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Abstract In this paper, inspired by the estimator of the cumulated specific incidence proposed by
Marubini and Vasecchi [23], we obtain the Kaplan-Meier estimator of the survival function of all
causes of death combined by summing the estimator of fj(t) (j ∈ {1, . . . , m}) obtained by plug-in.
We establish that the Kaplan-Meier estimator of the survival function overestimates the cumulative
incidence in the presence of competitive events. By making the product of all the contributions
of the studied system, we establish the likelihood function of the specific risk function for the
competitive risk model. Finally, under the assumptions of Dinse and Larson [13], and using the
delta-method, we establish the variance of the cumulative incidence function in competiting risks.
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1 Introduction

1.1 Concept of Survival Time Analysis

For decades, many statisticians have always sought to model the distribution of a random variable T repre-
senting a survival time. The interested reader will be able to consult Aalen [1], [2], Kalbfleisch and Prentice
[19], Cox and Oakes [12], Miller [24], Carbon and al. [8], Fleming and Harrington [14], Andersen and al.
[3], [4], [5], Hill and al. [17], Klein and Moeschberger [21], Saranya and Karthikeyan [29] to name but a few.

The term "death" will be synonymous thereafter occurrence of the event of interest.
The law of T is uniquely determined by its distribution function:

F (t) = P(T ≤ t), t ≥ 0. (1)

F (t) is also called cumulative incidence function. For t fixed, it represents the probability of dying before
the instant t. Equivalently with the other probability laws, we can deduce from the cumulative incidence
function a density function such that:

f(t) = F (t)′ = lim
h→0

(
F (t+ h)− F (t)

h

)
. (2)

The area under the curve between two points of the abscissa axis t1 and t2 results in the probability
of dying between these two instants.

We also introduce a function directly calculated from those mentioned above, which models the
probability of dying at the instant t for a patient knowing that this patient has "survived" up to the
instant t ("To survive" means not to die in the sense described above). This is the instant risk function
defined by:

λ(t) = P (T = t|T ≥ t) = lim
h→0

(
P(t ≤ T ≤ t+ h|T ≥ t)

h

)
= f(t)

1− F (t−) . (3)

Its cumulative version is defined by:

Λ(t) =
∫ t

0
λ(u)du. (4)
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Remark 1.1 There are five functions in survival data analysis. The interested reader may consult Huber
([18], pp. 4-5) and Njamen ([26], p. 4). These functions are strongly related to each other. Indeed:

Λ(t) =
∫ t

0
λ(u)du

=
∫ t

0

f(u)
1− F (u−)du

=
∫ t

0

−(1− F (u−))′

1− F (u−) du

= − [ln(1− F (u))]t0
= − ln (1− F (t))
⇔ 1− F (t) = exp (−Λ(t)).

The function of total survival i.e. the probability of not yet down at time t , can be written as follows :

S(t) = P(T > t) = e

{
−
∫ t

0
λ(u)du

}
. (5)

1.2 Censor

In reality, not all the data collected are realizations of the T random variable. Indeed, the observation
may stop while no deaths have been observed for some patients. Nevertheless the observation period is
postponed, since it contains the following information: "the patient i did not die during the observation
period", it’s about a censored patient.

The following notations are thus introduced to translate this type of observation (called right random
censorship to signify that the observations have been censored on the right): we actually observe the
random variable Z = min (T,C) representing the duration until the occurrence of the first event among
two possibilities: the death and censorship. The random variable T measures the time until death and the
variable C measures the time until censorship. To indicate which event occurred, we also introduce the
censoring indicator δ = 11{T≤C} which is 0 in case of censorship, and 1 if the duration of interest is observed.

Finally, the data for the patient i are in the form of the triplets (zi, δi, yi) realization of the random
vector (Z,∆, Y ) where z represents the observed duration, δ the censored binary variable and y the vector
containing the patient’s personal data, called covariates or exogenous variables.

2 Estimation of Nonparametric Estimators of Nelson-Aalen and
Kaplan-Meier in the Presence of Right Random Censorship

Nelson-Aalen’s estimator of the cumulative risk Λ(t) in the presence of right random censorship is defined
by:

Λ̂n(t) =
n′∑

i′=1,T ′
i
≤t

Mi′

Ri′
, (6)

where Mi′ is the number of deaths observed in ti′ , Ri′ the number of subjects neither dead nor censored
just before ti′ (subjects said "to risks "), and T ′ is the increasing ordered version of T , which is the
random variable representing the time until the event of interest for uncensored patients. It is wise to
recall that i = 1, . . . , n represents the observed individuals and i′ = 1, . . . , n′ the observed and uncensored
individuals sorted in ascending order of observed time (so, we have n′ ≤ n).
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The Kaplan-Meier estimator of cumulated incidence in the presence of right random censorship is
defined by:

1− F̂n(t) =
n′∑

i′=1,T ′
i
≤t

(
1− Mi′

Ri′

)
= Ŝn(t). (7)

3 Competiting Risk Model

3.1 Introduction and Definition

In lifetimes, we usually look at the time of death of an individual or the downtime of a system in industrial
reliability. In some experiments, there may be several possible causes of death or breakdown. This is called
competiting risk. Competiting events are the events that cause the observations to stop (except for the
event of interest). In the theory, these events are considered as integral part of right random censorship.
We have seen that, to provide the estimates of the various functions above, it must be assumed that this
censorship is independent of the event of interest. This assumption is not valid in all cases (see Tsiatis
[31] and Prentice [28]). The interested reader will be able to consult Gray [15], Heckman and Honoré
[16], Commenges [10], Com-nougué [11], Crowder [9], Peña and al. [27], Klein and Moeschberger [21],
Latouche [22], Klein [20], Belot [6], Stocker IV and Adekpedjou [30], Njamen and Ngatchou [25], Njamen
[26], Martinez-Camblor [7], etc.

It is then necessary to modify the modeling of the data.

3.2 Modeling the Model in Competiting Risks

For each system, we observe T = min(τ1, . . . , τm), i.e. the time the system goes down due to causes m.
Moreover, we denote by η the cause of failure, i.e. η = j if T = τj for all j = 1, ...,m. This implies that
τ1, . . . , τm are latent random variables, i.e. they are not observable. Indeed, only the variables T and η
are observed.

In the theory, we observe the pairs (zi, ji) which represent the subject i where z is a realization of Z
(time to the first event among the m+ 1 possible with censorship ) and j realization of η random variable
representing the first event undergone (among the m+ 1 possible events).

This modeling was used in Latouche’s ([22], p.8), Belot’s ([6], p.12), and in Njamen and Ngatchou
([25], p.5).

New specific functions are directly drawn from this modeling:

3.3 Estimation of Distribution Functions for Specific Causes

3.3.1 Cumulative Incidence Function for Specific Causes The law of the pair (T, η) is entirely
determined by the set of cumulative incidence (cumulative incidence function) functions:

Fj(t) = P(T ≤ t ∩ η = j), j ∈ {1, . . . ,m}. (8)

These are distribution subfunctions, i.e. Fj(t) is not a true function. Indeed:

• limt→∞ Fj(t) = P(η = j) ≤ 1 ;
•
∑m
j=1 Fj(t) = P(T ≤ t) = F (t), the distribution function of T presented in (1).

However, this function is non-decreasing with Fj(0) = 0 and Fj(∞) ≤ 1.

Equation (8) represents the "probability" of break down the caused by j before the time t.
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3.3.2 Density Function with Specific Causes Let fj(t) be the ("sub")-density associated with
Fj(t) such that:

fj(t) = Fj(t)′ = lim
h→0

(
Fj(t+ h)− Fj(t)

h

)
= lim
h→0

(
P((t ≤ T ≤ t+ h) ∩ η = j)

h

)
. (9)

In the same way that Fj(t), we have
∑m
j=1 fj(t) = f(t), the density associated with T presented in (2).

3.3.3 Risk Function Specific to Specific Causes The specific risk function is the instant probability
of dying in t of cause j knowing that one has survived all causes up to t.

λj(t) = lim
h→0

(
P((t ≤ T ≤ t+ h) ∩ η = j | T ≥ t)

h

)
= lim
h→0

(
P ((t ≤ T ≤ t+ h) ∩ η = j | T ≥ t)

P(T ≥ t)

)
× 1
h

= fj(t)
1− F (t−) . (10)

The total risk function, i.e. the risk function for all causes of failure combined, is simply given by

λ(t) =
m∑
i=1

λj(t). (∗)

λ(t) represents the rate at which the systems which have not yet fail of none of m causes at t time break
down any cause.

The density function with specific causes defined in (9) can now be expressed in terms of λj and λ for
all j ∈ {1, . . . ,m} by:

fj(t) = λj(t)e
{
−
∫ t

0
λ(u)du

}
. (∗∗)

3.3.4 Survival Function for Specific Causes The survival function for specific causes is defined by:

Sj(t) = e

{
−
∫ t

0
λj(u)du

}
, j ∈ 1, . . . ,m. (11)

The total survival function defined in (5) which is the probability of not yet have brokendown of none
of m cause at t time, can be expressed in the following way:

S(t) =
m∏
j=1

Sj(t). (12)

Indeed:

S(t) = e

{
−
∫ t

0
λ(u)du

}
according (8)

= e

{
−
∫ t

0
[λ1(u),...,λm(u)]

}
according (7)

= e

{
−
∫ t

0
λ1(u)

}
. . . e

{
−
∫ t

0
λm(u)

}
= S1(t) . . . Sm(t) according (8)

=
m∏
j=1

Sj(t). (13)

If the competiting risks τ1, . . . , τm are not independent, then Sj(t), j = 1, . . . ,m can not be interpreted
as a probability or a function of survival. On the other hand, if the competitive risks τ1, . . . , τm are
independent, then Sj(t) is the marginal survival function of τj , i.e. it can be seen as the probability of
surviving at least until t, in an environment where the only possible cause of failure is j.
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3.3.5 Specific Risk Function Cumulated with Specific Causes The cumulative specific risk
function is deduced from relation (10).

Λj(t) =
∫ t

0
λj(u)du = − ln (Sj(t)) , j ∈ {1, . . . ,m}, (14)

which is worth +∞ when Sj(t) = 0.

Remark 3.1 It is interesting to remember that relation (14) is valid only when F is continuous. When
F is arbitrary, the cumulative risk function is

Λj(t) =
∫ t

0

dFj(s)
1− F (s) . (15)

3.3.6 Application of the Estimation Method in Competiting Risks to the Usual Laws The
estimation method can be applied to specific causes to particular distributions. Knowing the survival
function and the risk function of the law in question, we can proceed to the different calculations: (in this
paper, we treat only the case of Weibull’s law) : for the case of Weibull’s law, the functions of survival,
cumulative risk and risk of the cause j are respectively given by:

Sj(t) = e

{
−
(

t
θj

)δj}
, j ∈ {1, . . . ,m};

Λj(t) =
(
t

θj

)δj
, j ∈ {1, . . . ,m};

λj(t) = δj
θj

(
t

θj

)δj−1
, j ∈ {1, . . . ,m}.

4 Insufficiency of Functions Related to Specific Causes

4.1 Risk Function of Gray ([15])

The functions described in Section 3 are not satisfactory for interpreting the results correctly. This is why
Gray ([15]) intuitively introduces the risk function associated with the cumulative incidence function of
cause j defined by:

γj(t) = fj(t)
1− Fj(t−) = − δ

δt
ln (1− Fj(t)). (16)

The development of this quantity allows us to notice certain irregularities. By replacing fj(t) and
Fj(t) respectively by their definitions, we have:

γj(t) = lim
h→0

(
P((t≤T≤t+h)∩η=j)

h

1− P(T < t ∩ η = j)

)

= lim
h→0

(
P (((t ≤ T ≤ t+ h) ∩ η = j) ∩ (T ≥ t ∪ (T ≤ t ∩ η 6= j)))

h× P(T ≥ t ∪ (T ≤ t ∩ η 6= j))

)
(17)

= lim
h→0

(
P((t ≤ T ≤ t+ h) ∩ η = j|(T ≥ t ∪ (T ≤ t ∩ η 6= j)))

h

)
. (18)

To obtain (17), we have remarked that:

1− P(T < t ∩ η = j) = P(T ≥ t ∪ η 6= j)
= P(T ≥ t ∪ ((T > t ∪ T ≤ t) ∩ η 6= j))
= P(T ≥ t ∪ ((T > t ∩ η 6= j) ∪ (T ≤ t ∩ η 6= j)))
= P((T ≥ t ∪ (T > t ∩ η 6= j)) ∪ (T ≤ t ∩ η 6= j))
= P (T ≥ t ∪ (T ≤ t ∩ η 6= j)),
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and that :

P((t < T ≤ t+ h) ∩ η = j) ∩ (T > t ∪ (T ≤ t ∩ η 6= j)))

= P(((t < T ≤ t+ h) ∩ η = j) ∩ (T > t)) ∪ (((t < T ≤ t+ h) ∩ η = j) ∩ (T ≤ t ∩ η 6= j)))
= P(((t < T ≤ t+ h) ∩ η = j) ∪ ∅)
= P((t < T ≤ t+ h) ∩ η = j).

It will be noted that the function found above corresponds to the instant risk function of the random
variable (improper) T ∗j = 11{η=j}T + 11{η 6=j}∞. Indeed :

λT∗
j

(t) = lim
h→0

P
(
t ≤ T ∗j ≤ t+ h|T ∗j ≥ t

)
h

(19)

= lim
h→0

P
(
t ≤

(
11{η=j}T + 11{η 6=j}∞

)
≤ t+ h|

(
11{η=j}T + 11{η 6=j}∞

)
≥ t
)

h

= lim
h→0

P ([t ≤ T ≤ t+ h) ∩ (η = j)] ∪ [(t ≤ ∞ ≤ t+ h) ∩ (η 6= j)]|(T ≥ t ∩ η = j) ∪ (∞ ≥ t ∩ η 6= j))
h

= lim
h→0

P ([t ≤ T ≤ t+ h) ∩ (η = j)] ∪ [∅ ∩ (η 6= j)]|(T ≥ t ∩ η = j) ∪ (Ω ∩ η 6= j))
h

(because t, t+h <∞, so the set {t <∞ < t+h} is the empty set and the set∞ > t is the Ω universe)

= lim
h→0

P((t ≤ T ≤ t+ h) ∩ (η = j)|(T ≥ t ∩ η = j) ∪ (η 6= j))
h

= lim
h→0

P((t ≤ T ≤ t+ h) ∩ (η = j)|((T ≥ t) ∪ (η 6= j)) ∩ (η = j ∪ η 6= j))))
h

= lim
h→0

P((t ≤ T ≤ t+ h) ∩ (η = j)|(T ≥ t) ∪ (η 6= j)))
h

.

= γj(t) (20)

The preceding calculations prove (see relations (19) and (20)) that the instant risk function of the random
variable (improper)

T ∗j = 11{η=j}T + 11{η 6=j}∞,

is equal to the function of Gray ([15]), which is not the case in the classical framework.

This intuitive remark suggests a new transformation of our data: the measured time becomes T if
η = 1 (the event of interest) and ∞ otherwise.

4.2 New Modeling Adapted to the Risk Function of Gray ([15])

The support for right random censorship (constituted of events for which the independence assumption is
likely) is similar to that previously presented in subsection 3.2. We pose :

Z = min(Tj , T1 . . . Tj−1, Tj+1 . . . Tm, C), (21)

where Tj is the duration until the event of interest (here the jth), Tk with k = 1 . . . j − 1, j + 1 . . .m is
the duration until the competitive event k, and C is the measured duration until censorship.

We pose respectively

η = k if min(Tj , T1 . . . Tj−1, Tj+1 . . . Tm, C) = Tk,

and
∆ = 0 if min(Tj , T1 . . . Tj−1, Tj+1 . . . Tm, C) = C and ∆ = 1 if not.
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So, for technical reasons, we consider the random variable ξ = ηδ such that ξ = j if (T ≤ C and η = j)
and ξ = 0 if T > C. We note that δ and ξ are observable and η is so only for T uncensored.

In reality, in practice, we observe the triplets (zi, ξi, yi) realization of the random variables (Z,∆∗η, Y ),
where

ξ = δ ∗ η =
{

0
j

and
Zi = min(Ti, Ci), δi = 11{Ti≤Ci}, with Ti = min(τ i1, . . . , τ im)

and where τ ij is the time that an individual i is subject to the cause j. This technique has been used in
Njamen and Ngatchou ([25], p.5) for the evaluation of the specific functions of distribution to specific
causes.

5 Expression of the Kaplan-Meier Estimator of the Specific Cumulated
Incidence in the Presence of Right Random Censorship

In this section, we use the estimator of the specific cumulated incidence proposed by Marubini and
Vasecchi ([23], p. 338).

The Kaplan-Meier estimator is thus obtained by summing the fj(t) estimator obtained by plug-in in
fj(t) = λj(t)× (1− F (t)) (j = 1, . . . ,m), and is written

F̂j(t) =
∑

t≤T ′
i
, T ′
i
≤t

(
1− F̂n(t)

)
× Mi′j

R′i
, j ∈ {1, . . . ,m}, (22)

so

1− F̂n(t) =
∑

i′=1, T ′
i
≤t

(
1− M ′i

R′i

)
= Ŝn(t), (23)

where

• 1− F̂n(t) is the Kaplan-Meier estimator for all causes of death combined (with Mi′ =
∑
jMi′j) and

• Mi′j
R′
i

the estimator of λj(ti′) with Mi′j the number of deaths caused by j in T ′i and
• Ri′ the number of subjects at risk in T ′i , that is to say, neither censored nor died in any other cause

than j.

These different additional information provided by the Kaplan-Meier estimator obtained by summing
the estimator of fj(t) obtained by plug-in in fj(t) = λj(t)× (1− F (t)) (j = 1, . . . ,m) allow us to achieve
the following results:

6 Main Results

6.1 Overestimate of Estimate of Cumulative Incidence

From the writing of this estimator (see above), we note that the Kaplan-Meier estimator estimates a
function that is not the specific cumulated incidence sought. Thus, the following result constitutes the
first of this paper.

Proposition 6.1 In the presence of competitive events, the Kaplan-Meier estimator overestimates the
cumulative incidence.
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Proof If we are interested in the cause of death 1 (chosen from the m possible) we have:

F1(t) =
∫ t

0
S(u−)λ1(u)du is estimated by (22) with j = 1.

On the other hand,

S(u) = e(−Λ(t)) = e

(
−

(
m∑
j=1

Λj(t)
))

=
∫ t

0
e

(
−

(
m∑
j=1

Λj(u−)λ1(u)du
))

=
∫ t

0
e

(
−

(
m∑

j=1,j 6=1
Λj(u−)

))
e(−λ1(u))λ1(u)du.

We pose

e

(
−

(
m∑

j=1,j 6=1

))
= C(u),

and we notice that
C(u) ≤ 1.

If we now consider the m− 1 other competitive events as non-informative censorship, we assume that
there is only one cause of death, the 1. So,

S′(u) = e

(
−

( 1∑
j=1

Λj(t)
))

= e(−Λ1(t)). (24)

In this particular case, we have :

F ′(t) =
∫ t

0
S(u−)λ1(u)du

=
∫ t

0
e(−Λ1)λ1(u)du estimated by 1− Ŝ(t) where Ŝ(t) is, the estimator of Kaplan−Meier

≥
∫ t

0
C(u−)e(−Λj)λj(u)du (car C(u) ≤ 1∀u) estimated by (22).

Thus, the Kaplan-Meier estimator’s complement to 1 at a competiting risk event (but neglecting it)
estimates a function that is not the specific cumulated incidence sought, but a function superior or equal

(strictly superior so far as
m∑

l=1,l 6=j
Λl(u−) > 0), thus the overestimate.

This ends the proof of the proposition. �

6.2 Likelihood Function in Competiting Risks

Starting from the remark that each contribution results in a system that breaks down from the cause
ji (i = 1, . . . , n avec j ∈ {1, . . . ,m}) at time τi or by the censoring the system at time τi and on the
other hand, by making the product of all the contributions of the system i, one succeeds in establishing
the likelihood function of the specific risk function related to the specific causes, hence, the second
fundamental result of this paper.
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Theorem 6.1 In an n system where we observe the triple (τi, δi, ji), realization of (Z,∆, η), the likelihood
function denoted L(λj) for the competiting risk model is given by:

L(λj) =
n∏
i=1

{λji(τi)}δi m∏
j=1

e
−
∫ t

0
λj(u)du

 , (25)

where

– τi is the time of failure or censorship observed for the system i;
– δi is the indicator that is 1 if the system i has a failure, and 0 otherwise;
– ji is the cause of system i failure.

Proof For i = 1, . . . , n, the product of the i system contribution is translated by:

L(λj) =
n∏
i=1

{
(fji(τi))δi(S(τi))1−δi

}
(26)

=
n∏
i=1

{
(λji(τi)S(τi))δi (S(τi))1−δi

}
from (∗∗)

=
n∏
i=1

{
(λji(τi))δiS(τi)

}
=

n∏
i=1

(λji(τi))δi
m∏
j=1

Sj(τi)

 from (13)

=
n∏
i=1

(λji(τi))δi
m∏
j=1

e
−
∫ t

0
λj(u)du

 from (11) (27)

This ends the proof of the theorem. �

To observe a time of censorship for the system i at time τi, it would be necessary, for example, that
this system did not always have broken down at the end of the study. In this case, we say that the system
i is censored to the right at τi = τ , that is to say that its downtime is greater than the end time of the
study τ

6.3 Variance of Cumulated Incidence Function in the Presence of Competiting Risks

Taking inspiration from section 5, we have:

F̂j(t) =
∑
t≤T ′

i

(
Ŝ(t)× λ̂j(t)

)
, j ∈ {1, . . . ,m},

and this expression allows us to directly write the variance of F̂j(t) denoted Var(F̂j(t)) and defined by:

Var(F̂j(t)) = Var

∑
t≤t′

i

(
Ŝ(t)× λ̂j(t)

) , j ∈ {1, . . . ,m}.

It is necessary to remember that the T ′i are moments of reordered distinct death, and that i′ is the
number of Ti th instant of death, hence the new form of the following variance:

Var(F̂j(t)) = Var

∑
k≤i′

(
Ŝ(t)× λ̂j(t)

) , j ∈ {1, . . . ,m}.

This last expression allowed us to have the third fundamental result:
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Theorem 6.2 The variance of the cumulated incidence function in competiting risks is given for all
j ∈ {1, . . . ,m} by:

Var(F̂j(t)) = Var

 i′∑
k=1

(
Ŝ(t)× λ̂j(t)

)
+2

i′−1∑
k=1

i′∑
b=k+1

Cov
(

((Ŝ(tk)× λ̂j(tk))), (Ŝ(tb)× λ̂j(tb))
)
. (28)

Proof

we call back that Ŝ(tk) =
k−1∏
b=1

(
1− Mb

Rb

)
and that λ̂j(tk) = Mjk

Rk
, j ∈ {1, . . . ,m}.

The technique used in this proof is the delta-method.
Under the assumptions of Dinse and Larson [13], i.e. Mjk,M1, ...Mk−1 are uncorrelated, we pose:

g(Mjk,M1, ...,Mk−1) =
k−1∏
b=1

(
1− Mb

Rb

)
× Mjk

Rk
.

Then, for all j ∈ {1, . . . , n}, we have :

Var (g(Mjk,M1, ...,Mk−1)) =
δg

δMjk
δg
δM1
...
δg

δMk−1


T

×


Var(Mjk) Cov(Mjk,M1) ... Cov(Mjk,Mk−1)

Cov(Mjk,M1) Var(M1) ... ....
... .... ... Cov(Mjk,Mk−1)

Cov(Mjk,Mk−1) ... Cov(Mjk,Mk−1) Var(Mk−1)

×


δg
δMjk
δg
δM1
...
δg

δMk−1

 .

Since the M are all uncorrelated two by two, we have:
δg

δMjk
δg
δM1
...
δg

δMk−1


T

×


V ar(Mjk) 0 ... 0

0 V ar(M1) ... ....
... .... ... 0
0 ... 0 V ar(Mk−1)

×


δg
δMjk
δg
δM1
...
δg

δMk−1

 .

So

Var (g(Mjk,M1, ...,Mk−1)) =
(

δg

δMjk

)2
Var(Mjk) +

k−1∑
a=1

(
δg

δMa

)2
Var(Ma), (29)

with

δg

δMjk
=
(
k−1∏
z=1

(
1− Mz

Rz

))
× 1
Rz

= Ŝ(tk−11)λ̂j(tk)
Mjk

et

δg

δMa
= Mjk

Rk

 k−1∏
z=1,z 6=a

(
1− Mz

Rz

)(−1
Ra

)
= − Ŝ(tk−11)λ̂j(tk)

(Ra −Ma) .

We remark that Mjk and Mk follow the Binomial Law respectively. Indeed:

Mjk ↪→ B
(
Rk,

Mjk

Rk
, Rk × (Mjk

Rk
)× (1− Mjk

Rk
)
)

=⇒ Var(Mjk) = Rk×(Mjk

Rk
)×(1−Mjk

Rk
) = Mjk(Rk −Mk)

Rk
;

Mk ↪→ B
(
Rk,

Mk

Rk
, Rk × (Mk

Rk
)× (1− Mk

Rk
)
)

=⇒ V ar(Mk) = Rk × (Mk

Rk
)× (1−Mk

Rk
) = Mk(Rk −Mk)

Rk
.
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Replacing respectively these quantities in (29), we obtain:

Var (g(Mjk,M1, ...,Mk−1)) = Var((Ŝ(tk)× λ̂j(tk)))

=
((

k−1∏
z=1

(
1− Mz

Rz

))
1
Rk

)2(
Mjk(Rk −Mjk)

Rk

)

+
k−1∑
a=1


Mjk

Rk

 ∏
z=1,z 6=a

(
1− Mz

Rz

)(−1
Ra

)2(
Ma(Ra −Ma)

Ra

)
=
(
Ŝ(tk−1)λ̂j(tk)

Mjk

)2(
Mjk(Rk −Mjk)

Rk

)

+
k−1∑
a=1

(
− Ŝ(tk−1)λ̂j(tk)

Ra −Ma

)2(
Ma(Ra −Ma)

Ra

)

=
(
Ŝ(tk−1)λ̂j(tk)

)2
(
Rk −Mk

MjkRk
+
k−1∑
a=1

(
Ma

(Ra −Ma)Ra

))
. (30)

The relation (30) gives a first part of the expression (28).

The same procedure is used to determine an expression of

Cov
(

(Ŝ(tk−1)× λ̂j(tk)), (Ŝ(tb−1 × λ̂(tb))
)
.

So, we pose

g (Mkj ,M1, ...,Mk−1) =
(
k−1∏
z=1

(
1− Mz

Rz

))
Mjk

Rk

and

f(Mbj ,M1, ...,Mk−1,Mk, ...,Mb−1) =
(
b−1∏
z=1

(
1− Mz

Rz

))
Mjb

Rb
,

with k = 1 · · · (i′ − 1) et b = (k + 1) · · · i′.

As Cov(Mjz,Mjz′) = 0 if z 6= z′, so

Cov(Mz,MjZ′) = 0 si z 6= z′ et Cov(Mz,Mz′) = 0 si z 6= z′.

To finish, it remains to calculate the quantity:

Cov (g(Mkj ,M1, ...,Mk−1), f(Mbj ,M1, ...,Mk−1,Mk, ...,Mb−1)) (31)

=
(

δg

δMjk

)(
δf

δMk

)
Cov(Mjk,Mk) +

k−1∑
a=1

[(
δg

δMa

)(
δf

δMa

)
Var(Ma)

]
.

In deriving g and f respectively by Mjk and Mk, we get:

δg

δMjk
=
(
k−1∏
z=1

(
1− Mz

Rz

))
1
Rz

= Ŝ(tk−1)λ̂j(tk)
Mjk

,

and
δf

δMk
= Mjb

Rb

 k−1∏
z=1,z 6=k

(
1− Mz

Rz

)(−1
Rz

)
= Ŝ(tb−1)λ̂j(tb)(

1− Mk

Rk

) (
− 1
Rk

)
= Ŝ(tb−1)λ̂j(tb)

Rk −Mk
.
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The calculation of Cov(Mjk,Mk) gives:

Cov(Mjk,Mk) = Cov

(
Mjk,

m∑
z=1

Mzk

)
=

m∑
z=1

Cov (Mjk,Mzk) =
m∑

z=1,z 6=i
Cov(Mjk,Mzk) + Var(Mjk)

= Mjk(Rk −Mk)
Rk

.

In deriving g and f by Ma again, we obtain respectively:

δg

δMa
= Mjk

Rk

 k−1∏
z=1,z 6=a

(
1− Mz

Rz

)(− 1
Rz

)
= − Ŝ(tk−1)λ̂j(tk)

Ra −Ma
;

δf

δMa
= Mjb

Rb

 b−1∏
z=1,z 6=k

(
1− Mz

Rz

)(− 1
Ra

)
= − Ŝ(tb−1)λ̂j(tb)

Ra −Ma
.

Calculating the variance of Ma gives:

Var(Ma) = Ma(Ra −Ma)
Ra

.

By replacing all the previous calculations in (31), we obtain:

Cov (g(Mkj ,M1, ...,Mk−1), f(Mbj ,M1, ...,Mk−1,Mk, ...,Mb−1))

= Cov
(

(Ŝ(tk−1)× λ̂j(tk)), (Ŝ(tb−1)× λ̂j(tb))
)

=
(
Ŝ(tk−1)λ̂j(tk)

Mjk

)(
− Ŝ(tb−1)λ̂j(tb)

Ra −Ma

)(
Mjk(Rk −Mk)

Rk

)

+
k−1∑
a=1

(
− Ŝ(tk−1)λ̂j(tk)

Ra −Ma

)(
− Ŝ(tb−1)λ̂j(tb)

Ra −Ma

)(
Ma(Ra −Ma)

Ra

)

= Ŝ(tk−1)λ̂j(tk)× Ŝ(tb−1)λ̂j(tb)×
(
− 1
Rk

+
k−1∑
a=1

Ma

(Ra −Ma)Ra

)
. (32)

Finally, replacing (32) and (30) in (28), gives the formula of the variance of the sought estimator.

Var
(
F̂j(ti)

)
= Var

∑
t≤t′

i

(
Ŝ(t)× λ̂j(t)

)
=

i′∑
k=1

Var
(

(Ŝ(t)× λ̂j(t))
)

+ 2
i′−1∑
k=1

i′∑
b=k+1

Cov
(

(Ŝ(tk)× λ̂(tk)), (Ŝ(tb)× λ̂j(tb))
)

=
t′∑
k=1

(
(Ŝ(tk−1)λ̂j(tk))2

)(Rk −Mk

MjkRk
+
k−1∑
a=1

(
Ma

(Ra −Ma)Ra

))

+2
i′−1∑
k=1

i′∑
b=k+1

(
Ŝ(tk−1)λ̂j(tk)× Ŝ(tb−1)λ̂j(tb)

)
×

(
− 1
Rk

+
k−1∑
a=1

Ma

(Ra −Ma)Ra

)
.

This completes the proof of the cumulative incidence variance estimator in the presence of competiting
risks.
This ends the proof of the theorem. �
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