
Received: March 1, 2017 290

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.33

ESAA: Efficient Sequence Alignment Algorithm for dynamic malware analysis in

windows executable using API call sequence

Asha Jerlin1* Jayakumar Chinnappan2

1Vellore Institute of Technolog University,Vellore, India

2Sri Venkateswara College of Engineering ,Sriperumputhur, India
* Corresponding author’s Email: ashajerlin.m@vit.ac.in

Abstract: Detection of malware has become more challenging today because of the advancements and technologies

adapted to corrupt the network or the devices. Static, dynamic and hybrid malware detection analysis methods have

failed to provide complete malware detection. Hence in this work, a bio inspired sequence alignment method used in

bioinformatics to compare the similarity between amino acid sequences in protein structures has been adapted to

give the best similarity score to detect malwares. The state of art sequence alignment methods like Smith Water Man

Algorithm (SWMA) used in bio informatics suffers from the problem of more memory utilization and computation

time which is in the order of n2 ie., (O(n2)) and hence in this work an efficient sequence alignment algorithm

(ESSA) has been proposed to address the problem of memory utilization thereby making the memory utilization and

computation time to the order of n ie., (O(n)) there by making the detection rate higher. It is also clear from the

results that the similarity score is high when the sequence length is small. The accuracy of the prediction rate of

malware and benign increases.

Keywords: Malware analysis, Sequence alignment, Memory utilization, Similarity, benign.

1. Introduction

If we get in to the history of malware analysis

techniques, it started with static analysis then

dynamic analysis and some researchers have worked

on hybrid techniques also. Due to the influence of

bio inspired methods and its similarity in analysing

the DNA sequence, it has been deployed in the

computer malware analysis and proved to be an

interesting and an effective method.

The McAfee labs report [1] on 2016 Threat

predictions claims that behavioural analysis is the

best suited approach for detecting the attacks.

Unfortunately, there seems to be no solid analysis

technologies available to gain the upper hand .It is

predicted to take another five years. Behavioural /

dynamic analysis is the next big weapon in the

security defence tool kit.

Behavioural analytics are still in its early stages

and being challenging to extract meaningful

information from massive dataset and will definitely

mature quickly in the next five years if the skills in

machine learning and analytics address the problem

[1].

Static analysis: Malware detection at early stages

used static analysis [2-3]. Static analysis identifies

the malicious code without execution of binary

codes [4].Hackers are clever enough to make the

binary code analysis very difficult by emerging with

more sophisticated techniques of obfuscation,

polymorphism, encryption and packing [5-6].

Dynamic analysis: In dynamic analysis the

benign and the malware executable are executed in a

packed virtual environment called sandbox and there

by their behaviour is traced. Dynamic analysis can

be done using two techniques: Control flow graph

analysis and API call sequence analysis. Researches

claim that there is a research Gap in dynamic

analysis since it is not accurate as static analysis and

hence the researchers have ample challenges to

reduce the False Positive Rate (FPR) thereby

increasing the accuracy [6-7].

Received: March 1, 2017 291

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.33

DNA sequence Alignment: The DNA sequence

alignment algorithm provides a solution to match

the maximum common sequence of two target

sequences. They are found to provide better

accuracy than other methods [8]. The research gap

available with this method is the use of memoization

techniques for sequence alignment which suffers

from space complexity.

The organization of the report is as follows:

In section 2 the survey of the related work is

discussed, section 3 explains the proposed work and

the methodology in detail, section 4 explains the

proposed ESAA method with its working and

calculation, sections 5&6 concludes the paper with

experimental results.

2. Literature survey

Natani et al [8] proposed a method for the

malware detection by using the API frequencies and

ensemble based classifiers. In their work, authors

had used multi-classifiers instead of a single

classifier to analyze malware. They analyzed 100

malicious behaviors and choose 24 APIs used for

that malicious behaviors. Sand box were used to

measure frequency of API. Finally the accuracy was

measured.

Wagener et al. [9] extracted the behavior

information of malware by observing that malware

invoked the system functions. Then, they compared

the malware’ API invocation information and

calculated similarities among malware variants.

Their proposed method defined binary code for each

API. The binary code was used to store API

invocation patterns of malware. For similarity

calculation, they used an edit distance matrix, and

also used their own formula. Finally they calculated

the similarities of malware variants.

Xu et al [10] proposed the approach for the

various malwares detection in the Windows

platform. They extracted the API call sequences by

analyzing PE binary code and calculated the

similarities of the API sequences between the

unknown malware and the known one. They

implemented a PE binary parser tool themselves,

because the third-party disassemblers extract some

unnecessary features of malware samples and these

unnecessary features made the performance of the

analysis system very low. This tool generates the

API sequences of malware, and if the malware are

known, the sequences were stored in asignature

database system. Those sequences are compared

with the API sequences of unknown malware, then

the similarity of the two sequences is calculated.

Liu Wu et al [11] investigated techniques of

malware behavior extraction based malicious API

invocation, and presented the formal Malware

Behavior Feature (MBF) extraction method. This

Malware Behavior Feature was expressed in

Boolean, and they proposed the malicious behavior

feature based malware detection algorithm. Finally,

they designed and implemented the MBF based

malware detection system, and the experimental

results showed that the accuracy rate of their MBF

based detection system is high and it can detect

newly appeared unknown malware.

Martin Apel et al [12] investigated distance

metrics to detect polymorphic malware effectively.

Distance metrics are different distance measures in

detail and they discussed desirable properties of a

distance measure. They focused on behavioral

features of malware and compared and

experimentally evaluated different distance

measures for malware behaviors. They selected an

appropriate distance measure for grouping malware

samples based on similar behaviors.

Youngjoon Ki et al [13] in their work used the

methods of DNA cluster alignment, MSA and used

API and control flow as features to detect malware

based on similarity. Randomly taken 23,080

malware samples from the malware dataset of

malicia project and virus total were used as dataset.

In this dataset 2727 kinds of API’s were used. Their

method was able to overcome the need of time and

memory of MSA. Kernel level API’s were not

addressed.

Eva Czabarka et al [14] had formulated their

work using Chain termination method. This model

allows determining how much sequencing of

shortgun to be performed. The dynamic

programming algorithm has been used. Their results

show that Automated DNA sequencing and the

analysis lead to efficiency gain.

Kyeom Cho et al [15] had discussed in their

work about MSA which is used to measure

similarities among multiple malware variants.

Sandbox tool is used to extract API call sequences

of malware. Sandbox and modified clustal omega is

used for experiments. Samples- 15 malware families

are collected from VxHeaven. This system measures

classification accuracy of API patterns of each

malware families using clustering technique, if API

call sequence of malware sample is long process

then MSA is not suitable.

Kyeom Cho et al [16] in their work used

Sequence alignment method -n-gram-MBF

extraction method-Local alignment method-Global

alignment method-Malware similarity calculation

method. Sequence alignment method detects

Received: March 1, 2017 292

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.33

similarity in parts of the malware’s API call

sequences-Malware variants have different

structural static features like mnemonic frequencies

controls flow graphs.Malware samples from

VxHeaven.150 malware samples from 10 malware

families,each family has 15 malware variants.

Piero Fariselli et al [17] in their paper has

describe a general dynamic programming-like

algorithm (MaxSubSeq, Maximal SubSequence)

specifically designed to optimize the number and

length of segments with constrained length in a

given protein sequence.

Vivek Kumar et al [18] in their work had used

Multiple Sequence analysis, Needleman-Wunsch,

Smith waterman technique to conservation of

variable length of biological sequences converted to

fixed length sequences by inserting and deleting the

gaps. Their tests fail with large amount of dataset.

Yi Chen et al [19] proposed an experiment of

converting the hexadecimal code of viruses and

worms to amino acids and ASCII form are more

effective and also separating worms from viruses.

Further work is required to ensure that the insertion

of gaps does not lead to such gaps being included in

the rules for producing signatures.

3. Proposed work

In the proposed work, the detection of malware

using sequence alignment given in Fig.1 is as

follows: [20]

a) Collection of malware and benign samples

through dynamic execution

b) API call sequence retrieval from the dynamic

behaviour

c) N-gram sequence feature extraction

d) Application of ESAA algorithm to the n-gram

sequence

e) Testing the classifiers for accuracy with the

test data

Benign

&

Malware

Executable

Train & Test Data

Benign

&

Malware

Log Files

ESAA- Efficient

Sequence Alignment

Algorithm

Similarity Score

Benign/Malware

Sandbox

API Call

Sequence

Extractor

Figure.1 Architecture of malware analysis

Received: March 1, 2017 293

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.33

Figure.2 Malware Log File (Excel Sheet containing API

Call sequence data)

File name N-gram Frequency

XTrojan.Win32.

Alcapul

RegOpenKeyExW

GetProcAddress

HeapAlloc

15

Figure.3 Map data structure

3.1 Methodology [20]

Dataset creation: 1696 malware executable was

collected from www.virusshare.com[20] and 1042

benign files were collected from the windows

applications tested under McAfee anti-virus. The

dataset was created by executing the malwares and

logging the behaviour it by executing it in a virtual

environment [20] using cuckoo sandbox [20].

3.2 API call sequence extraction [20]

The API call sequences were used as features by

extracting it from the logs.

3.3 Feature selection and data representation [20]

The n-gram call sequence is extracted from the

API. In this work, 3-grams & 4-grams were

extracted for analysis. The data representation is

made as a feature set with 645 columns and 482.

The columns indicate 3- gram & 4- grams and the

column indicate the classes.

3.4 Classification by sequence alignment [20]

The ESAA algorithm is applied on the extracted

2-gram & 3-gram API call sequence in order to

perform the classification by sequence alignment.

3.5 Architecture

The data collected from source[20] is given to a

malware analyzer for the creation of log files and

then the API call sequence is extracted from the

executable. With the available API N-grams are

extracted to form data representation from where the

dynamic feature vector is created and training data is

given for classification using ESAA .

3.5.1. Malware Analyser [20]

An Executable File is given as the input to this

module in order to classify it as either Benign or

Malware, this could be done by first gathering the

behavioural data of that file. The Behavioural data is

collected by dynamically executing the file in a

secured environment called sandbox environment.

The Malware Analyser module interprets the

Hexadecimal code format got from the executable to

API Call Sequence data shown in Fig.2.

3.5.2. API Call Sequence Extractor [20]

The excel file containing API Call sequence data

is given as an input to this module.The process of

creating a data structure is done here.The API Call

sequence data presented by the malware analyser

module in the form of excel sheet is read using Java

Apache POI library and a data Structure is created.

The data Structure used to Store API Call Sequence

Data is a HashMap. The final output of this module

is API Call Sequence.

3.5.3. N-Gram Extractor [20]

This module takes the data Structure obtained

from the extractor module containing API Call

Sequence Data. The process of N-Grams creation is

done and stored in Map Data structure. The output

of the module is a map containing File name, its

related n-grams and frequency of the n-gram as

shown in Fig.3.

3.5.4. Feature Selection and Feature Creation [20]

The 3-Gram and 4-Gram API call presented in

Map Data structure is given as an input to this

module .The feature Vector is created ,which is the

combination of 0’s and 1’s. If the 3-gram or 4-gram

is present in the particular file then it is marked as 1

else 0. The output obtained from this module is an

excel file containing feature vector as shown in Fig.

4.

explorer0x6ACHeapAllochHeap:0x90000, dwFlags:0x0, dwBytes:0x2800xFD4E8

explorer0x6ACHeapFreehHeap:0x90000, dwFlags:0x0, lpMem:0xFD4E80xFD701

explorer0x6ACHeapAllochHeap:0x90000, dwFlags:0x8, dwBytes:0x4340x149BA8

explorer0x6ACHeapAllochHeap:0x90000, dwFlags:0x0, dwBytes:0x380xF7048

explorer0x6ACHeapFreehHeap:0x90000, dwFlags:0x0, lpMem:0xF70480xF6B01

explorer0x6ACHeapFreehHeap:0x90000, dwFlags:0x0, lpMem:0x149BA80x1

explorer0x6ACIsBadReadPtrlp:0xDEEF50, ucb:0x100x0

explorer0x6ACIsBadReadPtrlp:0xDEE8B4, ucb:0x100x0

explorer0x6ACIsBadReadPtrlp:0xDEE888, ucb:0x100x0

explorer0x6ACIsBadReadPtrlp:0xDEEAA0, ucb:0x100x0

explorer0x6ACIsBadReadPtrlp:0xDEECF8, ucb:0x100x0

Received: March 1, 2017 294

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.33

Figure.4 Feature Vector

3.5.5. Similarity calculation

The feature vector obtained from the previous

module is given as input for similarity calculation.

The Feature vector is provided to the Efficient

Sequence Alignment Algorithm (ESAA) for finding

the score and the similarity value for classifying the

input executable as Benign or Malware.

Similarity= Maximum score / Minimum sequence

length

4. Efficient sequence Alignment Algorithm

(ESAA)

Input: string s1 of length m, string s2 of length n

1. The API features of the raw dataset are

compared with the other features in the reduced

feature vector called RFList.

2. Two single dimension arrays are declared.

2.1 First column in the matrix is taken as

previous row that is first array

2.2 Current row values are calculated in the

second array.

3. Initially, the first row and column values are

marked zero.

3.1 Let i==1

3.2 Declare an array prevRow[], Let x=0 and

x<seq2.length prevRow[x]=0;

3.3 Declare an array currRow[];

 currRow[0]=0;

4. Compute the left value, up value and diagonal

value of each cell using

leftVal=currRow[j-1];

upVal=prevRow[j];

diagVal=prevRow[j-1];

5. If the sequence 1 and the sequence 2

taken for matching are equal then

temp =

max(leftVal+GAP,upVal+GAP,diagVal+MATC

H); else

temp=max(leftVal+GAP,upVal+GAP,diagVal+

MIS_MATCH);

6. If temp value computed in the previous

step is less than zero then current row

value is marked zero otherwise the temp

value computed is take as the current

row value.

currRow[j] = temp<0 ? 0 : temp

7. Compute the maximum score value using

if(temp>max_score)

max_score=temp;

8. Output: value of optimal alignment

4.1 Working of ESAA

Consider an alignment of two sequences S and T.

The computation is based on matrix say M. Create

an NxN integer matrix. N is sequence length (both S

and T). Compute M[i][j] based on score matrix and

optimum score. Consider the following two

sequences:

S: c c c t a g g t c c c a

T: c g g g t a t c c a a

Step 1: Computing matrix alignment, M is

created as follows in Fig.5 by taking the string

elements S in columns and T in rows.

Step 2: Aligning S to gaps. The first values of

the column are marked 0 by default as shown in

Fig.6.

T: - - - - - - - - - - - -

S: c c c t a g g t c c c a

 HeapAlloc HeapSize HeapAlloc GetCurrentThreadId LocalFree GetCurrentThreadId HeapFree HeapFree HeapAlloc HeapFree HeapAlloc HeapFree RegEnumKeyW GetCurrentThreadId GetCurrentProcessId GetCurrentThreadId GetCurrentProcessId GetCurrentThreadId GetCurrentThread RegOpenKeyExW HeapAlloc HeapSize HeapAlloc HeapSize IsBadWritePtr IsBadReadPtr IsBadReadPtr IsBadWritePtr GetCurrentThreadId RegEnumKeyExW GetCurrentThreadId GetCurrentThreadId HeapAlloc HeapFree RegQueryValueW GetCurrentThread GetCurrentThread RegQueryValueExW HeapAlloc LocalFree LocalFree RegCloseKey HeapAlloc HeapAlloc LocalAlloc

0 1 1 1 1 1 0 1 0 1 1 1 1

0 1 1 1 0 1 0 0 0 1 1 1 1

0 1 1 1 0 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1

0 1 1 1 0 1 0 1 0 1 1 1 1

0 1 1 1 0 1 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1

Received: March 1, 2017 295

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.33

Figure.5 Initial matrix alignment

Figure.6 Filling first column with zero

Figure.7 Filling first row with zero

Figure.8 Matrix Calculation

Step 3: Aligning T to gaps: All the first values of

the row are also marked 0 by default as shown in

Fig.7.

T: c g g g t a t c c a a

S: - - - - - - - - - - - -

Step 4: The score for each element in the cell of

the matrix is computed by a scoring process as

shown in Fig.8.

4.2 Calculations

Step 1: To find a cell value in the matrix M[i][j],

the following initialization is made

 M[i][0]= 0 M[0][i]= 0;

GAP= -1, MATCH= 1, MISMATCH = -1 (1)

Step 2: Each cell value is found by calculating

the (i) upper cell value+ Gap, (ii)left cell value

+Gap, (iii)Diagonal cell value +Match/ Mismatch.

While calculating Match /Mismatch compare the

row & column variable.

Step 3: If the final value obtained for the call is

less or negative then it is considered to be ‘0’.

Step 4: The final matrix created by finding the

value for each cell using Eqs.(1), (2) and step 2 & 3

gives the maximum score in it.

 Step 5: Applying the non-memoization

technique.

[1][1] [][]

[][] max [1][]

[1][1]

i j i j

i

j

M i j S s t s t

M i j M i j s

M i j d t

 (2)

4.3 Memoization & Non-memoization technique

Memoization Technique

 Consumes Huge RAM.

 Cannot be applicable for Millions of

records.

Ex: 100000 * 100000 rows = 10000000000 * 4

bytes = 40000000000/(109) = 40GB RAM!!!

Received: March 1, 2017 296

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.33

Table 1. Score and similarity values

S.No File Category Score Similarity

1 Xaddress book.xlsx 12438 0.99

2 Xcalculator.xlsx 5051 0.42

3 XTrojan-

Spy.Win32.Delf.di.apm.xlsx

1419 0.11

4 XVirus.Win32.BingHe-

ee.apm.xlsx

294 0.22

5 XWorm.Win32.Bumerang-

ee.apm.xlsx

290 0.04

Table 2. Sample output run

run:

C:\Users\Dharaneesh N\Documents\dataset-used\both

Malware and Benign

File Name Xaddress book.xlsx Score 12438 Similarity

0.9999196076855053

File Name Xadobe distiller.xlsx Score 2199 Similarity

0.17678269957392073

File Name Xalcohol.txt.xlsx Score 2581 Similarity

0.24769673704414588

File Name Xbackgammon.xlsx Score 5451 Similarity

0.47466039707419017

File Name Xburstcopy.txt.xlsx Score 2531 Similarity

0.36777099680325487

File Name Xcalculator.xlsx Score 5051 Similarity

0.42563411140136514

File Name Xcheckers.xlsx Score 5233 Similarity

0.4477624711217592

File Name Xclone dvd.xlsx Score 4131 Similarity

0.3818988629009892

File Name Xdaemon.xlsx Score 4663 Similarity

0.5379556991232118

File Name Xdap.xlsx Score 4317 Similarity

0.34705362167376796

File Name Xdataobjectviewer.xlsx Score 5379 Similarity

0.5493259803921569

File Name Xddespy.xlsx Score 4545 Similarity

0.3653830693785674

File Name Xdeviceemulator.xlsx Score 354 Similarity

0.028458879331135944

File Name Xdigsby.xlsx Score 3952 Similarity

0.31771042688318996

File Name Xdiskdefragment.xlsx Score 5545 Similarity

0.44577538387330173

File Name Xdjvu reader.xlsx Score 2930 Similarity

0.2355494814695715

File Name Xdvi viewer.xlsx Score 5221 Similarity

0.4197282739770078

File Name Xeainfo.xlsx Score 4740 Similarity

0.3810595707050406

File Name Xeareg.xlsx Score 4772 Similarity

0.3836321247688721

 The aligned sequence can be retained

 Space Complexity – O(n2)

Non–Memoization Technique

2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

S
im

il
ar

it
y

Score

 ESAA

Figure.9 Similarity vs. score

 Just remember the current and the

previous row.

 Keeps track of the maximum similarity

score.

 Space Complexity – O(n)

 Can be applicable for Millions of

records too.

 The aligned sequence cannot be retained

5. Results and Discussion

An ‘n’ number of runs were made to find the

maximum score and the similarity of each

executable to distinguish it as malware or benign.

The below table 1 gives the sample output of the run.

The similarity index of benign files are found to be

greater than 0.4. The similarity is calculated using

Eq. (3)

Similarity= Maximum score

/ Minimum sequence length (3)

5.1 Similarity vs. score value

From Fig.9, it is clear that as the score value

increases the similarity of the sequence also

increases making the prediction rate and accuracy

high. Table 2 denotes the sample output of the run.

5.2 Memoization vs. non memoization technique

The existing sequence alignment algorithm called

Smith Water Man Algorithm(SWMA) uses a

technique called memorization technique takes more

memory for creating the matrix. For instance,

• Ex: 100000 * 100000 rows = 10000000000

* 4 bytes = 40000000000/(10^9) = 40GB RAM!

Received: March 1, 2017 297

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.33

which requires a multidimensional storage and

thereby making the memory utilization as O(n2).

The proposed Efficient Sequence Alignment

Algorithm (ESAA) method uses the non-

memoization technique which considers only the

current row and column value for calculating the

current cell value and hence uses two one

dimensional arrays for storage thereby decreasing

the memory utilization by O(n). This can be viewed

in Fig.10.

5.3 Similarity Vs. Length of sequence

The length of the sequence plays a vital role in

the similarity calculation. When the length increases

similarity decreases. Hence the proposed algorithm

decreases the length of the sequence is reduced by

the gap values which is depicted in Fig.11.

0 1000 2000 3000 4000

2

4

6

8

10

12

14

16
 ESAA

 SWMA

R
u

n
 T

im
e

(M
in

u
te

s)

SIZE (MB)

O(n2)

O(n)

Figure.10 ESAA vs SWMA

200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
im

il
ar

it
y

Length of Sequence

 ESAA

Figure.11 Similarity vs. length of sequence

6. Conclusion & Future Work

From the experimental results it is concluded

that the proposed ESAA method used in this work

for sequence alignment reduces the memory

utilization. The existing sequence alignment

methods shows a memory utilization by order of n2

[O(n2)],whereas the proposed method reduced the

memory utilization by order of n [O(n)]. Also the

length of the sequence is maintained by the gap

values so that the similarity increases there by

increasing the score value which will influence the

prediction accuracy.

The main limitation of this proposed ESAA

method is it cannot backtrack since the previous

values cannot be retained. As a future work the

algorithm can be modified to perform backtracking

of the cell values and to retain the previously

aligned sequence there by not compromising on the

memory utilization.

References

[1] McAfee Labs Report 2016 Threats Predictions,

www.mcafee.com/in/resources/reports/rp-

threats-predictions-2016.pdf.

[2] N. Idika, and A. Mathur, “A survey of malware

detection techniques”, Purdue University, West

Lafayette, Vol.48, 2007.

[3] K. Han, I.K. Kim, and E.G. Im, “Malware

classification methods using API sequence

characteristics”, In: Prof. of the Conference on

IT Convergence and Security, Springer,

Netherlands, pp. 613-626, 2012.

[4] P. O'Kane, S. Sezer, and K. McLaughlin,

“Obfuscation: The hidden malware”, IEEE

Security & Privacy, Vol.9, No.5, pp.41-47,

2011.

[5] V. Sathyanarayan, P. Kohli, and B.

Bruhadeshwar, “Signature generation and

detection of malware families”. In: Proc. of the

Australasian Conference on Information

Security and Privacy, Springer,Berlin

Heidelberg, pp. 336-349, 2008.

[6] R. Tian, R. Islam, L. Batten, and S. Versteeg,

“Differentiating malware from cleanware using

behavioural analysis”, In: Proc. of the 5th

International Conference on Malicious and

Unwanted Software, IEEE, pp.23-30, 2010.

[7] A. Jerlin, and C. Jayakumar, “A dynamic

malware analysis for windows platform-a

survey”, Indian Journal of Science and

Technology, Vol. 8, No.27, pp. 1-5, 2015.

[8] P. Natani, and D. Vidyarthi, “Malware

detection using API function frequency with

ensemble based classifier”, In: Proc. of the

International Symposium on Security in

Computing and Communication, Springer,

Berlin Heidelberg, pp. 378-388, 2013.

Received: March 1, 2017 298

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.33

[9] G. Wagener and A. Dulaunoy, “Malware

behaviour analysis”, Journal in computer

virology, Vol.4, No.4, pp.279-287, 2008.

[10] J. Xu, A. Sung, P. Chavez, and S. Mukkamala,

“Polymorphic malicious executable scanner by

API sequence analysis”, In: Proc. of the Fourth

International Conference on Hybrid Intelligent

Systems, IEEE, pp. 378-383, 2004.

[11] W. Liu, P. Ren, K. Liu, and H. Duan,

“Behavior-based malware analysis and

detection”, In: Proc. of the First International

Workshop on Complexity and Data Mining,

IEEE, pp. 39-42, 2011.

[12] M. Apel, C. Bockermann, and M. Meier,

“Measuring similarity of malware behaviour”,

In: Proc. of the IEEE 34th Conference on Local

Computer Networks, IEEE, pp. 891- 898, 2009.

[13] Y. Ki, E. Kim, and H. Kim, “A novel approach

to detect malware based on API call sequence

analysis”, International Journal of Distributed

Sensor Networks, Vol.2015, No.1, pp.1-9, 2015.

[14] E. Czabarka, G. Konjevod, M. Marathe, A.

Percus, and D. Torney, “Algorithms for

optimizing production DNA sequencing”, In:

Proc. of the ACM-SIAM symposium on Discrete

algorithms, pp. 399-408, 2000.

[15] I.K. Cho and E.G. Im, “Extracting

representative API patterns of malware families

using multiple sequence alignments”, In: Proc.

of the Conference on research in adaptive and

convergent systems,ACM, pp. 308-313, 2015.

[16] I.K. Cho, T. Kim, Y.J. Shim, H. Park, B. Choi,

and E.G. Im, “Malware similarity analysis

using API sequence alignment”, Journal of

Internet Services and Information Security,

Vol.4, No.4, pp.103-114, 2014.

[17] P. Fariselli, M. Finelli, D. Marchignoli, P.

Martelli, I. Rossi, and R. Casadio,

“MaxSubSeq: an algorithm for segment-length

optimization. The case study of the

transmembrane spanning segments”,

Bioinformatics, Vol.19, No.4, pp.500-505, 2003.

[18] V. Kumar and S. Mishra, “Detection of

malware by using sequence alignment strategy

and data mining techniques”, International

Journal of Computer Applications, Vol.62,

No.22, pp.16-19, 2013.

[19] Y. Chen, A. Narayanan, S. Pang, and B. Tao,

“Malicious software detection using multiple

sequence alignment and data mining”, In: Proc.

of the IEEE 26th International Conference on

Advanced Information Networking and

Applications, pp. 8-14, 2012.

[20] A. Jerlin, C. Jayakumar, and J. Prabhu, “EFE:

Efficient Feature Extraction Algorithm for

dynamic malware analysis in windows

executables using API call sequence”,

International Journal of Pharmacy &

Technology, Vol.8, No.4, pp.25373-25383,

2016.

