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ABSTRACT

Objective: To evaluate the deltamethrin pyrethroid insecticides against Anopheles lab-
ranchiae, potential malaria vector in Tunisia.
Methods: Six field populations of Anopheles labranchiae mosquitoes were collected
from six localities in Northern and Central Tunisia between October and November 2016.
Different bioassays were performed to estimate the level of resistance in each collected
population. Two synergists were used to estimate the involvement of detoxification en-
zymes in insecticide resistance.
Results: All studied strains were resistant and the RR50 ranged from 12.5 in sample #1 to
72.5 in sample #6. Synergist tests using piperonyl butoxide indicated the involvement of
monoxygenases enzymes in the recorded resistance. In contrast, the increase of delta-
methrin mortality was not significant in presence of S,S,sributyl phosphorothioate
(0.8 < SR < 1.2), suggesting no role of esterases (and/or GST) in the resistance
phenotype. The correlation recorded between mortality due to DDT and the LC50 of
deltamethrin insecticide indicated an insensitive sodium channel affected by Kdr mutation
(Spearman rank correlation, r = −0.59, P < 0.01).
Conclusions: These results should be considered in the current mosquitoes control pro-
grams in Tunisia. The use of pesticides and insecticides by both agricultural and public
health departments in Tunisia should be more rational to reduce the development of resis-
tance in populations. Different insecticide applications should be implemented alternately.
1. Introduction

Malaria was endemic in Tunisia before its elimination in 1980
due to the malaria eradication program. The incidence of 10000
cases was recorded every year [1]. Anopheles labranchiae (An.
Labranchiae) (Falleroni, 1926) was incriminated as the principal
vector of autochthonous transmission malaria in a large part of
the country, particularly in the northern and central governorates
(Wernsdorfer W and Iyengar MO, unpublished data). In fact,
several authors showed experimentally that An. labranchiae can
successfully transmit Plasmodium falciparum (P. falciparum)
[2,3]. Despite Italian populations were refractory to African
strains of P. falciparum [4,5]. This species was also the main
vector incriminated in autochthonous transmission of
Plasmodium vivax (P. vivax) in Corsica, Greece, and Italy [6–8].
In Tunisia, Aoun et al. [9] mentioned recently an increase in
imported cases of P. vivax highlighting a risk for the re-
emergence of local foci in Tunisia. Furthermore, An. labran-
chiae was the main vector responsible for recent epidemic out-
breaks in Morocco [10] due to P. falciparum, Plasmodium
malariae, and P. vivax.

Tabbabi et al. [11,12] have retained An. labranchiae as the only
member of Anopheles maculipennis complex in Tunisia and
North Africa. These authors recently reported for the first time
their spatial distribution and larval habitat diversity in Tunisia
to identify areas that is at higher risk of malaria transmission.
Due to the importance of public health and the long history of
insecticide/larvicides resistance in Anopheles mosquitoes in
Africa and other continents, it is essential to evaluate the
resistance status of this species at regular intervals using WHO
standard bioassay tests and to map areas of their levels of
susceptibility/resistance. Therefore this study was aimed to
determine for the first time the deltamethrin pyrethroid
resistance status of An. labranchiae (Falleroni, 1926), potential
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Table 1

Resistance to deltamethrin in An. labranchiae from Tunisia.

Population LC50 (mg/L) RR50

95% CI Slope ± SE

Sensitive
strain

0.12 (0.05–0.17) 2.10 ± 0.32 –

1-Ben Arous 1.50 (0.50–2.20) 1.22 ± 0.17 12.50 (10.20–14.10)
2-Ariana 2.60 (1.90–3.10) 0.87 ± 0.14 21.66 (20.30–23.50)
3-Beja 2.90 (2.00–3.50) 0.89 ± 0.12 24.16 (23.40–25.70)
4-Jendouba 5.10 (4.10–6.40) 1.02 ± 0.16 42.50 (40.20–44.20)
5-Kairouan 4.90 (4.10–5.90) 1.42 ± 0.33 40.83 (39.20–42.30)
6-Monastir 8.70 (7.20–9.40) 0.91 ± 0.13 72.50 (69.20–75.10)

RR50: resistance ratio at LC50 (RR50 = LC50 of the population consid-
ered/LC50 of Slab).
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malaria vector in Tunisia. Results could improve vector control
implementation through targeted strategies.

2. Materials and methods

2.1. Mosquitoes and areas study

A sensitive strain of An. labranchiae was used as a standard
reference. Mosquito larvae were collected from six breeding
sites in October and November 2016. An. labranchiae larvaes
were identified using the keys of Brunhes et al. [13]. The
localities of the larval collection are cited in Tables.

2.2. Insecticides and synergists

Two insecticides and two synergists were used: the pyre-
throid deltamethrin (95.7Vo, ICI Americas, Inc., Richmond,
CA), and the organochloric DDT (99.9Vo; Mobay), S,S,sributyl
phosphorothioate (DEF), an esterase inhibitor, and piperonyl
butoxide (Pb), an inhibitor of mixed function oxidases.

2.3. Dose-response bioassay

Different bioassays were performed following the standard
procedure of Raymond et al. [14] to estimate the level of resistance
to deltamethrin insecticide in each collected population. Late
third and early fourth instar larvae were used. At least three
replicate groups of 20 larvae placed in 100 mL of water treated
with serial dilutions of insecticide were performed in each
bioassay. Ethanol replaced insecticide in control group was
tested. The assay was repeated if the rate of mortality in the
control group exceeded 10%. The mean lethal concentrations
of temephos causing 50% and 95% mortality (LC50 and LC95)
of exposed larvae after 24 h of treatment, which were
estimated through a probit analysis linear regression of
Raymond [15], based on Finney [16]. The Mazzarri and
Georghiou [17] criteria were followed to classify the resistance
level of each population tested as follows: low [resistance ratio
(RR) < 5], moderate (5 � RR � 10) or high (RR > 10).

3. Results

3.1. Deltamethrin resistance

The LC50 values demonstrated that the resistance to delta-
methrin of the larvae of An. labranchiae collected from Northern
Table 2

Effect of DEF synergist on deltamethrin toxicity in An. labranchiae from Tu

Population LC50 (mg/L)

95% CI Slope ± SE

Sensitive strain 0.15 (0.14–0.20) 1.23 ± 0.12
1-Ben Arous 1.20 (0.90–1.80) 0.85 ± 0.17
2-Ariana 2.40 (1.80–2.90) 0.89 ± 0.19
3-Beja 2.50 (2.00–2.90) 0.95 ± 0.17
4-Jendouba 4.10 (3.40–5.20) 0.89 ± 0.13
5-Kairouan 4.30 (3.90–4.80) 1.22 ± 0.41
6-Monastir 7.50 (6.90–8.30) 0.83 ± 0.09

RR50: resistance ratio at LC50 (RR50 = LC50 of the population considered/LC
LC50 observed in presence of synergist). RR and SR considered significan
synergism ratio (RR for insecticide alone/RR for insecticide plus synergist)
and Central Tunisia was highest in Monastir, followed by
Jendouba, Kairouan, Beja, Ariana and Ben Arous (Table 1).
Sample #6 showed the highest resistance to deltamethrin
insecticide with resistance ratio at LC50 (RR50) of 72.5, followed
by samples #5 and #4 with RR50 of 42.50 and 40.83, respec-
tively. Sample #1 showed the lowest susceptibility to delta-
methrin with RR50 of 12.5. The linearity of the dose-mortality
response was accepted (P < 0.05) for all studied samples
including reference strain (P < 0.05). Regression slope showed
the homogeneity of tested phenotypes.

3.2. Synergism tests

In the presence of Pb, the toxicity of deltamethrin significantly
increased in samples #5 and #6 (Table 3). The median-lethal doses
of deltamethrin were about 40 and 7 times lower than that obtained
without synergists, respectively. This indicates that cytochrome-
P450 monooxygenases played an important role in the detoxifi-
cation of this insecticide. Applying DEF 4 h prior to treatment with
insecticide, toxicity of deltamethrin was unchanged (Table 2) and
the mixture did not show any synergistic interactions in An. lab-
ranchiae [0.8 < synergism ratio (SR) < 1.2].

3.3. Cross-resistance deltamethrin/DDT

Significant correlation was observed between mortality due to
DDT and the LC50 of deltamethrin insecticide (Spearman rank
correlation, r=−0.59,P< 0.01) indicating cross-resistance to these
two insecticides. Sample #6 having the highest resistance to del-
tamethrin showed the lowest mortality to DDT (12% at 1 mg/L).
nisia.

RR50 SR50 RSR

– 0.80 (0.28–1.20) –

8.00 (7.40–9.20) 1.25 (1.00–1.90) 1.56
16.00 (15.20–16.90) 1.08 (0.69–1.61) 1.35
16.66 (15.10–17.50) 1.16 (0.87–1.88) 1.45
27.33 (25.80–29.20) 1.24 (1.00–2.20) 1.55
28.66 (26.30–29.60) 1.13 (0.69–1.48) 1.42
50.00 (48.20–52.60) 1.16 (0.75–1.78) 1.45

50 of Slab); SR50: synergism ratio (LC50 observed in absence of synergist/
t (P < 0.05) if their 95% CI did not include the value 1. RSR: relative
.



Table 3

Effect of Pb synergist on deltamethrin toxicity in An. labranchiae from Tunisia.

Population LC50 (mg/L) RR50 SR50 RSR

95% CI Slope ± SE

Sensitive strain 0.15 (0.08–0.55) 1.04 ± 0.32 – 0.80 (0.41–0.99) –

1-Ben Arous 0.90 (0.11–1.41) 0.75 ± 0.20 6.00 (5.40–6.80) 1.66 (1.40–2.30) 2.08
2-Ariana 2.10 (1.89–2.54) 1.52 ± 0.11 14.00 (12.20–15.30) 1.23 (0.92–2.20) 1.54
3-Beja 2.70 (1.10–3.20) 1.12 ± 0.12 18.00 (14.60–19.00) 1.07 (0.80–1.90) 1.34
4-Jendouba 4.90 (3.40–5.90) 0.87 ± 0.10 32.66 (30.50–34.20) 1.04 (0.80–1.50) 1.30
5-Kairouan 0.12 (0.01–0.45) 1.78 ± 0.14 0.80 (0.40–1.30) 40.83 (38.20–42.00) 51.03
6-Monastir 1.10 (0.70–1.80) 1.25 ± 0.12 7.33 (6.60–8.00) 7.90 (6.30–8.60) 9.89

RR50: resistance ratio at LC50 (RR50 = LC50 of the population considered/LC50 of Slab); SR50: synergism ratio (LC50 observed in absence of synergist/
LC50 observed in presence of synergist). RR and SR considered significant (P < 0.05) if their 95% CI did not include the value 1. RSR: relative
synergism ratio (RR for insecticide alone/RR for insecticide plus synergist).
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4. Discussion

The RR50 to deltamethrin insecticide differed from population
to population. The lowest resistance rate was obtained in Monastir
locality while the highest rate was obtained in Ben Arous locality.
These results showed the existence of ancient mechanisms that
become effective against deltamethrin pyrethroid insecticide and
still effective to organochlorine insecticides in the populations such
as DDT intensively used for malaria eradication in Tunisia [18].
This resistance can only be based on a genetic factor. Authors
[19] concluded that the resistance due to the massif use of DDT
may limit the effectiveness of insecticides having the same
resistance mechanisms. In fact, mosquito's populations may
develop cross-resistance even if the use of DDT insecticide has
been interrupted since a long time. The results are in agreement
with previous studies onDDT and other insecticides from the same
groups. It is already known that malaria vectors such as Anopheles
albimanus, Anopheles stephensi and Anopheles gambiae [20–23]

have developed pyrethroid resistance following the use of DDT.
In Tunisia, DDT was the main insecticide used for malaria
eradication programs before 1980 [18] and recently other
pesticides including pyrethroids for agricultural purposes. We
concluded that An. labranchiae have developed this resistance
after exposure to insecticides pressures. In fact, Anopheles
sacharovi is a member of Anopheles maculipennis species
complex developed resistance to DDT and lindane in 1959,
although they were used in the 1950s and 1960s [24].
Hemingway et al. [25] reported the same results in Anopheles
sacharovi populations in 1984 although malathion replaced DDT
in malaria control. We should note that the sample size of this
study was large enough to draw and definite the resistance status
to deltamethrin of Tunisian populations. In contrast, several
factors such as climate, season, year or period in which samples
are collected and season-based population movements may prob-
ably influence the obtained results. In fact, bioassays applied in a
single of the year are not sufficient to demonstrate the resistance or
susceptibility of the populations, that's why molecular and
biochemical studies on mechanisms of resistance are needed.

The correlation recorded between mortality due to DDT and
the LC50 of deltamethrin insecticide indicating an insensitive
sodium channel affected by Kdr mutation (common target site).
This mutation was observed in many Anopheles mosquitoes [26–

29] including Anopheles sinensis and Anopheles peditaeniatus
[26]. The target site mutations that offer cross-resistance to DDT
and pyrethroids (kdr) have also been observed in Anopheles
gambiae [30–32]. In this study, the high resistance recorded in
some samples led us to suggest that resistance may be caused
by other mechanisms such as metabolic resistance. Indeed,
Raymond et al. [33] have showed that the resistance caused by
detoxification enzymes and insensitive target is additive. The
restoration of deltamethrin susceptibility in presence of Pb in
some studied samples of An. labranchiae suggests the
involvement of monoxygenases enzymes in the recorded
resistance. Elevated levels of P450 activity have been observed
in pyrethroid-resistant malaria vectors in Africa, particularly in
Anopheles funestus from southern Africa [34–36]. In contrast, the
increase of deltamethrin mortality was not significant in
presence of DEF, suggesting no role of esterases (and/or GST)
in the resistance phenotype. It should be noted that resistance is
not always affected by synergist's actions. Several authors
showed that resistance to DDT was not due to detoxification
enzymes in Anopheles and other species of mosquitoes
including Anopheles maculatus, Culex pipiens quinquefasciatus
and Aedes aegypti in Malaysia [37], Anopheles albimanus in
Guatemala [38] and Aedes aegypti in Thailand [39].

The use of pesticides and insecticides by both agricultural
and public health departments in Tunisia should be more rational
to reduce the development of resistance in populations. More-
over, non persistent and fast-acting insecticides must be used in
right doses and replace permanent insecticides for which
Anopheles mosquitoes have developed extremely high levels of
resistance in several localities of the country. Different insecti-
cide applications should be implemented alternately.
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