
Received: February 6, 2017 94

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.11

TSS – Twin Layered Security Scheme for Cloud Storage to Preserve Data

Integrity

M. B. Jayalekshmi1* S. H. Krishnaveni2

 1Noorul Islam University, Tamilnadu, India

2 Baselios Mathews II College of Engineering, Kerala, India
* Corresponding author’s Email: mbjayalekshmi@gmail.com

Abstract: Cloud computing is a paradigm which offers a range of services to the cloud users. Cloud storage is the

most popular service, as the data owners are freed up from the data management and storage overhead. However, the

data owners are concerned about the security of the data. In order to address this issue, this article presents a twin

layered security scheme, which guarantees the security of the data and thus the data integrity is preserved. The

proposed work involves two building blocks, which are hashing and encryption. The input data is separated into

several blocks, followed by which a tree is constructed. This is followed by the computation of hash codes, which is

done by the keccak-256 hash function. The hash codes are then encrypted by Advanced Encryption Standard (AES)

(256) with a dynamic key being generated by CodeIgniter. Thus, the security of the system is tightened and misuse

of the data is strictly denied. The performance of the proposed work is tested with respect to throughput, memory

and time consumption. The experimental results are reasonable, when compared to the analogous algorithms.

Keywords: Cloud security, Hashing, Encryption, Data integrity.

1. Introduction

All Today’s world deals with enormous amount

of data each and every second of time. Most of the

data are claimed to be confidential, as they comprise

personal, health and financial information. The

amount of data escalates with respect to time and it

is very difficult for the organizations to store and

manage the data. Besides this, the organizations

must line up with the storage equipments, which is

high-priced.

Data management is another noteworthy

annoyance for the organizations. The concept of

cloud computing is a compliment to the mid and

small scale organizations, as it is the best choice to

avoid sparing a huge fund for data storage purposes.

Additionally, cloud computing provides a bundle of

attractive features such as on-demand services, easy

and reasonable payment options, simpler data

maintenance and so on.

These features kindle the data owners to

outsource their own data to the cloud storage. By

this way, the data owners enjoy the benefits of

reduced overhead with respect to storage and data

management [1-5]. However, the data owners feel

reluctant to provide the confidential data to the

unreliable cloud service provider, as the data owners

cannot have the direct control of data [6-10]. This

introduces several security related issues such as

data confidentiality, integrity and availability. For

instance, certain clouds have misbehaved by

removing or modifying the rarely accessed data [11-

14]. The same kind of issue has been reported

against Amazon S3, Gmail, and Sidekick for failure,

email removal and disaster respectively [15, 16].

Thus, it is necessary to safeguard the consistency of

the data and the integrity of the data has to be

maintained.

The main intention of this research article is to

present a twin layered security mechanism, which

preserves the data integrity of cloud storage. The

proposed work verifies the data integrity of the

cloud stored data by employing the keccak’s hash

function and Advanced Encryption Standard (AES)

Received: February 6, 2017 95

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.11

for carrying out the encryption operation. Thus, the

proposed work provides twin layered security. The

performance of the proposed work is analysed

against the SHA-3 member algorithms such as

BLAKE, SKEIN and SHA2 with respect to

throughput and memory. Besides this, the time

consumption for encryption is also presented. The

highlights of this article are listed as follows.

 Twin layered security mechanism is presented

for the cloud storage, which involves hashing

and encryption.

 The organization of data nodes in structured tree

format allows updating any part of data at any

instant of time.

 No table look up is required and no tables are

maintained. This reduces the memory

consumption and improves the performance.

 Keccak’s hash function is employed for hashing,

as the degree of security and the processing

speed are considerably improved.

 The proposed work is free from any arithmetic

and rotation operations.

 AES algorithm is utilized for encryption, as it is

known for its speed and efficiency.

 On analysing the performance of the proposed

work, it shows surprising results when compared

to the analogous techniques.

In substance, this article tightens the security by

introducing two layers of security, which are

hashing and encryption techniques. The data are

organized in the form of tree, which makes it easy to

perform operations such as data update, insert and

delete. The experimental results of the proposed

work are compared with the member algorithms of

SHA-3 with respect to throughput, memory

consumption and execution time.

The rest of the article is systematized in the

following way. Section 2 analyses the related

literature with respect to data integrity in cloud

storage. The proposed technique is elaborated in

section 3. The efficiency of the proposed work is

examined in the section 4. Lastly, the concluding

remarks are drawn.

2. Review of literature

This section contemplates to review the related

literature with respect to data security in cloud

storage.

As the growth of cryptographic hash functioning

techniques progresses, the techniques to break the

hash functions are also progressing. SHA is a set of

hash functions approved by National Institute of

Standards and Technology (NIST). SHA-1 is the

initially proposed algorithm, which is of 160 bits.

The famous SHA-1 has been broken by Wang [17].

Thus, the NIST planned to check the current status

of cryptographic hash algorithms. This step is

followed by the introduction of a new family of

hashing algorithms, which is SHA-2.

SHA-2 algorithms can utilize four different

block sizes such as 224, 256, 384 and 512. SHA-2

algorithms are more secure than the SHA-1 group of

algorithms and are appropriate for commercial

purposes. The major drawback being cited by the

SHA-2 algorithms is the interoperability [18].

The SHA-2 algorithms started to face several

attacks and thus, the NIST again circulates a

proposal for finding new secure and compatible

algorithms. Several algorithms were proposed as

members of SHA-3 and they are Blake, Skein,

Keccak, JH and Grostl. Blake algorithm entered the

final round of SHA-3 algorithm selection and is a

family of four different hash functions such as

Blake-224, Blake-256, Blake-384 and Blake-512.

Blake utilizes minimal resources and is faster both

in terms of software and hardware [17,19]. However,

the security of this algorithm is not up to the mark.

The Groestl algorithm is based on bytes and is

completely different from the general design

principle of SHA group of algorithms [18]. Some of

the noteworthy advantages of Groestl algorithm are

its security, simplicity, side channel resistivity and

parallelism. However, this algorithm is susceptible

to collision attacks. The detailed description of the

Groestl algorithm can be found in [19].

JH is another important member of SHA-3

algorithms and it consists of four different hash

functions. They are JH-224,256,384 and 512. The

major operations involved in JH are permutation,

substitution and XOR. The design of JH is

elaborated in [19] and the performance of JH is

poorer than keccak. Skein which is a constituent of

SHA-3 family algorithms comes in three different

sizes, which are 256, 512 and 1024 bits. The

building blocks of Skein algorithm are Threefish,

Unique Block Iteration (UBI) and Optional

Argument System [20,21].

Keccak algorithm is the most efficient algorithm

in the SHA-3 group of hash algorithms. This

algorithm relies on the process of constructing

sponge. Keccak is proved to be secure against

generic attacks and some of the key merits of keccak

are simplicity and flexibility. The keccak algorithm

is well explained in [19].

Received: February 6, 2017 96

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.11

Figure.1 Overview of twin layered security scheme

Motivated by the above works, this article aims

to present a twin layered security scheme for cloud

storage. The original keccak algorithm is modified

to some extent and is clubbed with the AES

encryption. This results in increased security and

resistivity against security attacks. The proposed

security model is elaborated in the forthcoming

section.

3. Proposed twin layered security scheme

This part of the article presents the proposed

twin layered security mechanism. The major entities

being participated in this security model are data

owners (DO), cloud service providers (CSP) and

integrity checkers (IC). Data owner is an important

entity, who outsource or handover the confidential

data to the cloud server. Cloud service providers are

commercial entities, which provide a range of

services to the cloud users. In this case, the focus is

on storage service.

In order to get rid of management and storage

complications, the data owners outsource the data to

the commercial cloud service provider. These two

parties share a Service Level Agreement (SLA),

which clarifies the terms of the service being

provided. Though, the SLAs are violated certain

times and this leads to several troubles. This issue is

handled by the entity named integrity checker,

which checks the consistency of the outsourced and

the cloud stored data. The overall flow of the twin

layered security scheme is depicted in Fig.1.

For achieving this, the entire work is

compartmentalized into

 Hashing phase

 Encryption phase

 These phases are again broken down into

several sub-phases. The keccak’s hash function is

applied on the to-be outsourced data, in order to

obtain the hash code. This is followed by the

generation of dynamic key, which is an important

weapon for the data owners. The dynamic key is not

shared with any other parties. The AES encryption

algorithm takes the hash code and dynamic key as

the input and releases the encrypted version. Thus,

the process of decryption is possible only when the

dynamic key is available. This ensures the security

of the entire system and the forthcoming sections

elaborate the system.

3.1 Hashing phase

 The major objective of the process of hashing is

to enhance the security of the model. Keccak’s hash

function is utilized for achieving this task. The two

important stages of this phase are block separation

and hash value computation. Keccak is a group of

hash functions and the heart of keccak is the sponge

establishment.

 The sponge function is attained by three

important building blocks, which are bit rate (br),

capacity (c) and diversifier (d). The bit rate and

capacity together decides the degree of the

permutation. The main usage of diversifier is to

differentiate between the entities of keccak.

 The keccak’s function accepts the entire data to

be outsourced and breaks it into multiple blocks by

employing the sponge function. Thus, the input can

be of any size and the outcome of the sponge

function is a set of blocks, whose size is fixed by the

user. The bit rate and capacity collectively

determines the security and the speed of the system.

The bit rate is directly proportional to the security of

the system.

 On the other hand, the speed of the system is

improved by increasing the capacity value. This

proposed security model works with two different

output lengths 256 and 512, in order to check the

execution speed of the system.

Received: February 6, 2017 97

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.11

Figure.2 Hashing phase

 Keccak enforces a policy that the summation of

bit rate and capacity must be 1600. This function

performs all the operations with respect to bytes, so

as to overcome the bit attacks. The idea behind the

hashing phase is presented in Fig.2.

 As this function operates over bytes, an issue

may arise when the input data cannot be exactly

divided into bytes. In this case, certain number of

bits is present and these bits are handled separately.

The remaining count of bits is called as trailing bits,

which are appended at the last node of the tree. Let

𝐷 be the data which is to be outsourced to the cloud.

The proposed approach divides the data 𝐷 into

several data blocks, which can be denoted as

𝐷 = {𝐷𝐵1, 𝐷𝐵2, 𝐷𝐵3, … 𝐷𝐵𝑛} (1)

 All the data blocks are organized in the form of

standard binary tree. The hash codes of the child

nodes are computed and are appended to the parent

node. This process continues till the root node is

reached.

𝐻(𝐷) = {𝐻(𝐷𝐵1), 𝐻(𝐷𝐵2), 𝐻(𝐷𝐵3), … 𝐻(𝐷𝐵𝑛)}
 (2)

 When the input data is separated into data blocks, a

tree is formed with several nodes. The tree can grow

with respect to the size of the data and no restriction

is enforced regarding the height of the tree. Thus,

the height of the tree is directly proportional to the

size of the input data. The entire process is presented

in the following part.

Hashing phase

//Block separation

Input : data, ol

Output : Data blocks

Begin

Decompose data w.r.t ol;

If ((size(data)%8)==0) then

Construct tree;

Goto Hash_Computation;

Else

Collect trailing bits in a separate block;

End;

//Hash Computation

Input: Data blocks

Output: Hash code

Begin

Perform hash operation over leaf nodes;

Do

Concatenate hash codes of nodes with same parent;

until the root node is reached;

End;

In the above algorithm, ol is the output length and

trailing bits are the remaining bits after the

separation of input data into data blocks. Initially,

the hash value is computed for all the leaf nodes.

The hash values of the leaf nodes are concatenated,

if the leaf nodes are the children of the same parent.

This process continues till the root node is reached.

Thus, the hash code is computed and is stored in the

root node.

3.2 Encryption phase

 After the construction of tree with hash codes,

the security of the system is even more tightened

with the concept of encryption. In this phase, the

famous encryption algorithm AES is utilized. AES

is known for its execution speed and high degree of

security. In order to enhance the security, the hash

codes are encrypted by the dynamic key. The

dynamic key is never shared by the data owner to

any party. In this work, the dynamic key is

generated by the CodeIgniter key generator, which

is of size 256 bits.

 This work prefers AES for encryption, as it

operates over bytes rather than bits. In this work,

256 bit key is employed for AES, which results in

14 rounds of encryption. As the number of rounds

increases, the security of the system is also

improved. Each and every round exploits a 128 bit

key, which is computed by the AES key itself. The

algorithm for encryption phase is presented below.

Received: February 6, 2017 98

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.11

Encryption phase

Begin

For all data blocks

Do

Compute dynamic key ‘d’ by CodeIgniter key generator;

Pass d and hash code to AES;

Return cipher text;

End;

End;

Each round of AES involves several significant

operations such as substituting bytes, shift rows, mix

columns and add round key. Initially, the input bytes

are loaded into the S box, which is in the form of a

matrix. The rows are then shifted with respect to

positional constraints. The columns are then

shuffled by replacing the original bytes into

different bytes and this operation does not take place

at the 14th round alone. The final components of the

matrix are performed XOR operation with the round

key. This process is repeated for 14 rounds, in order

to provide the cipher text.

 As the dynamic key is never shared, the security

of the system is far more improved. Besides this, the

plain text is not directly encrypted but the computed

hash codes are encrypted. Thus, this work provides a

twin layered security.

 When the data owner needs to perform integrity

check, the AES algorithm is decrypted with the

secret dynamic key, such that the hash code is

obtained. The hash codes can then be compared, in

order to check the data integrity. The integrity check

can be performed by the data owner at any instant of

time by challenging the cloud server. The next

section aims to present a sample work principle of

the proposed work.

3.2 Sample work principle of twin layered

security scheme

 To exemplify this concept, a small portion of

data from the huge amount of data is considered.

This makes sense that this small portion of data

contributes the role of a node in a big tree of data.

The sample work principle is just added for

understanding purpose.

 The small part of data being considered is as

follows. The sample data is of about 2386 bytes. In

order to explain the concept, the data is divided into

several 500 bytes. Thus, the tree constitutes 6 nodes

and the last node is loaded with the remaining 386

bytes. The structure of the data is represented as tree

in Fig.3.

 Initially, the hash code of 6th node is saved in

node 3. The hash codes of 4th and 5th nodes are

computed and stored in node 2. Similarly, the hash

codes of 2nd and 3rd nodes are saved in node 1,

which is the root node. Thus, a complete tree is

considered. The count of hash codes is reduced, as

the hash code is computed only for the children

nodes, which share the same parent.

 The root node stores only the complete hash code

and it doesn’t possess any data. The hash code is

computed by Keccaks hash function of size 256 bits.

This is followed by the generation of a dynamic key

with CodeIgniter and the hash code is encrypted

with the so computed key, by means of AES. The

256 bit hash codes of the nodes are presented below.

Computed hash codes by Keccak (256 bit) [HC]

Node 6:
bf807b6a14256c3e49c479060f83d24a941e4e9f3a1d

aadbc052e7e87c7079b7

Nodes 4 and 5:
0f1b466a489726a7763cfb48c2443206556320ed174

912a6429b08445058455a

Nodes 2 and 3:
bebd623270d374cf11e7dab1ca385822a793dcb2c47

4ec0e98d0dd2ee5cf23b1

Finally, the hash code of nodes 2 and 3 is stored in

the root node. After this process, a dynamic key

(256 bit) is generated and is presented below.

Generated dynamic key [DK]:

agC7Z5TKA6mi6trYCr7NeB4LE6mxqhug

AES encryption (256 bit) [HC+DK] :

Node 6:
D/jDd8VKWvVByEcSaOrowYiEJMZpV5bJBp29I

XYVWMqoySCxnwOGuEZ6zvSLiZttpvefR7Qvss4

kkladqyKAUA==

Nodes 4 and 5:
hqq4Na122rFXfEB2+UE2sCvYexrcs0MosAedjrES

VxPn6u/Re8mcTcG4FNO/Vn9hMc6B5FMtMaZtIi

+y+dPI7A==

Nodes 2 and 3:
6gh7SOQc1wqn7iNmmrwfubvZmN7A9R95LAf/1P

k/BAt1SBJDmDWS8sr/G1Gfx5q5c7ubboiqEsuY7Z

ZLurDFPg==

 The hash codes of the nodes can be obtained only

when the dynamic key is known. Even when the

dynamic key is known, it is difficult to break the

keccak’s security. So far, no security breaches are

reported for Keccak. Besides this, we employ AES

Received: February 6, 2017 99

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.11

Figure.3 Structure of sample data

algorithm of 256 bits, which takes 14 rounds to

arrive at the cipher text.

 Thus, the security of the system is believed to the

safest at the expense of complex computation. By

this way, the integrity of the

 data is preserved. Most of existing systems rely on

the computation of hash codes alone. However, this

work adds another line of security which is

impossible to break.

4. Performance analysis

 The performance of the twin layered security

model is analysed by comparing with the SHA 3

member algorithms such as BLAKE [17], SKEIN

[20] and SHA2 [19] in terms of throughput and

memory consumption. Throughput is an important

performance metric for determining the speed of the

algorithm, which makes sense that the capability of

the algorithm to deal with the data rate. It is

measured in terms of Mbps (mega bits per second).

The memory requirement is also taken as a measure

to prove the effectiveness of the proposed security

model. Finally, the time consumption for encryption

is taken into account and the experimental results

are presented below.

 The throughput of any security model must be

greater, such that the execution time of the security

model can be minimized. In case of minimal

throughput, the process of execution would take

more time, which consumes more resources. The

proposed model is tested for the throughput for

many different data and it shows satisfactory results.

The following graphical results show the throughput

rate being shown for three different data with varied

sizes. Among all the comparative algorithms SHA 2

performs very poor in all the cases. Keccak

performs well in all the cases and is followed by

Skein. The throughput of keccak is greater because

it processes block by block.

 This is followed by analysing the memory

consumption of the proposed twin layered security

scheme. The memory consumption is tested against

different volumes of data with the same comparative

algorithms. The memory consumption of the

proposed model is observed to be minimal. The

minimal memory consumption is because of the

usage of blocks and the storage of hash codes in

place of the original data. Besides this, the hash

codes are not needed to be computed for individual

nodes, but the hash codes are computed for the

children nodes of the same parent. All these features

reduce the memory consumption of the proposed

work.

Figure.4 Throughput analysis

0

1

2

3

4

5

6

7

8

9

Data 1 Data 2 Data 3

Th
ro

u
gh

p
u

t
(M

b
p

s)

Different Data

Blake

Skein

SHA 2

TSS

Received: February 6, 2017 100

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.11

Figure.5 Memory consumption analysis

Figure.6 Execution time analysis

 The execution time is another important

performance metric of any algorithm. The execution

time must be as minimal as possible, such that the

latency is minimized. It is not feasible for a well-

performing algorithm to have extended execution

time. The execution time of the proposed twin

layered security scheme is tested by differentiating

the data size. This experiment is carried out in two

different scenarios by varying the output length. The

output length is varied as 256 and 512 bytes.

 From the above graph, it can be observed that the

length of output acts a deciding factor of the

execution time. The above result is attained with the

Intel core i7 processor. When the output length is set

as 256 bytes, the process of execution consumes

more time than when the output length is fixed as

512 bytes. The output length can be increased when

speed is given more importance than the security.

When the output length is set as 256, the br, c and d

are set as 1088, 512 and 32 respectively. Alternately,

when the output length is fixed as 512, the values of

br, c and d are set as 576, 1024 and 64 respectively.

Thus, when the count of rounds increases, the

security of the system is improved.

 Thus, the main objective of the paper to present a

twin layered security model for achieving data

integrity in cloud storage is achieved. The proposed

security model is examined with several

performance metrics and the proposed work

outperforms the comparative algorithms with greater

throughput, minimal memory and time consumption.

5. Conclusion

 This article presents a twin layered security

model for the cloud storage, in order to preserve the

data against numerous security threats. The data

integrity is preserved as the security of the system is

tightened. The entire model is divided into two

important phases, which are hashing and encryption

phase. As both hashing and encryption are present in

the model, the security is guaranteed at the expense

of computation.

 Both these phases are achieved by keccak’s hash

function and AES algorithm. Finally, the

performance of the twin layered security scheme is

analysed and the experimental results show the

efficacy of the work. The performance of the

proposed work is analysed in terms of throughput,

memory consumption and execution time. Though

the proposed approach is found to be secure and

memory conserving, the computational complexity

is a bit high. In future, we plan to incorporate the

concept of multi-clouds with data replicas.

References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin and I.Stoica, “Above the Clouds: A

View of Cloud Computing”, Communications of

the ACM, Vol. 53, No. 4, pp. 50-58, 2010.

[2] C. Kai, H. Chengchen, Z. Xin, Z. Kai, C. Yan,

and A.V. Vasilakos, “Survey on routing in data

centers: insights and future directions”, IEEE

Network, Vol.25, No. 4, pp. 6-10, 2011.

[3] W. Lin, Z. Fa, Z. Kai, A.V. Vasilakos, R.

Shaolei, and L. Zhiyong, “Energy-Efficient Flow

Scheduling and Routing with Hard Deadlines in

Data Center Networks”, In: Proc. of IEEE

International Conference on Distributed

Computing Systems (ICDCS), Madrid, pp. 248-

257, 2014.

[4] M.R. Rahimi, N. Venkatasubramanian, and A.V.

Vasilakos, “MuSIC: Mobility-Aware Optimal

Service Allocation in Mobile Cloud Computing”,

In: IEEE Sixth International Conference on

0

5

10

15

20

25

30

35

40

45

50

50 100 150 200

M
e

m
o

ry
 c

o
n

su
m

p
ti

o
n

 (
%

)

Data (MB)

Blake

Skein

SHA 2

0

1

2

3

4

5

6

7

250 500 750 1000

Ti
m

e
 (

s)

Data (MB)

OL=256

OL=512

Received: February 6, 2017 101

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.11

Cloud Computing (CLOUD), Santa Clara, CA,

pp. 75-82, 2013.

[5] G. Wei, A. Vasilakos, Y. Zheng, and N. Xiong,

“A game-theoretic method of fair resource

allocation for cloud computing services”, The

Journal of Supercomputing, Vol. 54, No. 2, pp.

252-269, 2010.

[6] W. Cong, R. Kui, L. Wenjing and L. Jin,

“Toward publicly auditable secure cloud data

storage services”, IEEE Network, Vol. 24, No. 4,

pp. 19-24, 2010.

[7] A. Khan, M.L.M. Kiah, S. Madani, M. Ali, A.

Khan and S. Shamshirband, “Incremental proxy

re-encryption scheme for mobile cloud

computing environment”, The Journal of

Supercomputing, Vol. 68, No. 2, pp. 624-651,

2014.

[8] W. Lin, Z. Fa, J. Arjona Aroca, A.V. Vasilakos,

Z. Kai, H. Chenying, L. Dan and L. Zhiyong,

“GreenDCN: A General Framework for

Achieving Energy Efficiency in Data Center

Networks”, IEEE Journal on Selected Areas in

Communications, Vol. 32, No. 1, pp. 4-15, 2014.

[9] L. Wei, H. Zhu, Z. Cao, X. Dong, W. Jia, Y.

Chen and A.V. Vasilakos, “Security and privacy

for storage and computation in cloud

computing”, Information Sciences, Vol. 258, pp.

371-386, 2014.

[10] Z. Xin, Z. Fanfu, Z. Xinyu, S. Haiyang, A.

Perrig, A.V. Vasilakos and H. Guan, “DFL:

Secure and Practical Fault Localization for

Datacenter Networks”, IEEE/ACM Transactions

on Networking, Vol. 22, No. 4, pp. 1218-1231,

2014.

[11] M. Ali, S.U. Khan and A.V. Vasilakos,

“Security in cloud computing: Opportunities and

challenges”, Information Sciences, Vol. 305, pp.

357-383, 2015.

[12] S. Shamshirband, N.B. Anuar, M.L.M. Kiah,

and A. Patel, “An appraisal and design of a

multi-agent system based cooperative wireless

intrusion detection computational intelligence

technique”, Engineering Applications of

Artificial Intelligence, Vol. 26, No. 9, pp. 2105-

2127, 2013.

[13] C. Wang, K. Ren, W. Lou and J. Li, “Toward

publicly auditable secure cloud data storage

services”, IEEE Network, Vol. 24, No. 4, 19-24,

2010.

[14] K. Yang and X. Jia, “An Efficient and Secure

Dynamic Auditing Protocol for Data Storage in

Cloud Computing”, IEEE Transactions on

Paralel and Distributed Systems, Vol. 24, No. 9,

pp. 1717 – 1726, 2013.

[15] T.Armerding, “The 15 worst data security

breaches of the 21st century”, In : COS Security

and Risk, Csoonline, 2012.

[16] G.M. Stevens, “Data Security Breach

Notification Laws”, In: Congressional Research

Service, 2012.

[17] J.P. Aumasson, L. Henzen, W. Meier and R.

C.-W. Phan, “SHA-3 Proposal BLAKE,” NIST

(Round 3), University of California Santa

Barbara, Santa Barbara, 2010.

[18] P. Gauravaram, L. R. Knudsen, K. Matusiewicz,

F. Mendel, C. Rechberger, M. Schläffer and S. S.

Thomsen, “Grøstl—A SHA-3 Candidate,” In :

NIST, University of California Santa Barbara,

Santa Barbara, 2011.

[19] X. Guo, M. Srivastav, S. Huang, D. Ganta, M.

B. Henry, L. Nazhandali and P. Schaumont,

“Silicon Implementation of SHA-3 Finalists:

BLAKE, Grøstl, JH, Keccak and Skein,” Center

for Embedded Systems for Critical Applications

(CESCA) Bradley Department of Electrical and

Computer Engineering Virginia Tech,

Blacksburg, 2010.

[20] X. Guo, M. Srivistav, S. Huang, D. Ganta, M.

Henry, L. Nazhandali and P. Schaumont,

“Silicon Implementation of SHA-3 Finalists:

BLAKE, Grøstl, JH, Keccak and Skein,”

ECRYPT II Hash Workshop 2011, Tallinn, May

2011.

[21] N. Ferguson, S. Lucks, B. Schneier, D. Whiting,

M. Bellare, T. Kohno, J. Callas and J. Walker,

“The Skein Hash Function Family,” NIST

Cryptographic Hash Algorithm Competition,

University of California Santa Barbara, Santa

Barbara, 2008.

