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1. Introduction

  Stachys sieboldii (S. sieboldii) Miq. is a herbaceous plant in the 

family Labiatae and is widely used as a vegetable in China, Japan, 

and Korea. Additionally, S. sieboldii Miq. has also been used as a 

Chinese folk medicine to treat ischemic brain injury, dementia, and 

various gastrointestinal related diseases[1]. S. sieboldii Miq. contains 

various oligosaccharides, which could stimulate the growth of 

beneficial microorganisms in the human intestine and is considered 

as a wellness-promoting food in Asian countries[2]. S. sieboldii Miq. 

has been reported to contain several active compounds including 

terpenes[1], flavonoids[3], and phenolic compounds[4], which are 
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highly associated with its antimicrobial[5], antioxidant[3-7], and 

antitumor properties[8].

  Free radicals are oxygen-containing molecules with one or more 

unpaired electrons, making them highly reactive towards other 

molecules. In most macromolecules, oxidative stress damage is 

induced by free radicals[9]. Therefore, oxidative stress is considered 

as a critical pathophysiological mechanism in different courses and 

processes of diseases, including cardiovascular diseases, cancer, 

diabetes, rheumatoid arthritis, and various neurological disorders[10]. 

Antioxidants are used for reducing agents, and attenuating oxidative 

damage to critical biological structures by protecting them from free 

radicals. Antioxidants are found in many kinds of food, and several 

studies have recommended that continuous intake of vegetables and 

fruits in one’ diet leads to a positive regulation against oxidative 

stress induced damage in the body[11]. Our previous studies presented 

that acetone+methylene chloride extract from S. sieboldii Miq. had 

higher levels of flavonoids than the methanol extract[12], which was 

associated with a higher free radical scavenging activity. In this 

present study, we investigated the effect of extracts and fractions from 

S. sieboldii Miq. on cellular reactive oxygen species and glutathione 

production and genomic DNA oxidation to determine its potential use 

as a natural antioxidant supplement.

 

2. Materials and methods

2.1. Materials and cell line culture 

  Dulbeco’s modified Eagle’s medium, fetal bovine serum, phosphate 

buffered saline (PBS), dimethylsulfoxide, penicilline-strectomycin, 

and 2’-7’ dichlorofluorescein-diacetate (DCFH-DA) were purchased 

from Sigma-Aldrich (St. Louis, MO). A human fibroblast cell line 

HT-1080 was acquired from the Korea Cell Line Bank. The cells 

were maintained at 37 曟 in 5% CO2 in Dulbeco’s modified Eagle’s 

medium with 10% fetal bovine serum and 100 units/mL penicillin-

streptomycin.

2.2. Sample extracts and fractions 

  S. Sieboldii Miq. was purchased from the Misan herb farm (Daegu, 

Korea). Dried S. Sieboldii Miq. (3 kg) was extracted with acetone/

methylene chloride (A+M, 0.6 g) and methanol (MeOH, 12.9 g) to 

obtain the maximum amount of extracts. Then the combined crude 

extracts (6.8 g) were fractioned with n-hexane (0.82 g) and 85% 

aqueous MeOH (1.82 g), and the aqueous layer was also further 

fractioned with n-butanol (n-BuOH, 1.38 g) and water (2.0 g), resulting 

in the n-hexane, 85% aqueous MeOH, n-BuOH and water fractions[13]. 

All extracts and fractions were vacuum dried at 40 曟 using rotary 

vacuum evaporator (N-100, EYELA, Japan) and the residue was kept at 

4 曟 until further analysis. For the test samples all extracts and fractions 

were dissolved in dimethylsulfoxide at various concentrations.

2.3. Intracellular reactive oxygen species (ROS) measurement

  Cellular oxidative stress due to ROS generation from H2O2 was 

measured using the DCFH-DA method[14]. HT-1080 cells were 

planted in 96-well plates (5 伊 105/well) for 24 h. After rinsing with 

PBS, 20 μM DCFH-DA was treated and pre-incubated for 20 min. 

Then the test samples were added and set for 1 h. After the DCFH-

DA was removed and rinsed with PBS, 500 μM H2O2 were added 

and set for 120 min. The control was treated with H2O2 and distilled 

water and blank was treated with distilled water without H2O2. 

Dichlorofluorescein fluorescence was assessed at 485 nm and at 

535 nm by a fluorometric plate reader (VICTRO3, Perkin Elmer, 

Wellesley, MA).

2.4. Determination of intracellular glutathione (GSH) 
concentration 

  GSH levels were measured using a fluorescent method with 

mBBr[15]. HT-1080 cells were planted in 96-well plates (5 伊 105/well) 

for 24 h. The cells were treated with samples at various concentrations 

and incubated for 30 min. After rinsing with PBS, 40 μM mBBr was 

added and incubated for 30 min. The fluorescence was assessed at 

360 nm and at 465 nm by the fluorometric plate reader (VICTRO3, 

Perkin Elmer, Wellesley, MA).

2.5. Genomic DNA isolation 

  High molecular weight genomic DNA was separated from the 

HT-1080 cells through standard phenol/proteinase K procedure[16]. 

Concisely, cultured cells were rinsed with PBS and aliquoted into 1 

mL of PBS with 10 mM EDTA. After centrifugation the cells were 

mixed in RNase (0.03 mg/mL), NaOAc (0.175 M), proteinase K (0.25 

mg/mL) and sodium dodecyl sulfate (0.6%). The mixture was set for 

30 min at 37 曟 and 1 h at 55 曟. Then, phenol:chloroform:isoamyla

lcohol (25:24:1) was diluted at 1:1 ratio and mixture was centrifuged 

at 6 000 rpm for 5 min at 4 曟. The upper was blended with 100% 

ice cold ethanol at a 1:1.5 ratio and set for 15 min at -20 曟. After 

centrifugation at 16 000 rpm for 5 min at 4 曟, the lower pellet was 

stirred in tris-ethylenediaminetetraacetic acid buffer and the purity of 

DNA was measured at 260/280 nm.

2.6. Determination of radical mediated DNA oxidation 

  H2O2 induced DNA oxidation was assessed according to Kang’s  

method[17]. Concisely, 100 μL of DNA reaction mixture was 

prepared by adding a pre-determined concentrations of the sample, 

a 200 μM final concentration of FeSO4, a 2 mM final concentration 

of H2O2 and a 50 μg/mL of genomic DNA. Then, the mixture was 

set at room temperature for 30 min and the reaction was withdrawn 

by adding 10 mM EDTA. Aliquots (20 μL) of the reaction mixture 

containing about 1 μg of DNA were electrophoresed on a 1% agarose 

gel for 30 min at 100 V. After staining with 1 mg/mL ethidium 
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bromide, the gels were imaged through UV light by AlphaEase® gel 

image analysis software (Alpha Innotech, CA, USA). The control 

was treated with H2O2 and distilled water and blank was treated with 

distilled water without H2O2.

2.7. Statistical analysis 

  Data were presented as a mean ± standard deviation (SD). The 

significance of differences observed between the control and 

experiment groups used the standard Student’s t test at P<0.05. 

Analyses were conducted using the STATISTICA package (TopCo, 

Palo Alto, CA, USA). 

3. Results 

3.1. Effect of fractions of S. sieboldii Miq. on production of 
cellular ROS
  

  Figure 1 shows the inhibitory effects of the solvent fractions 

(n-hexane, 85% aqueous MeOH, n-BuOH and water) of S. sieboldii 
Miq. on ROS production induced by H2O2 in HT-1080 cells. All 

tested fractions decreased H2O2 induced ROS production in a 

concentration-dependent manner. Adding with n-hexane, 85% 

aqueous MeOH and n-BuOH fractions (0.05 mg/mL concentration) 

resulted in 63%, 35%, and 45% ROS inhibition, respectively. These 

results suggested that the n-hexane fraction had the strongest effect 

on reducing H2O2-induced ROS production. 
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Figure 1. Effect of fractions from S. sieboldii Miq. on the amounts of ROS in 

HT-1080 cells. 

Control-treated with H2O2 and distilled water; Blank-treated with distilled water 

without H2O2 solvent; n-Hexane: n-hexane fraction; 85% aq. MeOH: 85% 

aqueous methanol fraction; n-BuOH: n-butanol fraction; Water: water fraction. 

3.2. Effect of extracts and fractions of S. sieboldii Miq. on 
GSH production 

  Total GSH levels were determined on the lysates of HT-1080 

cells treated with A+M and MeOH extracts from S. sieboldii Miq. 

at various concentrations (Figure 2). Supplementation of cells with 

A+M and MeOH extracts significantly increased total GSH levels 

relative to that in the control experiment (P<0.05). Figure 3 presents 

the effects of S. sieboldii Miq. fractioned in various solvents on GSH 

levels. Four fractions significantly increased GSH levels at a low 

concentration (0.025 mg/mL) (P<0.05). Among these fractions, the 

n-hexane fraction showed greater levels of GSH. 
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Figure 2. Effect of acetone+methylene chloride (A+M) and methanol (MeOH) 

extracts from S. sieboldii Miq. on the contents of GSH in HT-1080 cells. 
a-dDifferent superscripts indicate significant differences at P<0.05.
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Figure 3. Effect of fractions from S. sieboldii Miq. on the contents of GSH in 

HT-1080 cells. 

Solvent: n-Hexane: n-hexane fraction; 85% aq. MeOH: 85% aqueous methanol 

fraction; n-BuOH: n-butanol fraction; Water: water fraction. a-dDifferent 

superscripts indicate significant differences at P<0.05.

3.3. Effect of extracts and fractions of S. sieboldii Miq. on 
genomic DNA oxidation

  The ability of extracts and fractions from S. sieboldii Miq. to inhibit 

DNA oxidative damage was assessed using genomic DNA isolated 

from HT-1080 cells. Figure 4 and 5 present the inhibition rate (%) 

of DNA oxidation related to the blank without Fe(栻)-H2O2. Both 
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the A+M and MeOH extracts significantly inhibited Fe(栻)-H2O2 

induced oxidative stress DNA damage (P<0.05). All fractions 

including the n-hexane, 85% aqueous MeOH, n-BuOH and water 

fractions significantly inhibited oxidative DNA damage by > 90% 

(P<0.05). These results suggest that S. sieboldii Miq. extracts and 

fractions provide an inhibitory effect on radical-mediated DNA 

damage. 
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Figure 4. DNA oxidative inhibition by acetone+methylene chloride (A+M) 

and methanol (MeOH) extracts (0.05 mg/mL concentration) from S. sieboldii 
Miq. in HT-1080 cells. 

Control-treated with Fe(栻)- H2O2 and distilled water; Blank-treated with 

distilled water without Fe(栻)- H2O2 solvent. Values with different letters are 

significantly different at P<0.05 using Turkey’s test[18].
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Figure 5. DNA oxidative inhibition by fractions (0.05 mg/mL concentration) 

from S. sieboldii Miq. in HT-1080 cells. 

Control-treated with Fe(栻)- H2O2 and distilled water; Blank-treated with 

distilled water without Fe(栻)- H2O2 solvent; n-Hexane: n-hexane fraction; 

85% aq. MeOH: 85% aqueous methanol fraction; n-BuOH: n-butanol 

fraction; Water: water fraction. Values with different letters are significantly 

different at P<0.05 using Turkey’s test[18].

4. Discussion

  ROS have been related to a higher risk of chronic and degenerative 

diseases including cardiovascular and neurodegenerative diseases, 

and cancer[10]. As the activity of ROS is likely inhibited by 

antioxidants, the damage caused by ROS attenuates presumably 

the risk of chronic diseases with antioxidant supplementations. 

Thus, consumption of vegetables and herbal plants, which are rich 

sources of antioxidants, could regulate biochemical pathways and 

prevent those chronic diseases[19]. Antioxidants attenuate ROS 

stress-induced damages due to their ability to donate electrons that 

neutralize the radicals without forming another[20]. In our previous 

study, extracts from S. sieboldii Miq contained flavonoids and 

showed a radical scavenging ability in DPPH and 2.2’-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) 

assays[12]. The n-hexane fraction from S. sieboldii Miq was more 

effective for attenuating cellular ROS production among the fractions 

presented in this study. According to Baek et al.[6], the ethyl acetate 

fraction from S. sieboldii Miq., which had higher levels of phenolic 

compounds, showed the strongest antioxidant radical scavenging 

activity among other fractions in 1,1-diphenyl-2-picryhydrazyl 

assay, ferric thiocyanate method and nitrite scavenging ability test. 

Na et al.[4] found that S. sieboldii Miq. contained more phenolic 

compounds than Korean ginseng, and that it had a higher radical 

scavenging capacity based on DPPH, ferric reducing antioxidant 

potential and Trolox equivalent antioxidant ability. In addition, Feng 

et al.[21] observed a high scavenging capacity towards superoxide 

anion, hydroxyl, and ABTS radicals but low scavenging activity 

towards DPPH radicals. Another study of S. sieboldii Miq. indicated 

that S. sieboldii Miq. powder adding white bread had the significantly 

scavenging effect of DPPH and ABTS radicals with increased levels 

of added S. sieboldii Miq. powder[7]. Khanavi et al.[22] compared the 

antioxidant activity and total phenolic contents in several Stachys 
species, suggesting that Stachys persica and Stachys fruticulosa had 

the highest phenol contents, which are associated with a higher 

antioxidant activity. Taken together, these results demonstrated 

that plants in the genus Stachys could be used to prevent numerous 

diseases related to oxidative stress. 

  GSH is an important antioxidant and very likely considered a 

detoxification of various electrophilic compounds and peroxides 

catalyzed by glutathione S-transferases and glutathione peroxidases[23]. 

Abdel-Sattar et al.[24] observed that the methanolic extract from 

Stachys schimperi Vatke fairly protected against doxorubicin-induced 

damages by assessing the production of GSH and malondialdehyde. 

Based on our data, the n-hexane fraction increased GSH levels. 

These results are in the same degree with the inhibitory effects of 

S. sieboldii Miq. on H2O2-induced ROS production. Thus this plant 

species may contain certain active antioxidant compounds, such as 

polyunsaturated fatty acids and polyphenols. Tepe et al.[25] compared 

the effect of water extracts from Teucrium polium and Stachys iberica 

on antioxidant, potential protection against oxidative DHA damage 

and antiamoebic activities. They found that the water extract from 

Teucrium polium had a stronger biological activity than that of 

Stachys iberica in all test systems. This present paper is the first study 

to examine the DNA damage protective ability of S. sieboldii Miq. 
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Both A+M and MeOH extracts, as well as the four fractions from 

S. sieboldii Miq. did show protective effects against oxidative DNA 

damage induced by Fe(栻). The findings of this study suggested that 

the n-hexane fraction from S. sieboldii Miq. decreased H2O2-induced 

ROS and oxidative stress-induced DNA damage and increased 

GSH production. Based on these results on the potential antioxidant 

activity and content of phenolics and flavonoids in S. sieboldii, this 

plant species may be rather useful as an alternative source instead 

of the synthetic antioxidants to delay lipid peroxidation in living 

organisms. However, additional studies are needed to determine the 

structures of the most active compounds of the plant.
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