
Received: December 20, 2016                                                                                                                                              40 

International Journal of Intelligent Engineering and Systems, Vol.10, No.2, 2017           DOI: 10.22266/ijies2017.0430.05 

 

 
An Effective Implementation of Dual Path Fused Floating-Point Add-Subtract 

Unit for Reconfigurable Architectures 

 

Anitha Arumalla1*       Madhavi Latha Makkena2 

 
1Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India  

2Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India 

* anithaarumalla83@gmail.com 
 

 
Abstract: Reconfigurable architectures have provided a low cost, fast turnaround platform for the development and 

deployment of designs in communication and signal processing applications. The floating point operations are used 

in most of the signal processing applications that require high precision and good accuracy. In this paper, an 

effective implementation of Fused Floating-point Add-Subtract (FFAS) unit with a modification in dual path design 

is presented. To enhance the performance of FFAS unit for reconfigurable architectures, a dual path unit with a 

modification in close path design is proposed. The proposed design is targeted on a Xilinx Virtex-6 device and 

implemented on ML605 Evaluation board for single, double and double extended precision. When compared to 

discrete floating point adder design, the FFAS unit reduces area requirement and power dissipation as the later shares 

common logic. A Dual Path FFAS (DPFFAS) unit has reduced latency when compared with FFAS unit. The latency 

is further reduced with the proposed modified DPFFAS when compared with DPFFAS for reconfigurable 

architectures. 

Keywords: Discrete floating-point design, Dual path algorithm, Floating-point arithmetic, Fused floating-point 
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1. Introduction 

In recent processors, the computer arithmetic 

units accomplish advanced computations such as 

scientific calculations, high performance graphics, 

and multimedia signal processing that need complex 

arithmetic. The binary fixed-point number system 

cannot provide adequate precision to handle such 

complex computations. As specified in IEEE 

Standard -754 [1], floating-point notation represents 

an extensive numbers range from trivial fractional 

numbers to extremely large numbers in converse to 

that of fixed-point number system.  

The floating-point notation consists of three 

parts - sign, significand and exponent. Hence, the 

floating-point operations may require complex 

procedures. For example, the operations frequently 

require the normalization, which causes an increased 

logic delay. Therefore, improving the performance 

of floating-point operations has been a research 

topic in the computer arithmetic field.  

Custom designs targeting Application Specific 

Integrated Circuits (ASICs) were designed if 

extremely high performance, with respect to area, 

speed, and power, is demanded for the designs. 

However, the design time and development cost of 

ASICs is huge. To address this limitation, 

reconfigurable architectures like the Field-

Programmable Gate Arrays (FPGA) are extensively 

used. When compared to ASICs, FPGAs are 

becoming a solution for applications that are 

developed for small volumes. Many communication 

and signal processing systems are developed using 

reconfigurable architectures owing to their faster 

design turnaround time, lower design cost and 

availability of high performance devices from 

vendors like Xilinx, Altera. While the design for 

custom ICs cannot give similar performance as the 

design targeted for a generic reconfigurable 
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architecture, there should be designs specific to the 

target technology.  Hence, this paper presents an 

effective implementation of DPFFAS unit for 

reconfigurable architectures.  

Many Digital Signal Processing (DSP) 

applications can benefit from the FFAS unit. The 

FFAS unit generates sum and difference in parallel 

from two normalized floating point operands as 

inputs. This unit reduces area when compared to the 

discrete design. A dual-path algorithm can improve 

the computational speed of FFAS. The algorithm 

consists of close and far paths and the path is chosen 

basing on the difference in exponents. In far path, 

rounding, addition and subtraction are accomplished 

in parallel. The close path is divided into three cases 

depending on exponent difference. For each of the 

three cases, LZA, addition, and subtraction are 

executed simultaneously and rounding is not 

necessary. This latency of DPFFAS can be reduced 

further if the design is customized to suit the internal 

architecture of FPGA. The normalization stage in 

the close path contributes at a larger degree to the 

overall latency of DPFFAS. The design when 

implemented for generic reconfigurable 

architectures like FPGA’s, should be customized 

depending on design datawidth and target 

architecture datapath. Hence a modified DPFFAS 

algorithm with a Leading Zero Detector (LZD) in 

the close path is employed by investigating latencies 

of LZD and LZA for different significand data width. 

This algorithm reduces the additional latency 

introduced by LZA due to fixed finite datapath of 

FPGAs. A 28% reduction in the latency is observed 

in modified DPFFAS algorithm when compared 

with DPFFAS with LZA. 

In the rest of the paper, the following content is 

presented. A brief literature survey is presented 

under the Section 2. Discrete and fused floating-

point add-subtract units are introduced in Section 3. 

DPFFAS unit architecture is discussed under 

Section 4. Modified DPFFAS Unit design is 

presented in Section 5. Results of DPFFAS in 

comparison with other architectures are listed under 

Section 6 and conclusion is derived in the 

subsequent section. 

2. Previous Architectures  

Floating-point numbers make an effort to 

represent real numbers with highest accuracy. IEEE 

Standard 754 has defined different floating point 

number representation formats, exceptions and error 

conditions to support diverse precision requirements 

[2]. Several researchers [3]–[5] have implemented 

various architectures for Floating-Point Adders 

(FPA). The approach outlined in [3] allows for the 

construction of floating-point units with parameter 

selection like throughput, latency, and area. LOP 

(Leading One Predictor) algorithm, and 2-path 

algorithm are introduced in this work. A 2-path 

adder is designed to trade area for latency and LOP 

algorithm is introduced to reduce overall critical 

path delay. But the algorithms proposed in [3] [4]are 

confined only to unsigned operations with exception 

handling limited to overflow.   

In [4], authors worked to analyze area and 

maximum achievable throughput of pipelined 

structures of FPA and multiplier. Area and 

throughput are traded against the number of pipeline 

stages as a parameter. The standard three stage 

algorithm with de-normalization/pre-shifting, 

significand addition/subtraction and rounding/ 

normalization is used to increase operating 

frequency of the design. Although the IEEE-754 

formats are used, for the single and double precision 

implementations, demoralization and Not a Number 

(NaN) representations were not supported. 

In [5], a IEEE standard -754 FPA with double 

precision is implemented including all rounding 

modes. A revised version of a FPA is proposed that 

can achieve accumulation in 2-cycles including 

some additional hardware which also engages 

flagged prefix addition to enhance branch resolution 

times. However, the design in [5] is not supported 

with performance analysis results. A Parameterized 

library [6] of floating point open cores considers 

precision as a significant parameter. Apart from 

considering precision as a parameter, the number of 

pipeline stages should be considered as a significant 

parameter as it affects the throughput of the design.  

The fused add-subtract unit design is first 

introduced in [7] to support application, requiring 

concurrent addition and subtraction, like radix N 

butterfly FFT structures. The FAS unit has occupied 

40% large area when compared with conventional 

FPA. Maximum frequency of operation of FAS unit 

is comparable with that of conventional FPA. Two 

different fused floating point operations are used for 

implementing radix-2 and radix-4 butterfly FFT 

structures [8]. The FFT structure using fused 

multiply add and fused add-subtract have reported 

30% lower area and 15% more speed when 

compared with conventional FFT structures. The 

individual FAS however exhibited more delay in 

comparison with conventional add-sub unit.  

Two-stage pipeline architecture for dual path 

algorithm is presented in [9]. The design has shown 

significant advantage in area and latency. But the 

design cannot be readily adapted to reconfigurable 

architectures. Leading Zero Anticipator (LZA) [10], 
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[11] is used to replace Leading Zero Detector in 

normalization step to reduce the latency of FFAS. 

LZA is used in parallel to addition and subtraction 

operations to predict the most significant zero in the 

result of subtraction operation. Though an overall 

performance is increased, the area requirement is 

high for LZA algorithm. 

A multi threshold voltage technique [12] is used 

to implement ASIC implementation of floating point 

addition, subtraction and multiplication operations 

for reducing power dissipation. A hybrid floating-

point (FP) implementation [13] is used to improve 

performance without incurring the area overhead of 

full hardware FP units. Add, Subtract, Multiply, 

sqare-root and division software kernels are 

integrated into small fixed-point processors with a 

RISC-like architecture.  

A multifunctional floating point unit [14] is 

designed that includes multiplication above fused 

add-sub unit producing a hardware efficient 

implementation of fused floating point arithmetic. In 

[15], fused arithmetic units including two-term dot 

product unit and add-subtract unit are designed 

using radix-16 booth multiplier. 

Many of the designs in the literature have 

considered algorithms for single precision floating 

point arithmetic. The designs are not evaluated for 

higher precision arithmetic. Also, reconfigurable 

architectures have been increasingly used to develop 

signal processing and communication application. 

Therefore there is a need to develop architectures 

specific to reconfigurable architectures by 

considering the generic structures of the target 

device. Hence the paper describes an IEEE-754 

standard FFAS for signed floating point operations, 

including all exceptions detailed in the standard. The 

design is evaluated for single, double and extended 

double precisions. 

3. Discrete and Fused Floating-point Add-

Subtract Units 

The Floating-point Add-Subtract (FAS) 

operation can be implemented using two identical 

FFASs in parallel [9]. Two adders are used to carry 

out addition and subtraction operations, so as to 

compute the sum and difference concurrently. A 

traditional FFAS can be used for each operation. But, 

most of the logic like alignment, exponent compare 

and significand swap in both the FFASs is almost 

similar for the two operations. 

In order to decrease area overhead, the common 

logic is combined for two operations in the FFAS 

unit. The design of a FFAS unit [9] is as shown in 

Fig. 1. The FFAS unit computes the sum and 

difference results concurrently by sharing the 

common logic. Though different signed 

combinations are possible for both the operands, 

only one significant subtraction and addition are 

performed in the FFAS unit. The appropriate sign 

for the result is evaluated by sign logic. To reduce 

the number of addition/subtraction operations 

required by different signed combinations of the 

operands, exponent comparison and significand 

swap logic are used to adjust the significands such 

that larger operand is made as first operand during 

subtraction. 

 

 
For the sum and difference results, the two 

operations are explicitly performed. Hence the 

addition and subtraction blocks are positioned 

separately and only single LZA [16] and 

normalization (for the subtraction) are required. 

LZA generates the number of most significant 

leading zeros during the subtraction so that its result 

is immediately normalized. LZA gives the amount 

of shift required to the exponent adjust logic in 

normalization stage. The LZA calculation from the 

significands of subtraction operands is shown in the 

following equations. 

 
  xor    i i i isum A B P 

  (1) 

 1 1 1 a  n  di i i icarry A B G   
  (2) 

 
 xor   i i i ixor sum carry PG 

  (3) 

 1 2    an  nd d a iLZA PG PG PG 
  (4) 

 

In the normalization stage, exception flag is 

asserted if any one of underflow, overflow and 

inexact exceptions arise in the exponent. As 

common logic is being shared between addition and 

Exponent Comparison and Significand 

Swap Logic 

Sign Logic 

Normalization 

A[30:0] B[30:0] A[31] B[31] 

Addition Subtraction  LZA 

Sum[31:0] Diff[31:0] 

Align 

Figure.1 Fused floating-point add-subtract unit 
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subtraction operations, the number of control signals 

required for differentiating the signs and final results 

are reduced. Thus, the FFAS unit attains lower area 

and higher speed when compared with discrete FAS 

units. 

4. Dual Path Fused Floating-Point Add-

Subtract Unit 

A dual-path approach [9] can improve the 

performance of FFAS unit. The DPFFAS algorithm 

is used in most high-speed FFASs which are meant 

for designing custom ICs [5], [17] . Fig. 2 shows the 

DPFFAS unit. In FFAS unit, the normalization 

performed after subtraction introduces a large delay. 

The DPFFAS algorithm eliminates the 

normalization step if the exponent difference is large. 

Hence the DPFFAS design enhances the 

performance when compared with FFAS design.  

 

 

 
 

The dual-path approach is composed of close path 

and far path logic. If the difference in numbers is 

large, i.e difference of the exponents is more than 

‘1’, then the operands choose far path [9], shown in 

Fig. 3. In this case, the difference in normalized 

significands will be large. Hence, huge elimination 

does not occur during the subtraction and LZA [10], 

[11] is not necessary. To generate normalized 

significands, the significands are adjusted by 

appending ‘1’ to the significand MSB. The operand, 

whose significand is small, is considered and shifted 

right by the measure of the exponent difference and 

a ‘1’ is appended to the MSB. These adder and 

subtraction blocks perform rounding operation 

concurrently and produce the relevant results [9]. 

For both addition and subtraction, the far path 

eliminates the use of large normalization process as 

it requires at most one-bit normalization shift. 

 

 
The close path[9], shown in Fig. 4, chooses the 

significands if the exponent difference of operands 

is either ‘0’ or ‘1’. Three cases are present for the 

close path alignment relying upon the difference of 

the exponents: 

(1,A[22:0],0) if Ex A - Ex B 1

Sig A [23:-1] (1,A[22:0],0) if Ex A - Ex B 0

(01,A[22:0]) if Ex A - Ex B 1



 

 

  (5) 

 

(01,B[22:0]) if Ex A - Ex B 1

Sig B [23:-1] (1,B[22:0],0) if Ex A - Ex B 0

(1,B[22:0],0) if Ex A - Ex B 1



 

 

  (6) 

 

 
 

For each case LZA, addition and subtraction are 

carried out concurrently. In close path there is no 

explicit alignment done initially. Hence, 

A [24:0] B [24:0] 

Small Exponent Comparison and significand 

Swapping and close path alignment 

Addition Subtraction LZA 

Normalization 

Add Signif [22:0] Sub Signif [22:0] 

Figure. 4 Close path logic for the DPFFAS 

unit 

 

Significand Swapping 

A [22:0] B [22:0] 

Alignment 

Addition Subtraction Rounding 

Post-Normalization 

Add Signif [22:0] Sub Signif [22:0] 

Figure. 3 Far path logic for the DPFFAS unit 
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Far Path 

 

Addition 
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Normalization 

Sign Log ic 

A[31] B[31] 
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Sum[31:0] Diff[31:0] 

Figure. 2 DPFFAS unit 
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 If exponent difference is ‘1’, i.e., A>B, 

then B must be shifted by 1-bit and a ‘0’ 

is aligned at MSB. 

 If exponent difference is ‘0’, i.e., A=B, 

no shifting is done. 

 If exponent difference is ‘-1’, i.e., A<B, 

then A must be shifted by 1-bit. As a 

result a ‘0’ is placed at MSB. 

One of the above close path alignment results is 

selected depending on the exponent difference, 

computed from the two least significant bits of the 

exponents. Since the significands in the close path 

are mis-aligned at most by 1-bit, rounding is not 

needed. 

5. Modified Dual Path Fused Floating-Point 

Add-Subtract Unit 

The DPFFAS exhibits greater critical path delay 

when targeted to generic architectures like FPGAs, 

as the logic should be implemented using 6 input 

LUT. The increase in delay is because of the 

presence of LZA in the close path, when targeted for 

FPGAs. The LZA is used to predict the leading 

zeros in the result of the significand simultaneously 

while addition and subtraction operations are 

performed. As the number of significand bits are 

increased, the advantage of predicting the leading 

zeros ahead of subtraction operation diminishes. The 

subtraction operation performed is a two’s 

complement addition, using fast carry chains in 

FPGA CLBs, while LZA could not be speeded up, 

as it also needs a recursive operation.  

The dual-path design with LZA can be 

considered efficient only when the delay of LZA is 

less than the delays combined with adder block and 

LZD together. But the delay obtained for single 

precision DPFFAS by LZA is 12.5ns, which is 

greater than the delay of adder (3.6ns) and LZD 

(4.5ns) blocks together being 8.1ns. The latency of 

LZA and subtraction with LZD are shown in Fig. 5.  

From the figure it is evident that the advantage 

of LZA can be seen if the number of the significand 

bits is less than 20. But for higher precision designs 

LZA increases the overall latency. Instead of using 

LZA in close path, LZD can be used to reduce 

latency to a great extent which produces a modified 

DPFFAS. The modification in close path algorithm 

is presented in Fig. 6.  

By using this approach, area is also reduced 

compared to the dual-path with an LZA in close 

path (which uses additional hardware). Hence a 

design with LZD can be used in FPGAs to achieve 

better performance. The design supports all five 

IEEE Standard-754 [1] rounding modes and 

exceptions. Hence for reconfigurable architectures 

such as Xilinx Virtex-6 devices, dual path design 

with LZA in close path increases the latency. This is 

because of the presence of fast look-ahead carry 

logic in configurable logic blocks which effectively 

synthesize adder blocks [18]. 

 

 

 
 

 
 

In a modified DPFFAS with an LZD in the close 

path, the critical path latency is reduced proportional 

to the increase in number of significand bits. For 

many purposes the accuracy offered by the single 

precision format is inadequate. Greater accuracy can 

be achieved by using double precision format which 

uses 64 bits to store each floating-point value. Even 

greater accuracy may be achieved from the double 

extended precision format, which uses 80 bits of 

information [2]. Hence the proposed design is 
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Sub+LZD
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Small Exponent Comparison and 
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A[24:0] B[24:0] 

Addition Subtraction 
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Add Signifi[22:0] Sub Signifi[22:0] 

Figure. 6 Modified close path logic for DPFFAS. 

 

Figure. 5 Latency of Subtraction + LZD and LZA for 

various number of significand bits. 
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intended to implement floating point arithmetic for 

double extended precision. However the results for 

single precision, double precision and extended 

double precision floating point implementations 

were also presented. 

6. Results 

The floating-point designs are implemented in 

single, double and double extended precisions to 

evaluate their performance. The implementations of 

double and double extended precisions can be done 

by extending the single precision implementation. 

For simplicity, only single precision designs are 

described in the architectures. 

 

 
 

Figure. 7 Chipscope debug for modified DPFFAS 

with LZD 

 

 
 

Figure. 8 Routing floorplan of modified DPFFAS 

with LZD 

Each design is implemented using Verilog-HDL 

targeted on a Xilinx Virtex-6 device. The proposed 

algorithm is verified with random test vectors for 

100% code coverage using QuestaSim tool. 

Prototype validation of the algorithm of the 

proposed architecture is performed on ML605 

Virtex 6 FPGA Evaluation board using Xilinx 

chipscope. The experimental results of modified 

DPFFAS implemented on ML605 Virtex 6 FPGA 

Evaluation board and observed using chipscope are 

shown in Fig. 7. The routing floorplan of modified 

DPFFAS with LZD for double precision floating 

point is shown in Fig. 8. 

 
Table 1. Fused Floating-Point Add-Subtract Design 

Comparison 

Single Precision 

  

Discrete 

[3] 

 

Fused 

[7] 

Fused + 

Dual 

path 

(using 

LZA)[9] 

Fused + 

Dual 

path 

(using 

LZD) 

No. of slice LUTs 1,473 1,063 2,504 1,834 

Latency(ns) 24.309 25.582 20.1 17.359 

Throughput(1/ns) 0.041 0.039 0.049 0.057 

Power(mW) 1.99 1.45 2.09 1.61 

Double Precision 

  

Discrete 

[3] 

 

Fused 

[7] 

Fused + 

Dual 

path 

(using 

LZA) [9] 

Fused + 

Dual 

path 

(using 

LZD) 

No. of slice LUTs 3,383 2,407 5,448 4,320 

Latency(ns) 31.311 32.113 29.333 19.867 

Throughput(1/ns) 0.0319 0.0311 0.034 0.050 

Power(mW) 2.49 2.07 4.72 3.75 

Double Extended Precision 

  

Discrete 

[3] 

 

Fused 

[7] 

Fused + 

Dual 

path 

(using 

LZA) [9] 

Fused + 

Dual 

path 

(using 

LZD) 

No. of slice LUTs 7,089 4,420 8,134 6,574 

Latency(ns) 37.403 39.812 36.282 24.886 

Throughput(1/ns) 0.026 0.025 0.027 0.040 

Power(mW) 3.50 2.33 5.20 4.47 

 

In order to evaluate the design performance, area, 

latency, throughput, and power consumption are 

compared with three other architectures. The 
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discrete floating point add-subtract unit [3], FFAS 

[7], DPFFAS with LZA [9] are re-implemented for a 

Xilinx Virtex 6 target device to have valid 

comparision between the architectures. The results 

for the four designs in single precision, double 

precision and double extended precision 

implementations are shown in Table I.  

Since the FFAS unit shares much of the common 

logic, it saves more than 27% of the area over the 

discrete FAS unit. The existing dual-path design 

(using LZA in close path) adds parallelism to the 

design but because of additional hardware and 

significant routing delays it does not significantly 

improve overall latency. When compared to an LZD 

in the close path, the close path using LZA is not an 

effective design for FPGAs, because of the 

requirement of additional slices for LZA and adds 

significant routing and gate delay [19]. Close path 

with LZA design requires long carry chain logic to 

be implemented in FPGAs. The carry chain length is 

proportional to significand width.  While the design 

with LZD is implemented using a zero comparator 

that is free from carry chain and hence has less 

latency. The modified DPFFAS unit requires more 

area than the traditional and fused floating-point 

units due to the presence of three parallel additions, 

subtractions for close path. However, the modified 

DPFFAS design reduces the latency by 28% when 

compared to discrete FAS unit. The area and latency 

of modified DPFFAS design with LZD are reduced 

by 19% and 14% respectively, when compared to 

existing dual-path design with three LZAs. 

7. Conclusion  

An effective implementation of DPFFAS unit 

for reconfigurable architectures is presented in this 

paper. The architecture, though aimed for high 

throughput implementation, offers a significant 

reduction in area and power. The increase in 

throughput is due to LZD that can be easily 

implemented with fine grained target technology. 

But LZA, whose area increases linearly with 

significand width, exhibits higher throughput only 

for ASIC implementation. However, the choice of 

architecture always depends on the implementation 

technology and the design constraints. The modified 

DPFFAS unit can improve the speed of computation 

of digital signal processing applications, such as 

DCT and FFT butterfly operations, that require 

concurrent floating point addition subtraction 

operations when targeted for reconfigurable 

architectures. As the large number of floating point 

computation is required, the proposed design can 

significantly reduce area and power dissipation of 

the entire application. This paper demonstrates an 

effective architecture for DPFFAS algorithm to 

perform concurrent floating-point addition and 

subtraction operation. Area, latency, throughput, and 

power consumption are compared with the 

traditional parallel implementation, FAS, DFFAS 

algorithm. The modified DFFAS algorithm can be 

extended to develop pipelined FFAS unit. 

Development of signal transformation architectures 

for FFT, DCT can be done using modified DFFAS 

algorithm. 
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