zero 

 

 
Figure.7 Filling first row with zero 

 

 
Figure.8 Matrix Calculation 

 

Step 3: Aligning T to gaps: All the first values of 

the row are also marked 0 by default as shown in 

Fig.7. 

T: c g g g t a t c c a a 

S: - - - - - - - - - - - -  

Step 4: The score for each element in the cell of 

the matrix is computed by a scoring process as 

shown in Fig.8. 

4.2 Calculations 

Step 1: To find a cell value in the matrix M[i][j], 

the following initialization is made 

 M[i][0]= 0 M[0][i]= 0;   

GAP= -1, MATCH= 1, MISMATCH = -1   (1) 

Step 2: Each cell value is found by calculating 

the (i) upper cell value+ Gap, (ii)left cell value 

+Gap, (iii)Diagonal cell value +Match/ Mismatch. 

While calculating Match /Mismatch compare the 

row & column variable. 

Step 3: If the final value obtained for the call is 

less or negative then it is considered to be ‘0’. 

Step  4: The final matrix created by finding the 

value for each cell using Eqs.(1), (2) and step 2 & 3 

gives the maximum score in it. 

 Step 5: Applying the non-memoization  

technique. 

 

[ 1][ 1] [ ][ ]

[ ][ ] max [ 1][ ]

[ 1][ 1]

i j i j

i

j

M i j S s t s t

M i j M i j s

M i j d t

    
 

   
       (2) 

 

4.3 Memoization & Non-memoization technique 

Memoization Technique 

 Consumes Huge RAM. 

 Cannot be applicable for Millions of 

records. 

Ex: 100000 * 100000 rows = 10000000000 * 4 

bytes = 40000000000/(109) = 40GB RAM!!! 
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Table 1. Score and similarity values 

S.No File Category Score Similarity 

1 Xaddress book.xlsx 12438 0.99 

2 Xcalculator.xlsx 5051 0.42 

3 XTrojan-

Spy.Win32.Delf.di.apm.xlsx 

1419 0.11 

4 XVirus.Win32.BingHe-

ee.apm.xlsx 

294 0.22 

5 XWorm.Win32.Bumerang-

ee.apm.xlsx 

290 0.04 

 
Table 2. Sample output run 

run: 

C:\Users\Dharaneesh N\Documents\dataset-used\both 

Malware and Benign 

File Name Xaddress book.xlsx Score 12438 Similarity 

0.9999196076855053 

File Name Xadobe distiller.xlsx Score 2199 Similarity 

0.17678269957392073 

File Name Xalcohol.txt.xlsx Score 2581 Similarity 

0.24769673704414588 

File Name Xbackgammon.xlsx Score 5451 Similarity 

0.47466039707419017 

File Name Xburstcopy.txt.xlsx Score 2531 Similarity 

0.36777099680325487 

File Name Xcalculator.xlsx Score 5051 Similarity 

0.42563411140136514 

File Name Xcheckers.xlsx Score 5233 Similarity 

0.4477624711217592 

File Name Xclone dvd.xlsx Score 4131 Similarity 

0.3818988629009892 

File Name Xdaemon.xlsx Score 4663 Similarity 

0.5379556991232118 

File Name Xdap.xlsx Score 4317 Similarity 

0.34705362167376796 

File Name Xdataobjectviewer.xlsx Score 5379 Similarity 

0.5493259803921569 

File Name Xddespy.xlsx Score 4545 Similarity 

0.3653830693785674 

File Name Xdeviceemulator.xlsx Score 354 Similarity 

0.028458879331135944 

File Name Xdigsby.xlsx Score 3952 Similarity 

0.31771042688318996 

File Name Xdiskdefragment.xlsx Score 5545 Similarity 

0.44577538387330173 

File Name Xdjvu reader.xlsx Score 2930 Similarity 

0.2355494814695715 

File Name Xdvi viewer.xlsx Score 5221 Similarity 

0.4197282739770078 

File Name Xeainfo.xlsx Score 4740 Similarity 

0.3810595707050406 

File Name Xeareg.xlsx Score 4772 Similarity 

0.3836321247688721 
 

 The aligned sequence can be retained 

 Space Complexity – O(n2) 

Non–Memoization Technique 
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Figure.9 Similarity vs. score 

 Just remember the current and the 

previous row. 

 Keeps track of the maximum similarity 

score. 

 Space Complexity – O(n) 

 Can be applicable for Millions of 

records too. 

 The aligned sequence cannot be retained 

5. Results and Discussion 

An ‘n’ number of runs were made to find the 

maximum score and the similarity of each 

executable to distinguish it as malware or benign. 

The below table 1 gives the sample output of the run. 

The similarity index of benign files are found to be 

greater than 0.4. The similarity is calculated using 

Eq. (3) 

 

Similarity= Maximum score  

/ Minimum sequence length     (3) 

 

5.1 Similarity vs. score value 

From Fig.9, it is clear that as the score value 

increases the similarity of the sequence also 

increases making the prediction rate and accuracy 

high. Table 2 denotes the sample output of the run. 

5.2 Memoization vs. non memoization technique 

The existing sequence alignment algorithm called 

Smith Water Man Algorithm(SWMA) uses a 

technique called memorization technique takes more 

memory for creating the matrix. For instance,  

 

• Ex: 100000 * 100000 rows = 10000000000 

* 4 bytes = 40000000000/(10^9) = 40GB RAM! 
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which requires a multidimensional storage and 

thereby making the memory utilization as O(n2). 

The proposed Efficient Sequence Alignment 

Algorithm (ESAA) method uses the non-

memoization technique which considers only the 

current row and column value for calculating the 

current cell value and hence uses two one 

dimensional arrays for storage thereby decreasing 

the memory utilization by O(n). This can be viewed 

in Fig.10. 

5.3 Similarity Vs. Length of sequence 

The length of the sequence plays a vital role in 

the similarity calculation. When the length increases 

similarity decreases. Hence the proposed algorithm 

decreases the length of the sequence is reduced by 

the gap values which is depicted in Fig.11. 
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Figure.10 ESAA vs SWMA 
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Figure.11 Similarity vs. length of sequence 

 

6. Conclusion & Future Work 

From the experimental results it is concluded 

that the proposed ESAA method used in this work 

for sequence alignment reduces the memory 

utilization. The existing sequence alignment 

methods shows a memory utilization by order of n2 

[O(n2)],whereas the proposed method reduced the 

memory utilization by order of n [O(n)]. Also the 

length of the sequence is maintained by the gap 

values so that the similarity increases there by 

increasing the score value which will influence the 

prediction accuracy. 

The main limitation of this proposed ESAA 

method is it cannot backtrack since the previous 

values cannot be retained. As a future work the 

algorithm can be modified to perform backtracking 

of the cell values and to retain the previously 

aligned sequence there by not compromising on the 

memory utilization. 
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