
Received: December 20, 2016 40

International Journal of Intelligent Engineering and Systems, Vol.10, No.2, 2017 DOI: 10.22266/ijies2017.0430.05

An Effective Implementation of Dual Path Fused Floating-Point Add-Subtract

Unit for Reconfigurable Architectures

Anitha Arumalla1* Madhavi Latha Makkena2

1Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India

2Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India

* anithaarumalla83@gmail.com

Abstract: Reconfigurable architectures have provided a low cost, fast turnaround platform for the development and

deployment of designs in communication and signal processing applications. The floating point operations are used

in most of the signal processing applications that require high precision and good accuracy. In this paper, an

effective implementation of Fused Floating-point Add-Subtract (FFAS) unit with a modification in dual path design

is presented. To enhance the performance of FFAS unit for reconfigurable architectures, a dual path unit with a

modification in close path design is proposed. The proposed design is targeted on a Xilinx Virtex-6 device and

implemented on ML605 Evaluation board for single, double and double extended precision. When compared to

discrete floating point adder design, the FFAS unit reduces area requirement and power dissipation as the later shares

common logic. A Dual Path FFAS (DPFFAS) unit has reduced latency when compared with FFAS unit. The latency

is further reduced with the proposed modified DPFFAS when compared with DPFFAS for reconfigurable

architectures.

Keywords: Discrete floating-point design, Dual path algorithm, Floating-point arithmetic, Fused floating-point

operation, Leading zero anticipation

1. Introduction

In recent processors, the computer arithmetic

units accomplish advanced computations such as

scientific calculations, high performance graphics,

and multimedia signal processing that need complex

arithmetic. The binary fixed-point number system

cannot provide adequate precision to handle such

complex computations. As specified in IEEE

Standard -754 [1], floating-point notation represents

an extensive numbers range from trivial fractional

numbers to extremely large numbers in converse to

that of fixed-point number system.

The floating-point notation consists of three

parts - sign, significand and exponent. Hence, the

floating-point operations may require complex

procedures. For example, the operations frequently

require the normalization, which causes an increased

logic delay. Therefore, improving the performance

of floating-point operations has been a research

topic in the computer arithmetic field.

Custom designs targeting Application Specific

Integrated Circuits (ASICs) were designed if

extremely high performance, with respect to area,

speed, and power, is demanded for the designs.

However, the design time and development cost of

ASICs is huge. To address this limitation,

reconfigurable architectures like the Field-

Programmable Gate Arrays (FPGA) are extensively

used. When compared to ASICs, FPGAs are

becoming a solution for applications that are

developed for small volumes. Many communication

and signal processing systems are developed using

reconfigurable architectures owing to their faster

design turnaround time, lower design cost and

availability of high performance devices from

vendors like Xilinx, Altera. While the design for

custom ICs cannot give similar performance as the

design targeted for a generic reconfigurable

Received: December 20, 2016 41

International Journal of Intelligent Engineering and Systems, Vol.10, No.2, 2017 DOI: 10.22266/ijies2017.0430.05

architecture, there should be designs specific to the

target technology. Hence, this paper presents an

effective implementation of DPFFAS unit for

reconfigurable architectures.

Many Digital Signal Processing (DSP)

applications can benefit from the FFAS unit. The

FFAS unit generates sum and difference in parallel

from two normalized floating point operands as

inputs. This unit reduces area when compared to the

discrete design. A dual-path algorithm can improve

the computational speed of FFAS. The algorithm

consists of close and far paths and the path is chosen

basing on the difference in exponents. In far path,

rounding, addition and subtraction are accomplished

in parallel. The close path is divided into three cases

depending on exponent difference. For each of the

three cases, LZA, addition, and subtraction are

executed simultaneously and rounding is not

necessary. This latency of DPFFAS can be reduced

further if the design is customized to suit the internal

architecture of FPGA. The normalization stage in

the close path contributes at a larger degree to the

overall latency of DPFFAS. The design when

implemented for generic reconfigurable

architectures like FPGA’s, should be customized

depending on design datawidth and target

architecture datapath. Hence a modified DPFFAS

algorithm with a Leading Zero Detector (LZD) in

the close path is employed by investigating latencies

of LZD and LZA for different significand data width.

This algorithm reduces the additional latency

introduced by LZA due to fixed finite datapath of

FPGAs. A 28% reduction in the latency is observed

in modified DPFFAS algorithm when compared

with DPFFAS with LZA.

In the rest of the paper, the following content is

presented. A brief literature survey is presented

under the Section 2. Discrete and fused floating-

point add-subtract units are introduced in Section 3.

DPFFAS unit architecture is discussed under

Section 4. Modified DPFFAS Unit design is

presented in Section 5. Results of DPFFAS in

comparison with other architectures are listed under

Section 6 and conclusion is derived in the

subsequent section.

2. Previous Architectures

Floating-point numbers make an effort to

represent real numbers with highest accuracy. IEEE

Standard 754 has defined different floating point

number representation formats, exceptions and error

conditions to support diverse precision requirements

[2]. Several researchers [3]–[5] have implemented

various architectures for Floating-Point Adders

(FPA). The approach outlined in [3] allows for the

construction of floating-point units with parameter

selection like throughput, latency, and area. LOP

(Leading One Predictor) algorithm, and 2-path

algorithm are introduced in this work. A 2-path

adder is designed to trade area for latency and LOP

algorithm is introduced to reduce overall critical

path delay. But the algorithms proposed in [3] [4]are

confined only to unsigned operations with exception

handling limited to overflow.

In [4], authors worked to analyze area and

maximum achievable throughput of pipelined

structures of FPA and multiplier. Area and

throughput are traded against the number of pipeline

stages as a parameter. The standard three stage

algorithm with de-normalization/pre-shifting,

significand addition/subtraction and rounding/

normalization is used to increase operating

frequency of the design. Although the IEEE-754

formats are used, for the single and double precision

implementations, demoralization and Not a Number

(NaN) representations were not supported.

In [5], a IEEE standard -754 FPA with double

precision is implemented including all rounding

modes. A revised version of a FPA is proposed that

can achieve accumulation in 2-cycles including

some additional hardware which also engages

flagged prefix addition to enhance branch resolution

times. However, the design in [5] is not supported

with performance analysis results. A Parameterized

library [6] of floating point open cores considers

precision as a significant parameter. Apart from

considering precision as a parameter, the number of

pipeline stages should be considered as a significant

parameter as it affects the throughput of the design.

The fused add-subtract unit design is first

introduced in [7] to support application, requiring

concurrent addition and subtraction, like radix N

butterfly FFT structures. The FAS unit has occupied

40% large area when compared with conventional

FPA. Maximum frequency of operation of FAS unit

is comparable with that of conventional FPA. Two

different fused floating point operations are used for

implementing radix-2 and radix-4 butterfly FFT

structures [8]. The FFT structure using fused

multiply add and fused add-subtract have reported

30% lower area and 15% more speed when

compared with conventional FFT structures. The

individual FAS however exhibited more delay in

comparison with conventional add-sub unit.

Two-stage pipeline architecture for dual path

algorithm is presented in [9]. The design has shown

significant advantage in area and latency. But the

design cannot be readily adapted to reconfigurable

architectures. Leading Zero Anticipator (LZA) [10],

Received: December 20, 2016 42

International Journal of Intelligent Engineering and Systems, Vol.10, No.2, 2017 DOI: 10.22266/ijies2017.0430.05

[11] is used to replace Leading Zero Detector in

normalization step to reduce the latency of FFAS.

LZA is used in parallel to addition and subtraction

operations to predict the most significant zero in the

result of subtraction operation. Though an overall

performance is increased, the area requirement is

high for LZA algorithm.

A multi threshold voltage technique [12] is used

to implement ASIC implementation of floating point

addition, subtraction and multiplication operations

for reducing power dissipation. A hybrid floating-

point (FP) implementation [13] is used to improve

performance without incurring the area overhead of

full hardware FP units. Add, Subtract, Multiply,

sqare-root and division software kernels are

integrated into small fixed-point processors with a

RISC-like architecture.

A multifunctional floating point unit [14] is

designed that includes multiplication above fused

add-sub unit producing a hardware efficient

implementation of fused floating point arithmetic. In

[15], fused arithmetic units including two-term dot

product unit and add-subtract unit are designed

using radix-16 booth multiplier.

Many of the designs in the literature have

considered algorithms for single precision floating

point arithmetic. The designs are not evaluated for

higher precision arithmetic. Also, reconfigurable

architectures have been increasingly used to develop

signal processing and communication application.

Therefore there is a need to develop architectures

specific to reconfigurable architectures by

considering the generic structures of the target

device. Hence the paper describes an IEEE-754

standard FFAS for signed floating point operations,

including all exceptions detailed in the standard. The

design is evaluated for single, double and extended

double precisions.

3. Discrete and Fused Floating-point Add-

Subtract Units

The Floating-point Add-Subtract (FAS)

operation can be implemented using two identical

FFASs in parallel [9]. Two adders are used to carry

out addition and subtraction operations, so as to

compute the sum and difference concurrently. A

traditional FFAS can be used for each operation. But,

most of the logic like alignment, exponent compare

and significand swap in both the FFASs is almost

similar for the two operations.

In order to decrease area overhead, the common

logic is combined for two operations in the FFAS

unit. The design of a FFAS unit [9] is as shown in

Fig. 1. The FFAS unit computes the sum and

difference results concurrently by sharing the

common logic. Though different signed

combinations are possible for both the operands,

only one significant subtraction and addition are

performed in the FFAS unit. The appropriate sign

for the result is evaluated by sign logic. To reduce

the number of addition/subtraction operations

required by different signed combinations of the

operands, exponent comparison and significand

swap logic are used to adjust the significands such

that larger operand is made as first operand during

subtraction.

For the sum and difference results, the two

operations are explicitly performed. Hence the

addition and subtraction blocks are positioned

separately and only single LZA [16] and

normalization (for the subtraction) are required.

LZA generates the number of most significant

leading zeros during the subtraction so that its result

is immediately normalized. LZA gives the amount

of shift required to the exponent adjust logic in

normalization stage. The LZA calculation from the

significands of subtraction operands is shown in the

following equations.

 xor i i i isum A B P

 (1)

 1 1 1 a n di i i icarry A B G
 (2)

 xor i i i ixor sum carry PG

 (3)

 1 2 an nd d a iLZA PG PG PG
 (4)

In the normalization stage, exception flag is

asserted if any one of underflow, overflow and

inexact exceptions arise in the exponent. As

common logic is being shared between addition and

Exponent Comparison and Significand

Swap Logic

Sign Logic

Normalization

A[30:0] B[30:0] A[31] B[31]

Addition Subtraction LZA

Sum[31:0] Diff[31:0]

Align

Figure.1 Fused floating-point add-subtract unit

Received: December 20, 2016 43

International Journal of Intelligent Engineering and Systems, Vol.10, No.2, 2017 DOI: 10.22266/ijies2017.0430.05

subtraction operations, the number of control signals

required for differentiating the signs and final results

are reduced. Thus, the FFAS unit attains lower area

and higher speed when compared with discrete FAS

units.

4. Dual Path Fused Floating-Point Add-

Subtract Unit

A dual-path approach [9] can improve the

performance of FFAS unit. The DPFFAS algorithm

is used in most high-speed FFASs which are meant

for designing custom ICs [5], [17] . Fig. 2 shows the

DPFFAS unit. In FFAS unit, the normalization

performed after subtraction introduces a large delay.

The DPFFAS algorithm eliminates the

normalization step if the exponent difference is large.

Hence the DPFFAS design enhances the

performance when compared with FFAS design.

The dual-path approach is composed of close path

and far path logic. If the difference in numbers is

large, i.e difference of the exponents is more than

‘1’, then the operands choose far path [9], shown in

Fig. 3. In this case, the difference in normalized

significands will be large. Hence, huge elimination

does not occur during the subtraction and LZA [10],

[11] is not necessary. To generate normalized

significands, the significands are adjusted by

appending ‘1’ to the significand MSB. The operand,

whose significand is small, is considered and shifted

right by the measure of the exponent difference and

a ‘1’ is appended to the MSB. These adder and

subtraction blocks perform rounding operation

concurrently and produce the relevant results [9].

For both addition and subtraction, the far path

eliminates the use of large normalization process as

it requires at most one-bit normalization shift.

The close path[9], shown in Fig. 4, chooses the

significands if the exponent difference of operands

is either ‘0’ or ‘1’. Three cases are present for the

close path alignment relying upon the difference of

the exponents:

(1,A[22:0],0) if Ex A - Ex B 1

Sig A [23:-1] (1,A[22:0],0) if Ex A - Ex B 0

(01,A[22:0]) if Ex A - Ex B 1

 (5)

(01,B[22:0]) if Ex A - Ex B 1

Sig B [23:-1] (1,B[22:0],0) if Ex A - Ex B 0

(1,B[22:0],0) if Ex A - Ex B 1

 (6)

For each case LZA, addition and subtraction are

carried out concurrently. In close path there is no

explicit alignment done initially. Hence,

A [24:0] B [24:0]

Small Exponent Comparison and significand

Swapping and close path alignment

Addition Subtraction LZA

Normalization

Add Signif [22:0] Sub Signif [22:0]

Figure. 4 Close path logic for the DPFFAS

unit

Significand Swapping

A [22:0] B [22:0]

Alignment

Addition Subtraction Rounding

Post-Normalization

Add Signif [22:0] Sub Signif [22:0]

Figure. 3 Far path logic for the DPFFAS unit

Exponent

Compare

A[30:23] B[30:23]

Far Path

Addition

Subtraction

Rounding

Close Path

Addition

Subtraction

LZA

Normalization

Sign Log ic

A[31] B[31]

A[22:0] B[22:0]

Multiplexers

Sum[31:0] Diff[31:0]

Figure. 2 DPFFAS unit

Received: December 20, 2016 44

International Journal of Intelligent Engineering and Systems, Vol.10, No.2, 2017 DOI: 10.22266/ijies2017.0430.05

 If exponent difference is ‘1’, i.e., A>B,

then B must be shifted by 1-bit and a ‘0’

is aligned at MSB.

 If exponent difference is ‘0’, i.e., A=B,

no shifting is done.

 If exponent difference is ‘-1’, i.e., A<B,

then A must be shifted by 1-bit. As a

result a ‘0’ is placed at MSB.

One of the above close path alignment results is

selected depending on the exponent difference,

computed from the two least significant bits of the

exponents. Since the significands in the close path

are mis-aligned at most by 1-bit, rounding is not

needed.

5. Modified Dual Path Fused Floating-Point

Add-Subtract Unit

The DPFFAS exhibits greater critical path delay

when targeted to generic architectures like FPGAs,

as the logic should be implemented using 6 input

LUT. The increase in delay is because of the

presence of LZA in the close path, when targeted for

FPGAs. The LZA is used to predict the leading

zeros in the result of the significand simultaneously

while addition and subtraction operations are

performed. As the number of significand bits are

increased, the advantage of predicting the leading

zeros ahead of subtraction operation diminishes. The

subtraction operation performed is a two’s

complement addition, using fast carry chains in

FPGA CLBs, while LZA could not be speeded up,

as it also needs a recursive operation.

The dual-path design with LZA can be

considered efficient only when the delay of LZA is

less than the delays combined with adder block and

LZD together. But the delay obtained for single

precision DPFFAS by LZA is 12.5ns, which is

greater than the delay of adder (3.6ns) and LZD

(4.5ns) blocks together being 8.1ns. The latency of

LZA and subtraction with LZD are shown in Fig. 5.

From the figure it is evident that the advantage

of LZA can be seen if the number of the significand

bits is less than 20. But for higher precision designs

LZA increases the overall latency. Instead of using

LZA in close path, LZD can be used to reduce

latency to a great extent which produces a modified

DPFFAS. The modification in close path algorithm

is presented in Fig. 6.

By using this approach, area is also reduced

compared to the dual-path with an LZA in close

path (which uses additional hardware). Hence a

design with LZD can be used in FPGAs to achieve

better performance. The design supports all five

IEEE Standard-754 [1] rounding modes and

exceptions. Hence for reconfigurable architectures

such as Xilinx Virtex-6 devices, dual path design

with LZA in close path increases the latency. This is

because of the presence of fast look-ahead carry

logic in configurable logic blocks which effectively

synthesize adder blocks [18].

In a modified DPFFAS with an LZD in the close

path, the critical path latency is reduced proportional

to the increase in number of significand bits. For

many purposes the accuracy offered by the single

precision format is inadequate. Greater accuracy can

be achieved by using double precision format which

uses 64 bits to store each floating-point value. Even

greater accuracy may be achieved from the double

extended precision format, which uses 80 bits of

information [2]. Hence the proposed design is

10 20 30 40 50 60 70
4

6

8

10

12

14

16

18

No of significand bits

L
a
te

n
c
y
 (

u
s
)

Sub+LZD

LZA

Small Exponent Comparison and

Significand Alignment

A[24:0] B[24:0]

Addition Subtraction

LZD

Normalization

Add Signifi[22:0] Sub Signifi[22:0]

Figure. 6 Modified close path logic for DPFFAS.

Figure. 5 Latency of Subtraction + LZD and LZA for

various number of significand bits.

Received: December 20, 2016 45

International Journal of Intelligent Engineering and Systems, Vol.10, No.2, 2017 DOI: 10.22266/ijies2017.0430.05

intended to implement floating point arithmetic for

double extended precision. However the results for

single precision, double precision and extended

double precision floating point implementations

were also presented.

6. Results

The floating-point designs are implemented in

single, double and double extended precisions to

evaluate their performance. The implementations of

double and double extended precisions can be done

by extending the single precision implementation.

For simplicity, only single precision designs are

described in the architectures.

Figure. 7 Chipscope debug for modified DPFFAS

with LZD

Figure. 8 Routing floorplan of modified DPFFAS

with LZD

Each design is implemented using Verilog-HDL

targeted on a Xilinx Virtex-6 device. The proposed

algorithm is verified with random test vectors for

100% code coverage using QuestaSim tool.

Prototype validation of the algorithm of the

proposed architecture is performed on ML605

Virtex 6 FPGA Evaluation board using Xilinx

chipscope. The experimental results of modified

DPFFAS implemented on ML605 Virtex 6 FPGA

Evaluation board and observed using chipscope are

shown in Fig. 7. The routing floorplan of modified

DPFFAS with LZD for double precision floating

point is shown in Fig. 8.

Table 1. Fused Floating-Point Add-Subtract Design

Comparison

Single Precision

Discrete

[3]

Fused

[7]

Fused +

Dual

path

(using

LZA)[9]

Fused +

Dual

path

(using

LZD)

No. of slice LUTs 1,473 1,063 2,504 1,834

Latency(ns) 24.309 25.582 20.1 17.359

Throughput(1/ns) 0.041 0.039 0.049 0.057

Power(mW) 1.99 1.45 2.09 1.61

Double Precision

Discrete

[3]

Fused

[7]

Fused +

Dual

path

(using

LZA) [9]

Fused +

Dual

path

(using

LZD)

No. of slice LUTs 3,383 2,407 5,448 4,320

Latency(ns) 31.311 32.113 29.333 19.867

Throughput(1/ns) 0.0319 0.0311 0.034 0.050

Power(mW) 2.49 2.07 4.72 3.75

Double Extended Precision

Discrete

[3]

Fused

[7]

Fused +

Dual

path

(using

LZA) [9]

Fused +

Dual

path

(using

LZD)

No. of slice LUTs 7,089 4,420 8,134 6,574

Latency(ns) 37.403 39.812 36.282 24.886

Throughput(1/ns) 0.026 0.025 0.027 0.040

Power(mW) 3.50 2.33 5.20 4.47

In order to evaluate the design performance, area,

latency, throughput, and power consumption are

compared with three other architectures. The

Received: December 20, 2016 46

International Journal of Intelligent Engineering and Systems, Vol.10, No.2, 2017 DOI: 10.22266/ijies2017.0430.05

discrete floating point add-subtract unit [3], FFAS

[7], DPFFAS with LZA [9] are re-implemented for a

Xilinx Virtex 6 target device to have valid

comparision between the architectures. The results

for the four designs in single precision, double

precision and double extended precision

implementations are shown in Table I.

Since the FFAS unit shares much of the common

logic, it saves more than 27% of the area over the

discrete FAS unit. The existing dual-path design

(using LZA in close path) adds parallelism to the

design but because of additional hardware and

significant routing delays it does not significantly

improve overall latency. When compared to an LZD

in the close path, the close path using LZA is not an

effective design for FPGAs, because of the

requirement of additional slices for LZA and adds

significant routing and gate delay [19]. Close path

with LZA design requires long carry chain logic to

be implemented in FPGAs. The carry chain length is

proportional to significand width. While the design

with LZD is implemented using a zero comparator

that is free from carry chain and hence has less

latency. The modified DPFFAS unit requires more

area than the traditional and fused floating-point

units due to the presence of three parallel additions,

subtractions for close path. However, the modified

DPFFAS design reduces the latency by 28% when

compared to discrete FAS unit. The area and latency

of modified DPFFAS design with LZD are reduced

by 19% and 14% respectively, when compared to

existing dual-path design with three LZAs.

7. Conclusion

An effective implementation of DPFFAS unit

for reconfigurable architectures is presented in this

paper. The architecture, though aimed for high

throughput implementation, offers a significant

reduction in area and power. The increase in

throughput is due to LZD that can be easily

implemented with fine grained target technology.

But LZA, whose area increases linearly with

significand width, exhibits higher throughput only

for ASIC implementation. However, the choice of

architecture always depends on the implementation

technology and the design constraints. The modified

DPFFAS unit can improve the speed of computation

of digital signal processing applications, such as

DCT and FFT butterfly operations, that require

concurrent floating point addition subtraction

operations when targeted for reconfigurable

architectures. As the large number of floating point

computation is required, the proposed design can

significantly reduce area and power dissipation of

the entire application. This paper demonstrates an

effective architecture for DPFFAS algorithm to

perform concurrent floating-point addition and

subtraction operation. Area, latency, throughput, and

power consumption are compared with the

traditional parallel implementation, FAS, DFFAS

algorithm. The modified DFFAS algorithm can be

extended to develop pipelined FFAS unit.

Development of signal transformation architectures

for FFT, DCT can be done using modified DFFAS

algorithm.

References

[1] M. Standards Committee of the IEEE

Computer Society, “IEEE Std 754TM-2008

(Revision of IEEE Std 754-1985), IEEE

Standard for Floating-Point Arithmetic,” 2008.

[2] S. B. Furber, ARM system architecture.

Addison-Wesley, 1996.

[3] J. Liang, R. Tessier, and O. Mencer, “Floating

point unit generation and evaluation for

FPGAs,” in 11th Annual IEEE Symposium on

Field-Programmable Custom Computing

Machines, 2003, pp. 185–194.

[4] G. Govindu, Ling Zhuo, Seonil Choi, and V.

Prasanna, “Analysis of high-performance

floating-point arithmetic on FPGAs,” in

Proceedings of 18th International Parallel and

Distributed Processing Symposium., 2004, pp.

149–156.

[5] A. Beaumont-Smith, N. Burgess, S. Lefrere,

and C. C. Lim, “Reduced latency IEEE

floating-point standard adder architectures,” in

Proceedings of 14th IEEE Symposium on

Computer Arithmetic, 1999, pp. 35–42.

[6] G. Govindu, G. Govindu, R. Scrofano, and V.

K. Prasanna, “A library of parameterizable

floating-point cores for FPGAs and their

application to scientific computing,” in in Proc.

of International Conference on Engineering

Reconfigurable Systems and Algorithms, 2005,

pp. 137--148.

[7] H. Saleh and E. E. Swartzlander, “A floating-

point fused add-subtract unit,” in Proc. of 51st

Midwest Symposium on Circuits and Systems,

2008, pp. 519–522.

[8] E. E. Swartzlander and H. H. M. Saleh, “FFT

Implementation with Fused Floating-Point

Operations,” IEEE Trans. Comput., vol. 61, no.

2, pp. 284–288, Feb. 2012.

[9] J. Sohn and E. E. Swartzlander, “Improved

Architectures for a Fused Floating-Point Add-

Subtract Unit,” IEEE Trans. Circuits Syst. I

Received: December 20, 2016 47

International Journal of Intelligent Engineering and Systems, Vol.10, No.2, 2017 DOI: 10.22266/ijies2017.0430.05

Regul. Pap., vol. 59, no. 10, pp. 2285–2291,

Oct. 2012.

[10] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase,

K. Mashiko, and T. Sumi, “Leading-zero

anticipatory logic for high-speed floating point

addition,” IEEE J. Solid-State Circuits, vol. 31,

no. 8, pp. 1157–1164, 1996.

[11] M. S. Schmookler and K. J. Nowka, “Leading

zero anticipation and detection-a comparison of

methods,” in Proceedings of 15th IEEE

Symposium on Computer Arithmetic, 2001, pp.

7–12.

[12] S. Kukati, D. . Sujana, S. Udaykumar, P.

Jayakrishnan, and R. Dhanabal, “Design and

implementation of low power floating point

arithmetic unit,” in International Conference

on Green Computing, Communication and

Conservation of Energy (ICGCE), 2013, pp.

205–208.

[13] J. J. Pimentel, B. Bohnenstiehl, and B. M. Baas,

“Hybrid Hardware/Software Floating-Point

Implementations for Optimized Area and

Throughput Tradeoffs,” IEEE Trans. Very

Large Scale Integr. Syst., vol. PP, no. 99, pp.

1–14, 2016.

[14] J. Sharma, P. Tarun, S. Satishkumar, and S.

Sivanantham, “Fused floating-point add and

subtract unit,” in Proc. of IEEE International

Conference on Green Engineering and

Technologies (IC-GET), 2015, pp. 1–5.

[15] E. Prabhu, H. Mangalam, and S. Karthick,

“Design of area and power efficient Radix-4

DIT FFT butterfly unit using floating point

fused arithmetic,” J. Cent. South Univ., vol. 23,

no. 7, pp. 1669–1681, Jul. 2016.

[16] M. S. Schmookler and D. G. Mikan Jr., “Two

state leading zero/one anticipator (LZA),” U.S.

Patent No. 5493520, 1996.

[17] P. Seidel and G. Even, “Delay-optimized

implementation of IEEE floating-point

addition,” IEEE Trans. Comput., vol. 53, no. 2,

pp. 97–113, Feb. 2004.

[18] Xiinx, “UG364: Virtex-6 FPGA Configurable

Logic Block,” 2012.

[19] A. Malik, Dongdong Chen, Younhee Choi,

Moon Lee, and Seok-Bum Ko, “Design

tradeoff analysis of floating-point adders in

FPGAs,” Can. J. Electr. Comput. Eng., vol. 33,

no. 3/4, pp. 169–175, 2008.

