
Received: February 22, 2017 235

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.26

The Impact of Visualizing Traceability Links for Evolving Requirements in

Software Maintenance– A Controlled Experiment

 Satish Chinnaiyan Jayaraman1* Mahendran Anand1

1School Of Computer Science and Engineering, VIT University, Vellore, Tamilnadu, India

* Corresponding author’s Email: satish.cj@vit.ac.in

Abstract: Traceability Management plays a key role in tracing the artefacts associated with every requirement

during the life cycle of a software project. However, the trace links between artefacts are not updated as the system

evolves during the maintenance phase. This often leads to untrustworthy documentation and information gets

scattered across a pile of untraceable documents that were created for various change management tasks. The goal of

our research is on identifying an approach to trace requirements evolution across change requests and establish trace

links between artifacts for such evolving requirements in the software maintenance phase. We have implemented a

prototype Traceability Visualization Tool – VTrace for tracing requirements evolution. This tool also supports the

visualization of trace links for evolving requirements. The effectiveness of the tool on change management tasks was

tested using a controlled experiment. The results of our controlled experiment show that subjects who used the tool

were 21% more accurate on change management tasks than subjects that didn’t use the tool. This study provides us

with the evidence that tracing the evolution of software artefacts is highly significant for better system maintenance

by novice engineers.

Keywords: Software maintenance, Software engineering, Traceability management, Trace link visualization.

1. Introduction

The maintenance of software systems is one of

the most time consuming and tedious tasks. There

are many issues that surround the maintenance of

systems and one of the foremost issues is non-

availability of up to date system artefacts.

Comprehension of a system’s architecture becomes

very complex without up to date documentation

[1,2]. A lot of importance is given to documentation

during the development stages of the project. The

baselined documentation gets handed over to the

maintenance team for knowledge transfer. Such

documentation carries with it rich information on

the system and plays a significant role in the

maintenance of a system. It is proven that usage of

system documentation helps in improving the

functional correctness of the changes made to the

system [3].

The documentation handed over to the

maintenance team should be updated for the changes

made to the system. As the system evolves there is a

need for the documentation to evolve. However

maintenance teams fail to update the baseline

documentation for all change requests [4].

Documentation over a period of time gets outdated

and obsolete. Documentation inconsistency affects

to ability of software maintainers to conduct

maintenance [5].There is a tendency for engineers to

create a separate set of documents for every change

they are making to the system. After many years of

system maintenance, a system tends to have

hundreds of documents generated for each version

of the system. These documents are highly difficult

to trace and comprehending the actual system using

these pile of documents is again a very challenging

task. Almost 120 different design documents that

were updated during software revisions were handed

over to the US army by the original equipment

manufacturer during software maintenance handover

for operational flight program [6].

Received: February 22, 2017 236

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.26

1.1 Challenges in traceability management

It is difficult to understand the impact of a

requirement change to a large system. Development

of tools and techniques that support requirement

evolution is a very important issue [7].One of the

important challenges in Traceability management is

to establish trace link evolution as artefacts change.

This research has gathered less than one third of the

effort attributed towards traceability creation

problems. Trace information is difficult for

engineers to use as little research effort has been put

towards presentation of trace links [8].

When an artefact evolves the trace link should

be updated to connect to the new versions of the

artefacts. However when an artefact is updated the

connected artefacts are not updated. This is

identified to be the important reason for incorrect

trace links by majority of the interviewees. It is a

challenge in globalized working environments [9].

Poor requirement traceability is considered to be

one of the important requirement engineering

challenges. Even with the modern tools it is highly

difficult to trace requirements to design and

architecture [10]. Peng Liang et al identify

management of requirements in an evolving system

to be a research challenge. Linking requirements

rational knowledge to requirement artefacts created

at different levels of the requirement engineering

phase is the further refinement of the challenge [11].

Huge number of links between requirements and

affected artefacts is the reason behind the scalability

issues in requirement change management [12].

Visualization is widely being used by researchers

and practitioners to comprehend requirement

engineering activities. Zahra et al conducted a

requirements engineering visualization literature

review and found that requirements evolution is

having the least visualization support [13].

Requirement management tools support

visualization of requirements however the important

limitation is that these visualizations do not show

the relationship between requirements [14].

Researchers have focussed on understanding the

effectiveness of traceability links in maintenance

[15,16] but they have not considered the impact of

traceability links for evolving requirements. The

visualization of such evolving requirements and

their relationships were also not considered by

researchers who focussed on visualizing trace links

[14,17,18].

It is clearly evident from the recent literature that

tracing requirements evolution is still an open

challenge. Visualizing the evolution of requirements

and the relationships between the several versions of

an evolving requirement in a global software

development project is still an unaddressed problem.

In this paper we are focused on proposing a

traceability framework for addressing challenges in

managing artefacts for evolving requirements. The

knowledge on how a system evolved through its

requirements coupled with the visualization of the

evolution can aid novice maintenance engineers

perform change impact analysis better. We are

proposing a novel approach towards maintaining

and visualization of artefact traceability for evolving

requirements As part of our research we have

developed a Traceability Management Tool –

VTrace for tracing evolving requirements across

change requests. This tool also supports the

visualization of the requirement evolution.

2. Proposed tool architecture

In the design of our tool we have used the

concept of systems, projects and versions. A brief

explanation on the context of their usage is given

below.

2.1 System

Every organization is managed by a collection of

systems. A system comes into existence to handle a

new business process that has well defined

boundaries within an organization. For instance a

University is managed by systems like Student

Management System, Employee Management

System and Transport Management System etc.

Each system manages a set of well-defined

functionalities for its users. All these systems

interact with each other for accomplishment of

various tasks. Usually each system will be

maintained by a separate group of maintenance

engineers. For every new system created in our tool

we assign system ids. The system ids are prefixed

with an S. For instance if an organization has two

systems S1 and S2 already in place, then the third

system which is created is assigned the id S3.The

tool can handle a maximum of 10 systems for an

organization.

2.2 Projects

Every system that manages the organization goes

through several revisions due to business demands

or internal process refinements. Every time a system

change is demanded by the business, a new project

is initiated to accomplish the change. The project is

handled by the maintenance engineers and a new

version of the system with the required changes is

Received: February 22, 2017 237

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.26

released. Every system there by goes through

various revisions by means of projects.

Every project is assigned a project id in the tool.

If a project is carried out under System S1, then the

system id is prefixed with the project id and a

project id S11 will be assigned. For subsequent

projects in System S1, the project ids are S12, S13

and so on.

2.2 Versions

During the maintenance phase, a system

undergoes many revisions. A change request can be

initiated to modify an existing functionality or to

add a new functionality to the system. Whenever an

existing functionality needs modification it means

the existing baselined requirement for that

functionality should be revised. If the baselined

functional requirement is assigned an id S11FR1,

then the revised requirement is assigned S12FR1.1

as shown in Fig.1. For subsequent revisions of the

same requirement in project S13 we assign the

requirement id S13FR1.3.If we need to change the

system by adding a new functionality then we assign

the new requirement id by incrementing the

previous requirement id by 1.The new requirement

id is S11FR2 and any revisions to S11FR2 will be

traced as S12FR2.1, S13FR2.2 etc. This enables us

to track the evolution of a requirement within the

system across multiple projects. The tracking of

requirement revisions is shown in Fig.1.

The Sample system ids are S1, S2 and S3.The

project ids are prefixed with the system id. For with

project ids for every system allows the unique

identification of projects along with the system. The

first project created for every system represents the

development project with the baselined artefacts.

For instance, the project S11 under system S1

represents the development project that lead to the

creation of all baselined artefacts. If the baselined

functional requirement S11FR1 needs a change,

then a new project S12 is created and requirement

S12FR1.1 is added to the list of requirements for

system S1.Here S12FR1.1 denotes that this

requirement is a modified version of the already

existing requirement S11FR1 for System S1.If

S12FR1.1 gets modified further in a future project

S13, then the version of the latest modified

requirement is S13FR1.2.For every modified

requirement there exists corresponding modified

design elements.

The system maintains the requirements, design

and test cases in relational tables. The Functional

requirements are maintained as part of the

requirements database. The requirements are

maintained as revisions for each project. The system

also maintains the mapping of projects to systems

and details about the projects in the project database.

All design models like UML Class diagrams,

sequence diagrams, state chart and data flow models

are mapped with the respective requirements using

the design database. The details of test cases and the

requirements to which they are mapped to, is

maintained inside the test case database. Revisions

to design elements are tracked for every requirement

change by assigning version number of the revised

requirement to the design elements.

Figure.1 System and project hierarchy

Received: February 22, 2017 238

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.26

If a design element like class diagram gets

revised for requirement S12FR1.1 then the design

element is assigned a revision id as Class diagram

CD1.1.This enables us to track all design elements

for the requirement revision S12FR1.1. The system

utilizes the databases to retrieve information on the

trace links between different artefacts.

The requirement’s evolution model displays the

traceability links for an evolving requirement to it

artefacts. The model displays the number of

requirement versions for a selected requirement as

different nodes. The traceability links for each

requirement revision and associated design and test

cases is shown as a hierarchical structure in the

model. If a requirement has gone through three

revisions S11FR1, S12FR1.1 and S13FR1.2 then the

model displays the three versions of requirements

along with the associated design and test elements

for each version.

3. Implementation

3.1 Sample system

VTrace tool’s UI design and validation was done

using HTML, CSS and JavaScript. PHP and

MySQL were used for server side scripting and

construction of all the databases.GoJS libraries were

used for construction of the models for visualization.

All contents with respect to the artefacts were

manually loaded into relational tables using

Phpmyadmin interface of MySQL. The requirement

revisions considered in our sample system is given

in Fig.2.

3.2 Visualizing requirement’s evolution

This model enables the visualizing how a selected

requirement has evolved across multiple projects.

The model also displays traceability links between

the revised requirements and the associated design

and test case elements created for each requirement

version. The model is shown is Fig.3.

The engineer selects a requirement id from a list

of requirements as shown in Fig.3 (a). The

visualization is generated by the tool for the selected

requirement as shown in Fig.3 (b). The detailed

description of the nodes is given in Fig.3 (c).

The model tracks the revision and also displays

the associated test cases and design element for the

baselined and revised versions of a selected

requirement. The model offers more flexibility in

terms of expansion and shrinking of specific

versions of interest to engineers. This kind of a

model and visualization aids the maintenance

engineers to understand the evolution of a system

from a requirement perspective. Moreover the

visualization gives us the information on the

completeness of documentation for a requirement

revision. Any missing links indicate the absence of

artefact content for that version. A frequently

changing requirement can be identified using this

model. Information on test cases written and design

elements modified for a frequently changing

requirement will be of great significance for future

change requests on that requirement. The

description of the nodes is given in a box below the

model. This description is shown in the box

whenever the engineer selects a node on the model.

This model gets generated in a click of a button and

it’s easy for any user to comprehend the system

evolution using this model. As we are generating

this model only for a selected requirement by the

user we are also avoiding information overload and

generation of an over complex model for the users.

4. Experimental results and analysis

4.1 Research questions

Research Question 1:

Is the manual effort with respect to system

evolution comprehension and change impact

analysis reduced by the usage of the tool? Here we

analyze the reduction of time taken with the usage

of the tool to complete change management tasks.

Measure:

By manual effort we mean the time taken to

identify all the documents and to manually establish

the traceability between requirements, design and

test cases for system evolution comprehension

during change management. The measure will be the

time taken to complete a given set change

management tasks with and without the tool.

Research Question 2:

Is the accuracy of the tasks completed using

VTrace tool better than the tasks completed without

using the tool?

Measure:

By accuracy we mean the number of tasks

completed correctly divided by the total number of

tasks in each group.

Received: February 22, 2017 239

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.26

4.2 Experimental set up

4.2.1 Subjects

The subjects comprised of 120 final year

undergraduate students of computer science. All

students have completed their software engineering

and software project management courses.

The students were randomly assigned to two

groups. The first group is VT group which uses the

VTrace and the next group is the no_VT group

which does the task manually. Each group had 60

members assigned to it. All subjects had the same

level of expertise in software engineering.

Figure.2 Sample System Requirements

Received: February 22, 2017 240

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.26

(a)

(b)

Figure.3 System model: (a) requirement selection, (b) model generation, and (c) model description

Node representing a

Requirement

Node displaying the Test Case

ID mapped to the requirement

Node displaying the design

element for that requirement

Node displaying the Test Case

ID mapped to the requirement

revision

Node displaying the design

element for that requirement

revision

Received: February 22, 2017 241

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.26

4.3 Activity

Students were given Grievance Redressal System

project documentation for completion of their tasks.

Sample requirements, design and test case

documentation was created for each revision of the

system. Six revisions had all the three documents

whereas two revisions had only requirements and

test case documentation and two revisions had only

requirements and design documentation.

no-VT group was given the baselined files and

the files for all the revisions in separate folders. The

name of the folders was given as change request

numbers and each document had the change request

number to be part of the title. Each revision

document had only description on the changes made

to the system for that revision. VT group had the

contents of the artefacts loaded into the relational

databases before the start of the activity. Both

groups were asked to complete the given tasks.

Task 1:

The students were asked to study the number of

times a requirement got revised across change

requests and to identify the respective design

elements and test cases for each requirement

revision. They were asked to record the number of

documents that are missing in each revision. The VT

group should use the tool for the completion of the

two tasks whereas the no VT group should perform

the tasks manually. Both the group members were

asked to record the time taken to complete the given

activity.

Task 2:

Task 2 was on identifying the time taken for

solving an emergency fix on the system. Students

were asked to analyze the problem behind parent’s

comments on grievances not getting posted to the

system. They have to record the results for the fix on

paper and document the time needed to complete the

emergency fix.

Task 3:

Students were asked to identify all changes that

should be done to existing artefacts for a given

change request. The change request was on

introducing a functionality to collect feedback on

the resolved grievances. The students were asked to

identify all the changes and record the time taken for

completion of analysis of this task.

4.4 Experimental Procedure

 All subjects were given a briefing on the

concept of systems, projects and versions

and significance of traceability management

in the maintenance phase.

 All subjects were given a briefing about the

sample test documents that was used and the

tasks that they should complete as part of

the activity.

 VT group subjects were also given a

briefing on the tool and the functionalities

offered by the tool. They had some hands on

training on the generation of requirements

evolution models using the tool. They were

briefed on the relational tables used in the

tool so that they understand the organization

of artefact data for different systems in the

tool.

 All subjects were asked to record the time

taken to complete the tasks assigned to them

in the given questionnaire.

4.5 Data gathering

Data gathering was performed using

questionnaire distributed to all subjects. The

subjects were asked to record the completion time of

their tasks in the given form.

4.6 Hypothesis formulation

The experiment has one independent variable

(the use of VTrace Tool) and two treatments (VT

and no_VT group).The dependent variables on

which we compare treatments are Task Completion

Speed [TCS] and Task Accuracy [∆P].

H1: There is no significance difference between the

task completion speed [TCS] for the VT group that

uses the tool and no_VT group that does the task

manually.

TCS[VT Group] = TCS [no_VT Group] (1)

H2: There is no significant difference in the

precision [∆P] of tasks completed between the VT

and no VT group

∆P [VT Group] = ∆P [no_VT Group] (2)

Results
Independent 2 sample t tests were conducted to

determine the statistical significance between the

two groups. The level of significance for the test

Received: February 22, 2017 242

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.26

Table 1. Computed P Values

Task Variable Treatment Mean SD t-Test

All TCS

No VT Group
70.2

18.71

p<0.0001

VT Group 29.81 20.69

Task 1 TCS

No VT Group
59.38 5.85

p<0.0001

VT Group 4.75 1.17

Task 2 TCS

No VT Group

58.15 7.60
p<0.0001

VT Group 31.6 8.95

Task 3 TCS

No VT Group 93.28 12.41
p<0.0001

VT Group 53.1 4.86

was set to α = 0.05.The calculated p values for the t

tests are given in Table 1.

Research Question 1:

Based on our independent 2 sample t tests we

have found that the calculated t value falls inside the

rejection region and hence the null hypotheses is

rejected .Therefore we conclude that the

performance of the VT group with respect to the

task completion speed is better than the no-VT

group. The students who were using the VTrace tool

completed the task faster than then the group that

was not using the tool. The students of no_VT group

had to spend a lot of time on Task1 as they need to

read every change document and understand if a

requirement has been revised or is it a new

requirement. They were scanning the documents

back and forth and had to spend a lot of time in

establishing whether the requirement is a revision or

a new requirement.

The establishment of traceability links between

revised requirements and their design and test case

elements was challenging for the no_VT group. 20

students were not able achieve the outcome of Task

1 as they were having difficulty in understanding a

requirement revision from a new requirement.

Task 2 was relatively easy for VT group students

as they were able to immediately retrieve all the

documents associated with the requirement. The test

cases retrieved for this requirement helped the

students in identifying the solution to the fix at a

faster rate when compared to the no_VT group. The

no_VT group was able to accomplish the task after

retrieval of the associated documents but then they

had to scan through all the change request

documentation to establish the solution for the fix.

Task 3 was on change management and students had

to spend time on impact analysis for the system. As

the information was readily available on the

evolution of the system and the traceability links

well established for all artefacts, the VT group had

taken less time for impact analysis on the change.

The flow of information from the instigation of

the system was well structured for VT group and

thereby understanding the system or managing

changes was relatively easy. The students of no_VT

group spent much of their time locating and

organizing the artefacts for understanding the

system evolution. For VT group students the tasks

were relatively easy to complete as the contents

were already loaded in the relational tables. VT

group students spent their time only on analysis of

the change rather than locating and organizing

documents. The information required was quickly

available and hence they were able to complete the

two tasks faster than no_VT group.

The T test led to a positive conclusion and

therefore we conclude that the tool plays an

important role in the reduction of manual effort on

system evolution comprehension and change

management tasks

Research Question 2:

The accuracy of the tasks completed by two

groups was calculated using precision. The results of

the groups were manually validated by the facilitator.

The number of correct and incorrect results for both

the groups across all tasks is represented in Fig.4.

Establishing how a requirement got revised across

many change requests was a very tedious task for

no_VT Group students. It was found that 20

students from the no_VT group did not arrive at the

correct results. Task 3 was also difficult for no_VT

group students as they need to spend a lot of time in

locating and organization of content. VT group

students were more accurate on the tasks due to the

information presented to them in the form of models.

Precision ∆P is calculated for each group as shown

below

Received: February 22, 2017 243

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.26

Figure.4 Precision analysis for Tasks

Precision ∆P = Number of tasks completed

correctly/Total number of tasks (3)

Total Number of tasks in each group

= Number of Tasks

* number of subjects in that group

(4)

Total Number of tasks in each group = 3 * 60 =

180 Tasks.

Total number of Tasks completed incorrectly for

no_VT group = 48 Tasks (Task 1[20], Task 2[10],

Task 3[18]).

Total Number of Tasks completed correctly for

no_VT group = 132 Tasks (Task 1[40].Task 2[50],

Task 3[42]).

Total number of Tasks completed incorrectly for

VT group = 10 Tasks (Task1 [1], Task 2[4], Task

3[5]).

Total Number of Tasks completed correctly for

VT group = 170 Tasks (Task 1[59].Task 2[56], Task

3[55]).

∆P [no_VT] = 132/180 = 73% (5)

∆P [VT] = 170/180 = 94% (6)

From our experiment we were able to conclude

that the precision for VT group is 21% higher than

the no_VT group.

The results prove that tracing artifacts for

evolving requirements in the maintenance phase

indeed helps novice engineers to perform

maintenance tasks more accurately. The time taken

for the completion of the tasks is also reduced due to

the effective organization and traceability of

contents in the tool. This tool can also address the

problems faced by globally distributed teams with

respect to tracking changes to its artifacts. Many of

the earlier research was focused on effectiveness of

traceability on maintenance or the effectiveness of

trace link visualization, where as we have

demonstrated an approach that not only traces but

also enables visualization of trace links for an

evolving requirement.

5 Conclusion

In this paper, we have addressed the problem of

traceability management among artefact versions

created for evolving requirements. We have

presented our prototype and its usability with results.

The current prototype that we have implemented is

limited to visualization of traceability links among

artefact contents loaded in relational tables. The

contents of the artefacts were loaded directly into

the tables. The tool should be further enhanced to

allow engineers use a GUI interface to enter content.

The versions among the contents were also entered

manually in to the relational tables. The

identification of a requirement revision and

maintaining such revisions in our relational tables

should be done using a front end application

program.

The model has aided the subjects understand

system evolution .The model also enhances

visibility and progress of any maintenance project. It

will aid project managers understand the status or

the absence of documentation for a release. This

enables project status tracking and maintenance of

documentation for all versions Moreover we have

proposed a design where in the entire project

artefact content is maintained inside relational tables.

This is not only helpful for traceability

establishment but also maintenance of every project

artefact online. The project is still under

development and our initial research on the

traceability of artefact versions using the tool has

yielded positive results. As the tool provides the

needed support for content retrieval, organization

and visual analysis of the system evolution, we

believe that such a tool will enhance maintenance

quality of industry standard applications where

impact analysis consumes a major portion of the

effort. This research addresses one of the key issues

that surround the maintenance of evolving systems

and we believe our completed tool will be great

interest to software maintenance researchers.

References

[1] C.J. Satish and T. Raghuveera, "Visualizing

object oriented software using virtual worlds",

In: Proc. of the 4th WSEAS International Conf.

Received: February 22, 2017 244

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.26

on Software Engineering, Parallel &

Distributed Systems. World Scientific and

Engineering Academy and Society (WSEAS),

Salzburg, Austria, Article No 3, 2005.

[2] D. Sumita, G. Lutters, and B. Seaman,

"Understanding documentation value in

software maintenance", In: Proc. of the 2007

Symposium on Computer human interaction for

the management of information technology,

ACM, Cambridge, Massachusetts, Article No

2, 2007.

[3] A. Erik, L. C. Briand, S.E. Hove, and Y.

Labiche, "The impact of UML documentation

on software maintenance: An experimental

evaluation", IEEE Transactions on Software

Engineering, Vol.32, No.6, pp. 365-381, 2006.

[4] C.J. Satish and M. Anand, "Software

Documentation Management Issues and

Practices: A Survey", Indian Journal of Science

and Technology, Vol.9, No.20, pp.1-7, 2016.

[5] A.S. Khan and M.K. Mattsson, "Management of

documentation and maintainability in the

context of software handover", In: Proc. of the

Computing Technology and Information

Management (ICCM), 2012 8th International

Conference on. Vol. 1, pp. 238-243, 2012.

[6] W.L. Miller, L.B. Compton, and B.L.

Woodmansee, "Assuming Software

Maintenance of a Large, Embedded Legacy

System from the Original Developer", In: Proc.

of the Software Maintenance (ICSM), 2013 29th

IEEE International Conference on, IEEE, pp.

552-555, 2013.

[7] R.P. Gohil, S. Bhattacharya, and R. Chauhan,

"Requirements Change Impact Analysis Using

Event Based Traceability", Lecture Notes on

Software Engineering Vol.4, No.3, pp. 162-168,

2016.

[8] J. Cleland-Huang, O.C.Z. Gotel, J. Huffman

Hayes, P. Mäder, and A. Zisman, “Software

traceability: trends and future directions", In:

Proceedings of the on Future of Software

Engineering, ACM, pp. 55-69, 2014.

[9] R. Wohlrab, J.P. Steghöfer, E. Knauss, S.

Maro, and A. Anjorin, “Collaborative

traceability management: Challenges and

opportunities”, In: Proc. of the Requirements

Engineering Conference (RE), 2016 IEEE 24th

International IEEE, pp. 216-225, 2016.

[10] T. Shah and V.S. Patel, "A review of

requirement engineering issues and challenges

in various software development methods",

International Journal of Computer Applications

Vol.99, No.15, pp. 36-45, 2014.

[11] H. Ahmed, A. Hussain, and F. Baharom,

"Current Challenges of Requirement Change

Management", Journal of Telecommunication,

Electronic and Computer Engineering (JTEC),

Vol.8, No.10, pp. 173-176, 2016.

[12] Z.S.H. Abad, M. Noaeen, G. Ruhe,

"Requirements Engineering Visualization: A

Systematic Literature Review", In: Proc. of the

Requirements Engineering Conference (RE),

2016 IEEE 24th International. IEEE, pp.6-15,

2016.

[13] A. Rodrigues, M. Lencastre and A. de A.

Gilberto Filho, "Multi-VisioTrace: Traceability

Visualization Tool”, In: Proc. of the Quality of

Information and Communications Technology

(QUATIC), 2016 10th International Conference

on the. IEEE, pp. 61-66, 2016.

[14] P. Liang, P. Avgeriou, and K. He, "Rationale

management challenges in requirements

engineering", In: Proc. of the Managing

Requirements Knowledge (MARK), 2010 Third

International Workshop on. IEEE, pp.16-21,

2010.

[15] P. Mäder and A. Egyed, “Do developers benefit

from requirements traceability when evolving

and maintaining a software system?”,

Empirical Software Engineering, Vol.20 No.2,

pp.413-441, 2015.

[16] K. Jaber, B. Sharif and C. Liu, "A study on the

effect of traceability links in software

maintenance", IEEE Access Vol.1, pp. 726-741,

2013.
[17] A. Marcus, X. Xie, and D. Poshyvanyk, "When

and how to visualize traceability links?", In:

Proc. of the 3rd international workshop on

Traceability in emerging forms of software

engineering. ACM, pp. 56-61, 2005.

[18] X. Chen, J. Hosking, and J. Grundy,

"Visualizing traceability links between source

code and documentation", In: Proc. of the 2012

IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC). IEEE,
pp. 119-126, 2012.

