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Abstract In statistics, maximum likelihood estimation (MLE) is a method of estimating the
parameters of a statistical model. Standard large sample theory guarantees asymptotic efficiency of
MLE. On the other hand, MLE does not perform as well as expected for moderate or small sample
size. In 2010, a new parameter estimator based on nonextensive entropy ([1]), named Maximum
Lg-likelihood Estimator (MLgE), was first introduced and studied by [2]. MLgE is an extension
of MLE which introduces a distortion parameter ¢ to make the estimation more adaptive. The
purpose of this work is to examine this methodology for gamma distributions that are widely used
in engineering, science and business to model continuous but skewed distributions. For specifically
standard gamma models, we look at the MLgE’s asymptotics, finite sample performance in terms of
efficiency and robustness, and the choice of the distortion parameter q. We investigate these aspects
of MLgE and compare it with MLE in parameter estimation and tail probability estimation, through
both Monte Carlo simulation and a real data analysis. Our results show that, with appropriately
chosen ¢, MLgE and MLE perform competitively for large sample sizes while MLgE outperforms
MLE for small or moderate sample sizes in terms of reducing MSE. In addition, MLg¢E with ¢ < 1
has much better robustness properties than MLE when outlying observations are present.

Keywords: Maximum Lg-likelihood estimation, gamma distribution, distortion parameter, effi-
ciency, robustness.

1 Introduction

In the late 1940s, Claude Shannon established the information theory which became one of the major
scientific advances in the last century. The Shannon’s information theory has been successfully applied in
a variety of scientific areas including statistics. The key point of Shannon’s information theory is the so
called Shannon’s entropy defined as H(X) = —FE[logp(X)]. Here p(x) represents the p.d.f. of a random
variable X. After the Shannon’s entropy was introduced, the relationship between log p(X) and H(X)
was widely studied. A statistical model that was expected to minimize the Shannon’s entropy was brought
by [3] in which it was stated that the minimization of — . | logp(X;) (empirical version of Shannon’s
entropy) is equivalent to the maximization of the log-likelihood function. Then model comparison based
on the minimum description length criterion was established by [4]. Later, Shannon’s entropy became
widely used, which brought newly proposed measures of information such as Rényi entropies. Rényi
entropies use a more general definition of mean and keep additivity of independent information; see [5]
and [6].

Article [1] proposed nonextensive entropies, sometimes referred to as g-order entropy. The g-order
entropy is an important extension of Shannon’s entropy where the logarithm is replaced by the more
general function Ly(u) = (u!=7 —1)/(1 — q) for ¢ > 0. Note that L,(u) — log(u) when g — 1, recovering
the usual Shannon’s entropy. Recently, g-order entropies have been applied in different scientific areas.
In thermodynamics, the g-entropy functional is usually minimized subject to some properly chosen
constraints, according to the formalism proposed by [7] and [8]. Articles [9] and [10] successfully exploited
g-order entropies in physics. In statistics, [11] concluded that the classical maximum entropy estimation
and MLE are convex duals of each other.

As an alternative parametric estimation to MLE, the Maximum Lg-likelihood Estimator (MLgE) was
first introduced by [2] and it is based on the nonextensive g-order entropy function. Let X5, -, X,, be
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an i.i.d. sample from p.d.f. f(+;60) with some 6 € ©. The MLgE of 0 is defined as

6= argmax 3 L,[f(X::0)], q>0, (1)
b0

where
_ [ logu, if ¢g=1,
Lq(u) = { (ut=9 —1)/(1 — q), otherwise.

From the definition of L, and L’Héspital’s rule we can see that if ¢ — 1, then L,(u) — logu, i.e. Lg(u)
is a continuous function of ¢ for any fixed v > 0. Therefore, when ¢ is close to 1, the value of 6 will
be close to the MLE of 6. In this sense, MLgE extends the classic MLE method, resulting in a general
inferential procedure that inherits most of the desirable features of traditional MLE and at the same time
can improve MLE via variance reduction.

Article [2] provided theoretical insights concerning the statistical usage of the generalized entropy
function. In particular, they highlighted the role of the distortion parameter g. When the sample size is
large and ¢ tends to 1, [2] established a necessary and sufficient condition to ensure asymptotic normality
and efficiency of MLgE. MLE is asymptotically efficient, however, for a small or moderate sample size,
when ¢ is properly chosen MLgE can offer a dramatically reduced mean squared error (MSE) at the
expense of a slightly increased bias when compared to MLE. [2] gave a good discussion on the efficiency
of MLgE but left the robustness properties undiscovered. To fill the gap, in this paper we will discuss the
robustness properties of MLgE.

To our knowledge, there are only a few papers on MLgE so far. Article [12] introduced a MLgE
for mixture models using their proposed expectation-maximization (EM) algorithm, namely the EM
algorithm with Lg-likelihood (EM-Lq). Article [13] applied ML¢E to estimate quantiles of the Generalized
Extreme Value (GEV) and the Generalized Pareto (GP) distributions in finance. In [14], the hypothesis
testing problem for the shape parameter of the GEV distribution is investigated using the Lg-likelihood
ratio statistic, a generalized form of the classical likelihood ratio statistic.

In this paper, we will investigate the MLgE of parameters and tail probabilities for gamma distributions.
Gamma distributions are widely used in engineering, science and business to model continuous but skewed
distributions. For example, it is well known that gamma distribution is commonly used to model failure
time. We will examine both the MLgE’s asymptotic properties and its finite sample performance. We will
not only look at its efficiency but more importantly its robustness properties. In addition, we will discuss
the choice of distortion parameter ¢ in terms of direction and value. We will investigate these aspects
of MLgE and compare it with MLE in parameter estimation and tail probability estimation, through
both Monte Carlo simulation and a real data analysis. Our results show that MLgE and MLE perform
competitively for large sample sizes while MLgE outperforms MLE for small or moderate sample size in
terms of reducing MSE. More promisingly, MLgE when ¢ < 1 has much better robustness properties than
MLE when outlying observations are present.

This paper is organized as follows. In Section 2, we will review the properties of MLgE for exponential
families and further, for a special class of gamma distributions, derive the MLgE of the parameter and its
asymptotic variance. We will also discuss a method of choosing the distortion parameter ¢ based on the
MSE. In Section 3, we will implement Monte Carlo simulation studies to examine the proposed MLgE’s
finite sample performance in terms of both efficiency and robustness, the accuracy of the MLgE-based
confidence intervals, and the choice of the distortion parameter g. In Section 4, we demonstrate how to
implement the MLgE through a real data analysis of the Guinea Pigs data. Final concluding remarks are
presented in Section 5.

2 MLgE of Standard Gamma Distributions

Let X1,---, X, be an i.i.d. sample from the p.d.f. f(-;0) with some 8 € © C RP. The ML¢E of 0 is
defined in (1). Define
U(x;0) = Volog{f(z;0)}, @)
U*(2;0,q) = U(x;0) ' ~(x;0),

Copyright © 2017 Isaac Scientific Publishing JAS



56 Journal of Advanced Statistics, Vol. 2, No. 1, March 2017

where Vg denotes the operator of first derivative with respect to 6. Then in general, the estimating
equation for the MLgE 6 solves

> U*(X4;0,9) = 0. (3)
i=1
Equation (3) offers a natural interpretation of the ML¢E as a solution to a weighted likelihood. When
q # 1, (3) provides a relative-to-the-model reweighing. Observations that disagree with the model receive
low or high weight depending on ¢ < 1 or ¢ > 1. In the case of ¢ = 1, all the observations receive the
same weight.
Consider density functions of the exponential family

f(x;0) = exp[0Tb(x) — A(B)],

where 8 € © C RP is a real valued natural parameter vector, b(x) is the vector of functions with elements
bj(x), j=1,---,p, and A(0) =log [ e?"b(@) gz is the cumulant generating function (or log normalizer).
Article [2] has studied this exponential family and established the consistency and asymptotic normality
of the MLgE. In this paper we will examine closely gamma distributions which are special cases of this
exponential family. More specifically, we are interested in estimating the shape parameter of a gamma
distribution when the scale parameter is known. Since any gamma distribution can be expressed in terms
of the standard gamma distribution after transformation, without loss of generality, we assume the scale
parameter is 1; i.e. we consider estimating the shape parameter of standard gamma distributions. We will
derive the MLgE of the shape parameter and its asymptotic variance.

2.1 MLgE of the Parameter and Tail Probability

Consider an i.i.d. sample of size n from the standard gamma distribution Gamma(6,1) with density
f(x;0) = (29~ 1e=*)/I'(#) for some 6§ > 0. The Lg-likelihood equation (3) is reduced to

Z ell0=Dloe Xi=Xil(1=a) [ P (9) log X; — ()] = 0. (4)
i=1

The MLgE 6 of 0 is the solution to (4). With ¢ = 1, the MLE 0 is the solution to equation

»(0) = (Z 1ogXi> /n, (5)

where ¥(0) = I"(0) /(). With a lengthy but straightforward calculation, we obtain the variance of the
MLgE 6 as

UL 0 L (2/gn — 1)0) + [6(2/an — 1)0) = 00/ }

2
|0/, 0

— [W'(0)] 7" = {[log I'()]"} ™", as n — oo,

where ¢y, is chosen such that ¢, — 1 in order to achieve asymptotic efficiency. By Theorem 3.2 in [2],
we can conclude that n'/2g;; 1(9~ —0/qy,) converges weakly to a standard normal distribution as n — co.
Note that {[log I"(6)]"} ! is the asymptotic variance of the MLE.

In fields such as finance, people are more interested in the tail probability estimation. Denote the
upper tail probability of standard gamma distribution by

0—1_—y

a(m;é)):Pg(X<w):1—/ozy ¢

Wdy, x> 0. (7)

Note that one can also consider the lower tail probability, but without loss of generality we only consider
the upper tail probability. Based on the MLE # and MLgE 6, the MLE and plug-in MLgE of the upper
tail probability a(x;0) are & = a(x;0) and & = «a(z; 6) respectively.
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Assume «a(z;6) > 0 for all z. Obviously a(z;0) — 0 as z — co. When z is fixed, under some conditions,
the delta method shows that an asymptotically normally distributed and efficient estimator of 8 makes
the plug-in estimator of a(z; ) also asymptotically normal and efficient. However, in most applications
a large sample size is demanded in order for this asymptotic behaviour to be accurate for a small tail
probability. As a consequence, the setup with x fixed but n — oo presents an overly optimistic view, as it
ignores the possible difficulty due to the smallness of the tail probability in relation to the sample size n.
Instead, allowing z to increase in n (so that the tail probability to be estimated becomes smaller as the
sample size increases) more realistically addresses the problem. Thus here we are interested in estimating
a(xy;0), where z,, — 0o as n — oo.

2.2 Choice of Distortion Parameter g

When estimating the parameter in standard gamma distributions, with ¢, — 1, the asymptotic variance
of the MLgE is equivalent to that of the MLE in limit, but can be smaller for small sample sizes. In this
section we discuss the choice of g such that the MLgE has reduced variance.

As [2] suggested, one can choose the ¢ which minimizes an estimated asymptotic MSE of the estimator
when it is mathematically tractable. Article [2] discussed the choice of ¢ for exponential distributions.
Now we look at how to choose ¢ for standard gamma distributions. By Theorem 3.2 in [2], the MLgE 0 of
# has asymptotic MSE

0 2 g2
MSE;(¢,0) = - —0 = 8
a0y =(2-0) + 7 0
where o, is given in (6) with ¢, replaced by ¢. As a result, when estimating 6, we choose ¢* such that
¢" = argmin{MSE;(q, é)}, (9)
q€(0,2)

where 6 is the MLE.
We use the same way to choose distortion parameter p when estimating tail probabilities. By Theorem

5.1 of [2], the plug-in MLgE «(x,;0) of the upper tail probability a(x,;60), given in (7), has asymptotic
MSE

g

2
MSEa (g, 0) = [a(z;0/q) — a(n; 0)) + [0 (n; 0/q)", (10)
where o, is given in (6) with ¢, replaced by ¢, and o/ (x;0) = — O:,: %%dy Note that o'(z; ) is the

derivative with respect to 6 instead of z. The asymptotic MSE in (10) can be written more explicitly as
Tn ,0—-1_—y Tn ,,0/q—1,—y 2 Tn o 0—-1,—y
Yy € y e Y e
MSE4(q,0) = ——dy — ——d —
wo = | - o + | (@)

I(6) I'(0/q)
¢* = argmin{MSE4 (¢, )}, (12)
q€(0,2)

2
2
g,
dy| 2. (11
yln()

0=0/q

As a result, when estimating a(z,;#), we choose ¢* such that

where @ is the MLE. The choices of ¢ in (9) and (12) will be also used in some of our simulation studies
in Section 3.

3 Simulation Studies

In this section we will implement an extensive Monte Carlo simulation study to examine the MLgE
for standard gamma distributions. We will compare their finite sample performance with that of the
traditional MLE. In Section 3.1, we assess the accuracy of MLgE and MLE for both the parameter and
tail probabilities by looking at their MSE ratio with a varying but deterministic distortion parameter ¢. In
Section 3.2, we assess the reliability of confidence intervals produced by ML¢E and MLE with data-driven
optimal distortion parameter. Section 3.3 is devoted to a robustness study of the MLgE and MLE.
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3.1 Relative Efficiency

In the first group of simulations, we compare the two estimators of the natural parameter in standard
gamma distributions, obtained via the MLg method and the traditional ML approach respectively.
Particularly, we are interested in assessing the relative performance of MLgE over MLE for different
choices of sample size by taking the ratio of their MSEs, i.e. MSE(d)/MSE(@) for 6 and MSE(a)/MSE(a)
for upper tail probability «.

The simulations are structured as follows:

(i) For any given sample size n > 2, B = 10,000 of Monte Carlo samples X1, --- , X,, are generated from
a standard gamma distribution with parameter 0 (i.e. Gamma(6,1)).

(ii) For each sample, the MLgEs and MLEs of § and « are calculated.

(iii) For each sample size n, the relative performance of MLgE over MLE is evaluated by the ratio
R = MSEpc(8)/MSEnc(5), where 8 denotes 6 or a and MSEyic denotes the Monte Carlo estimate
of the MSE.

To find R in (iii), let 5, = B! ZkB:1(Bk —B)? and o = B~! Zszl(Bk — )2, where f3; and B, denote
the estimates based on the k-th sample, k = 1,2,--- | B. Then we use R= 71/Y2 and the rationale is as
follows. By the Central Limit Theorem (CLT), when B — 0o, ¥ = (¥1,¥2)” has an asymptotic bi-variate
normal distribution with mean g = (MSE(5), MSE())” and a certain covariance matrix I', i.e.

B 2w ((0).r- (2272
0 Y12 Y22
Thus we could use y /Y2 to estimate the relative performance of MLgE over MLE. To estimate the
standard error of R, let g(y) = ¢1/92. Then by the delta method we have

VB 9(g) — g()] = N (0,§7 (m)Tg(w))

where g(p) denotes the gradient of g(u), i.e.

) 1 m 1 Y11 I
!IT(N)F!J(N) = (a_2> (%1 712) ( /Hz 2) —5 = 2712 3 + Y22 1

p2’ps ) \mevee) \—m/pz) s 13 p

Thus

and as a result we can estimate the standard error of R by

. 1/2
se(R) = B~Y/2 <FY121 - 2’712 3 + Y22 yl) . (13)
Ya Ya Ys

where 411, J22 and 412 denote the Monte Carlo estimates of the components of the covariance matrix I
Study I: fixed 6 and ¢ for parameter estimation

In Figure 1, we consider § = 1, 5,10 and fixed distortion parameter ¢ = 1.5. Figure 1 shows that R>1
for very small sample sizes, i.e., n < 10, and 6 = 5,10. When 6 = 1, R < 1 for any sample size. When the
sample size increases, R is decreasmg7 R <1 and converges to 0. ThlS indicates that the MLE is much
better than MLgE for large sample sizes, e.g. n > 20, with fixed ¢ = 1.5.

Figure 2 considers fixed 8 = 10 and three different distortion parameter values ¢ = 1.35,1.15,1.05.
From this plot we observe that R > 1 for very small sample sizes, i.e. n < 10. When sample size n
increases, the R value decreases slowly especially when ¢ = 1.05,1.15. Moreover, larger values of the
distortion parameter ¢ accentuate the benefits of MLgE for very small sample sizes.

Study II: fixed 6 and ¢, \, 1 for parameter estimation

Figure 3 considers 6 = 1,5,10 and varying ¢, = [1 + ¢ 3(n=20)] /10.5 4 0-3(n=20)], When 6 = 5, 10,
R>1 for very small sample sizes n < 7 and R <1 for sample sizes n > 10. When 0 = 1, R <1 for all
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Figure 1. Plot of MSE ratio R = MSEwnc(0)/MSEnc(6) as a function of sample size n with § = 1,5,10 and

g = 1.5 (Study I).
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Figure 2. Plot of MSE ratio
g = 1.35,1.15,1.05 (Study I).
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MSEwic(0)/MSEmc(f) as a function of sample size n with § = 10 and

sample sizes. For large sample sizes, e.g. n > 30, ¢, converges quickly to 1 and thus R converges to 1 and
the MLgEs and MLEs perform equivalently.

Study III: fixed « and ¢ for tail probability estimation

Figures 4 and 5 illustrate the behaviour of R for different choices of ¢ and the tail probability a. For
relatively small sample sizes, i.e. n <10 for ¢ = 0.5 in Figure 4 and n < 20 for ¢ = 0.65,0.85,0.95 in
Figure 5, we observe R > 1 which means that the MLgE performs better than the MLE. Such behaviour

Copyright © 2017 Isaac Scientific Publishing JAS



60 Journal of Advanced Statistics, Vol. 2, No. 1, March 2017

o A
[s=]
P
T e |
E o
g
= ~
o
o™~
(=
— 8=
- 8,=5
o | 8, =10
S
I I T T T
0 10 20 30 40

sample size n

Figure 3. Plot of MSE ratio R = MSEwc(0)/MSEnc(6) as a function of sample size n with § = 1,5,10 and
gn = [1 4 €23 7201 /(0.5 + 2329 (Study II).

is more accentuated for smaller values of o and smaller values of distortion parameter ¢q. In contrast,
when the sample size is larger, the bias plays an increasingly relevant role and we observe that R < 1.

g | — 0 =0.01
E -—- op=0.005
-------- o =0.003
v _|
=
]
= =
= —
7]
=
v _|
o
< _|
o

[0} 20 40 60 80 100

sample size n

Figure 4. Plot of MSE ratio R = MSEmc(&)/MSEwmc(@) as a function of sample size n with a = 0.01, 0.005,0.003
and ¢ = 0.5 (Study III).

Study IV: fixed « and ¢, 1 for tail probability estimation
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Figure 5. Plot of MSE ratio R = MSEyc(&)/MSEyc(&) as a function of sample size n with a = 0.003 and
g = 0.65,0.85,0.95 (Study III).

Figure 6 considers fixed upper tail probabilities « = 0.01,0.005,0.003 but varying ¢, = [0.5 +
0-3(n=20)] /[1 4 €0-3(n=20)] 50 that ¢,, ,* 1 and 0 < ¢, < 1. For small sample sizes, the chosen sequence
gn converges relatively slowly to 1 and the distortion parameter produces benefits in terms of a smaller
variance. As a consequence, for small sample sizes, R > 1 and the MLgE outperforms the MLE in terms
of MSE. In contrast, when the sample size becomes larger, ¢, adjusts quickly to one. As a consequences,
for large sample sizes, the MLgE exhibits the same behaviour as the MLE. We also observe that the
advantage of using the MLgE for small sample sizes is much more accentuated for smaller values of a.

Study V: a,, \,0 and g, 1 for tail probability estimation

Figure 7 considers the case where both the true tail probability and the distortion parameter change with
sample size. From Study IIT and Study IV we observe that, in order to produce benefit of smaller variance,
one may choose relatively larger g values for smaller o values and smaller ¢ values for larger « values, i.e.
a., decreases and ¢, increases as sample size n increases. We consider sequences of distortion parameters
converging slowly relative to the sequence of quantiles z,,. In particular we set ¢, = 1 — [101log(n + 10)] !
and z, = n'/*9 agin [2]. In Figure 7, we illustrate the behaviour of the estimator for 6 = 0.5,1,1.5.
Smaller 6 means smaller «a,, and thus, similar to our observation in Figures 4 and 6, better performance
of the MLqE.

Studies IV and V indicate that the choice of ¢, depends on the size of the probability to be estimated.
If ¢, approaches 1 too quickly from below, the gain obtained in terms of variance vanishes rapidly as n
becomes larger. On the other hand, if g, converges to 1 too slowly, the bias dominates the variance and
the MLE outperforms the MLgE.

3.2 Asymptotic and Bootstrap Confidence Intervals

In this section, we study the reliability of the MLgE based confidence intervals using three different
methods: (a) asymptotic formula; (b) nonparametric bootstrap; (¢) parametric bootstrap. We compare
the results with those obtained using the MLE.

The structure of the simulations in this section is similar to that of Section 3.1, but a data-driven
choice of ¢, is used. More specifically, for each sample we first compute the MLE 0. Then substitute it
into (9) and (12) and solve them numerically in order to obtain the optimal ¢* for MLgEs of § and «
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Figure 7. Plot of MSE ratio R = MSEumc (&)/MSEnc(@&) as a function of sample size n with z, = nl/(”‘s),
§=0.5,1.0,1.5, and ¢, = 1 — [10log(n 4 10)]~" (Study V).

respectively. With the optimal ¢*, the MLgE 6 and & are obtained. The standard errors of the estimates
are computed using the above three methods (a), (b) and (c). The standard error based on asymptotic
formula is derived in either (6) (o, /+/n) for estimating 6 or (11) (square-root of the second term) for
estimating a. In (6) and (11), ¢ = 1 corresponds to the MLE. We take B = 1,000 repetitions for each
simulation. The number of replicates employed in bootstrap re-sampling is 500. Without loss of generality,
we take # = 1 and a = 0.01. We use the level 95% for the confidence intervals and check the coverage of

the true values 6 and «.
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In Table 1, we present the means, standard deviations and standard errors of the MLE 6 and the
MLgE 6. From Table 1 we observe that the optimal ¢* approaches 1 as sample size increases. It is always
higher than 1 regardless of sample size, which is consistent with our choice in Section 3.1. For all sample
sizes considered the MLgE has smaller standard deviation than the MLE, though the advantage of MLgE
diminishes with increasing sample size. When comparing the standard errors calculated using the three
methods, the parametric bootstrap provides values closest to the Monte Carlo standard deviation followed
by nonparametric bootstrap.

Table 1. Mean, standard deviation and standard error of the MLE § and MLgE 6.

n q* Estimate St. dev. S€asy S€hoot S€pboot

15 1.033 1.062884 0.220070 0.249909 0.266232 0.235482
1.000 1.044836 0.221192 0.269299 0.285963 0.265781
25 1.022 1.012154 0.165725 0.185742 0.190547 0.179941
1.000 0.999072 0.167732 0.195312 0.199735 0.196228
50 1.011 1.019137 0.100756 0.109429 0.108276 0.108026
1.000 1.012545 0.100918 0.112350 0.110712 0.114313
100 1.006 1.009953 0.075361 0.081522 0.078320 0.076018
1.000 1.006411 0.075527 0.082596 0.079111 0.078127
500 1.001 0.999521 0.037271 0.037668 0.037853 0.037382
1.000 0.998792 0.037289 0.038010 0.038082 0.037798

In Table 2, we compare the accuracy of 95% confidence intervals for MLE and MLgE of 6 and report
both the coverage probability /rate (Coverage) and the relative length of intervals (RL) for MLgE over
those for MLE. Here RL is the averaged ratio, over B = 1,000 repetitions, of the interval length for MLgE
over that for MLE. From Table 2 we observe that the coverage probability of MLgE is always larger than
that of MLE when either nonparametric bootstrap or parametric bootstrap is used, while it is smaller
than that of MLE (within 1%) when the asymptotic formula is used. Regardless of the sample size and
the method of calculating the standard error, the interval length of MLgEs is always reduced especially
when the sample size is small. For all the sample sizes considered, the parametric bootstrap provides
most accurate confidence interval followed by nonparametric bootstrap.

In Tables 3 and 4 we present the results for tail probability estimation. From Table 3 we observe a
similar phenomena to that in Table 1 except that the optimal ¢* is always smaller than 1 here regardless
of sample size, which is also consistent with our choice in Section 3.1. In Table 4, we compare the accuracy
of 95% confidence intervals for the MLE and the MLgE of the upper tail probability a.. From Table 4 we
observe a similar phenomena to that in Table 2.

3.3 Robustness Study

In this section, we will examine the robustness properties of MLgE. Particularly, we will look at whether
the MLgE is resistant to outlying observations. For simplicity we will examine how MLgE behaves
when a single outlying observation is present, but the results could be generalized to multiple outlying
observations. For this purpose, the a-influence function (IF) given in [15] is a suitable measurement. The
a-TF measures the change in the estimate when a component with probability a is added to the original
model. Here we use an adapted version of the a-IF proposed by [16].

In this section, we always use the sample size n = 20 and, without loss of generality, we take the true
parameters # = 1 and o = 0.01. We randomly select a sample of n = 20 observations from the population,
based on which we calculate the MLE and MLgE with a fixed ¢ value. To calculate the a-IF, we replace
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Table 2. Coverage rate and relative length of interval (RL) for the MLgE 6 over MLE .

Asympt. Boot. Par. boot.

n q” Coverage RL Coverage RL Coverage RL

15 1.033 87.3 0.928 90.5 0.931 91.7 0.886
1.000 87.8 89.4 90.9

25 1.022 89.5 0.951 91.7 0.954 92.4 0.917
1.000 89.9 91.3 92.0

50 1.011 91.1 0.974 93.5 0.978 93.8 0.945
1.000 91.3 93.2 93.6

100 1.006 92.0 0.987 94.6 0.990 94.9 0.973
1.000 92.5 94.1 94.8

500 1.001 93.2 0.991 94.8 0.994 95.1 0.989
1.000 93.6 94.7 94.9

Table 3. Mean, standard deviation and standard error of the MLE & and MLgE a.

n q Estimate St. dev. S€asy S€hoot S€pboot

15 0.975 0.011633 0.005910 0.005725 0.005656 0.005891
1.000 0.011997 0.006102 0.006312 0.006043 0.006740
25 0.985 0.010302 0.004419 0.004663 0.004950 0.004236
1.000 0.010503 0.004475 0.005036 0.005167 0.004686
50 0.993 0.010376 0.002470 0.002836 0.002946 0.002799
1.000 0.010477 0.002498 0.002989 0.003022 0.002984
100 0.996 0.010110 0.001776 0.001792 0.001848 0.001784
1.000 0.010251 0.001784 0.001844 0.001884 0.001874
500 0.999 0.009987 0.000863 0.000866 0.000867 0.000865
1.000 0.009997 0.000864 0.000878 0.000873 0.000885
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Table 4. Coverage rate and relative length of interval (RL) for the MLgE & over MLE a.

Asympt. Boot. Par. boot.

n q- Coverage RL Coverage RL Coverage RL

15 0.975 79.9 0.907 84.5 0.936 89.2 0.874
1.000 80.3 83.8 88.7

25 0.985 84.1 0.926 87.7 0.958 91.3 0.904
1.000 84.5 87.5 89.6

50 0.993 88.9 0.949 90.3 0.975 92.5 0.938
1.000 89.3 89.9 92.2

100 0.996 92.1 0.972 92.8 0.981 94.2 0.952
1.000 92.6 92.7 94.0

500 0.999 94.5 0.986 94.9 0.994 95.2 0.977
1.000 94.6 94.7 95.0

the last observation (data are not sorted) with an outlying observation x, where z is an integer varying
from 1 to 20. Thus the contamination rate is a = 1/n = 1/20. Now the a-IF is defined as

1F(z) = VX )in) 910]/; WIXis]

where W represents a functional (estimator) based on the data. In our simulation, W is either the MLEs
6 and & or ML¢Es 6 and a.

For the fixed distortion parameter, we consider both cases of ¢ < 1 and ¢ > 1. For ¢ < 1 we choose
q = 0.8 for estimating 6 and ¢ = 0.95 for estimating «, while for ¢ > 1 we choose ¢ = 1.5 and ¢ = 1.1
respectively. The a-IFs are averaged over B = 100 repetitions and results are presented in Figures 8 -
11. From Figures 8 and 9 (¢ < 1) we observe that ML¢E performs much better than MLE in the sense
that the a-IF of MLgE increases mildly, keeps the same level or even decreases as outlying observation
increases, while that of MLE increases dramatically. However, in Figures 10 and 11 (¢ > 1), the a-IFs of
MLE and MLgE increases in their absolute values at about the same rate when the outlying observation
increases from 0 to 20, though the MLgE performs a bit worse than the MLE. Therefore, the MLgFE is
much more robust than MLE with respect to outlying observations when ¢ < 1 and perform competitively
when ¢ > 1.

To conclude this section, we believe that the choice of distortion parameter ¢ provides good flexibility
according to the purpose of an analysis. When standard gamma models are concerned, if the concentration
is on the accuracy of estimation, then one should choose the distortion parameter ¢ in the same direction
as the optimal value ¢*; if the resistance to outliers is more important, then one should choose ¢ < 1.

4 Real Data Analysis

In this section we will use MLgE to analyze a real data set, the Guinea Pigs data. This data was presented
in [17] and comprises survival times, in days, of 72 Guinea pigs injected with different amount of tubercle.
This species of Guinea pigs are known to have high susceptibility of human tuberculosis, which is one of
the reasons for selecting them. We consider only the study in which animals in a single cage are under
the same regimen. The data (in days) are given below:

12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56 57 58 58 59 60 60 60 60 61 62 63 65 65 67 68
70 70 72 73 75 76 76 81 83 84 85 87 91 95 96 98 99 109 110 121 127 129 131 143 146 146 175 175 211 233
258 258 263 297 341 341 376.
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Figure 8. The o-IF of MLE 6 and MLgE 6 with q=0.8.
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Figure 9. The o-IF of MLE & and MLgE & with ¢ = 0.95.

Since the methodology discussed in this paper assumes the scale parameter A\ is known, we try
different values A = 0.01,0.02,0.03,0.04, - - - ,0.10 and pick up the one gives the best fit to the data with
Kolmogorov-Smirnov test. For each fixed A value, we

Step 1. Divide the data by A to make it standard gamma distributed after re-scaling.
Step 2. Calculate the optimal ¢* (defined in (9)) based on the re-scaled data.
Step 3. Calculate the MLE and MLgE (with the ¢* ) based on the re-scaled data.

Step 4. Use the Kolmogorov-Smirnov test to test the fitted gamma model with MLE 6 or MLgE 6 as
the shape parameter and the fixed A as the scale parameter.
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Figure 10. The o-IF of MLE 6 and MLgE 6 with ¢ = 1.5.
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Figure 11. The a-IF of MLE & and MLgE & with ¢ = 1.1.

Repeat Steps 1-4 for each A value and choose the one that gives the best fit, i.e. the one Athat gives the
largest p-value. It turns out that A* = 0.05 gives the best fit. The corresponding MLE 6 and MLgE 6
(with optimal ¢* = 1.00134) along with their standard errors are respectively

6 = 4.341229 (se = 0.51155) and 6 = 4.341704 (se = 0.511606).
The standard errors are calculated by using the asymptotic formula o,,/y/n with o, derived in (6),

Gn = q* = 1.00134 for MLgE and q,, = 1 for MLE. Furthermore, the 99% asymptotical confidence intervals
of 6 produced by MLgE and MLE are (3.023807,5.659601) and (3.023476, 5.658982) respectively.
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These two best fitted gamma models Gamma(d, \*) and Gamma(f, \*) based on respective MLE
and MLgE give the following Kolmogorov-Smirnov test statistics and p-values:

0: ks = 0.1267, p—value = 0.1979 and 0 : ks = 0.1268, p—value = 0.1972.

The two high p-values (> 0.1) mean that both of the two fitted gamma models are reasonably appropriate.
In addition, the two p-values are very close, which indicates that the two gamma models fit the data
equivalently well.

In Figure 12, we examine the fitted gamma models based on the MLE § and MLgE 6 along with a
histogram of the survival times. As expected from the estimates, the two gamma models fit the data
equivalently well. In Figure 13, we look at the c.d.f.s of the fitted gamma models compared with the
empirical c.d.f., as well as the QQ-plots based on the fitted gamma models. From Figure 13 we observe
again that the gamma model based on both MLE and MLgE fits the data equivalently well.
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Figure 12. Fitted gamma distributions based on the MLE § and MLgE 6.

5 Concluding Remarks

The MLgE was first introduced in [2]. As an extension of the traditional MLE, MLgE has been shown to be
very useful and efficient for small and moderate samples. Our work aims to examine this newly proposed
MLgE for gamma distributions. Our results are consistent with the findings in [2]. More significantly, we
give the very first time the robustness study of MLgE and demonstrate that MLgE is much more robust
than MLE when distortion parameter g < 1.

For standard gamma distributions, our results indicate that the optimal distortion parameter ¢* is
always bigger than 1 for parameter estimation and smaller than 1 for tail probability estimation. The
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Figure 13. CDF and QQ-plot of the fitted gamma distributions based on the MLE 6 and MLgE 6.

optimal ¢* converges to 1 as the sample size increases, which indicates that the MLqE with optimal ¢*
is asymptotically equivalent to MLE. When the sample size is small and moderate, the MLgE reduces
estimator variance. When the sample size is large, the bias component becomes more relevant and the
advantage of using MLgE diminishes. Moreover, the benefit of using MLgE techniques for small sample
sizes is accentuated by taking a distortion parameter further away from 1 in the direction of the optimal
value ¢*.

Despite of the benefits of MLgE, it has its own limitations. The computation of MLgE is a bit more
complicated than the traditional MLE, especially with the calculation of the optimal distortion parameter
q*. Also, one should not expect the same benefit when using MLgE for different models. Comparing our
results on the standard gamma model with those on the exponential model in [2], the use of MLgE of the
parameters in standard gamma model is not as beneficial as that in exponential model.

As demonstrated in previous and current work, the MLgE is very promising and ensures further
investigation. As a generalization of the study in this paper, we may consider the general gamma model.
In the general gamma model, there are two unknown parameters and this two dimensional parameter
will increase the calculation burden both analytically and numerically. We may also consider gamma
regression model. A second direction of future study is to generalize the MLgE method to nonparametric
or even semiparametric models. As a third direction of future research, we would like to find the optimal
q* value by maximizing Lg-likelihood function over both parameter space and ¢ simultaneously, i.e. the
maximization in (1) with respect to both 6 and ¢ instead of 6 only. This maximizing procedure could be
implemented by using profile likelihood techniques.
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