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ABSTRACT

Objective: To evaluate the antioxidant and antidiabetic activities of Sutherlandia mon-
tana E. Phillips & R.A. Dyer leaf extracts using the in vitro model.
Methods: The antioxidant activities of aqueous, decoction, ethanol and hydro-ethanol
extracts of the plant were determined using seven different assays; the antidiabetic po-
tential was evaluated through the inhibition of key carbohydrate hydrolysing enzymes (a-
amylase and a-glucosidase), while the modes of the enzymes inhibition were assessed
using enzyme kinetic analysis.
Results: The ethanol extract exhibited the best scavenging activity (IC50: 0.47, 0.36,
0.20, 0.29 and 0.01 mg/mL) against the tested radicals like 1,1-diphenyl-2-picrylhydrazyl,
2, 20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), nitric oxide, hydroxyl and
superoxide anion, respectively. It also showed the best reducing power efficiency when
compared with the standard (silymarin), while the decoction extract displayed the
strongest metal chelating potential (IC50: 0.71 mg/mL). The ethanol (IC50: 5.52 mg/mL)
and decoction (IC50: 0.05 mg/mL) extracts exhibited mild and strong inhibitory effects on
the specific activities of a-amylase and a-glucosidase respectively, through an uncom-
petitive and non-competitive mode of action.
Conclusions: The observed properties might be linked to the presence of active prin-
ciples as shown by the results of the phytochemical analyses of the extracts. This research
has validated the folkloric application of Sutherlandia montana as a potential antidiabetic
agent, which is evident from the inhibition of specific activities of key enzymes involved
in carbohydrate metabolism.
1. Introduction

Diabetes mellitus (DM) encompasses a group of metabolic
diseases that has seriously threatened the human health and
quality of life, due to its inherent complications [1]. Alterations
in carbohydrate, fat and protein metabolism are the major
contributing factors to DM, with consequential elevated blood
glucose (hyperglycemia), resulting from defective insulin
metabolism [2,3]. Recent reports have shown that DM is
undoubtedly a rising global challenge, constituting major
health risk in most countries [4,5]. Boyle et al. [6] reported that
about 143 million people are estimated to be diabetic
worldwide; and this number is projected to double by the year
2030. Precisely, type 2 diabetes mellitus (T2DM), is the most
encountered form of DM associated with postprandial
hyperglycemia [7], which accounts for about 80% of reported
diabetic cases [8,9]. A disproportion between reactive oxygen
species (ROS) production and antioxidant scavenging capacity
induces oxidative stress, which ultimately leads to cellular and
tissue damage in diabetic individuals [10]. These effects can be
mitigated when oxidants are neutralized or scavenged by
increased antioxidant supplementation [11]. The maintenance of
a moderate blood glucose level in T2 diabetic patients is
largely achieved through the use of oral hypoglycemic agents
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and insulin. However, these treatment options are expensive and
have limited efficacy with significant adverse effects [12,13].
Thus, continuous research with natural extracts from plants
with hypoglycemic effect is imperative. Such research will
definitely offer new and more efficacious therapeutic
approaches for the treatment of diabetes and its inherent
complications [12,14].

The genus Sutherlandia (L.) R.Br. (Family: Fabaceae) is one
of the most treasured South African medicinal plant species. The
montane species, Sutherlandia montana (S. montana) is an
attractive soft-wooded shrub, about 0.5–1.0 m high with fine
silvery green foliage, large red flowers and attractive bladdery
pods [15]. Traditionally, infusion of S. Montana leaves is ethno-
pharmacologically valued by the Basotho people of South Africa
in curing cardiac ailments and as a sedative [16]. Similarly,
findings from our systematic ethnobotanical survey of plants
with medicinal value within the local communities in the
montane regions of Qwaqwa, Phuthaditjhaba, South Africa,
also revealed that different formulations (decoction and
infusion) of S. montana leaves are widely used in the
management and/or control of DM. Unlike Sutherlandia
frutescens (L.) R.Br., whose traditional usage as an
hypoglycaemic agent has been scientifically validated [17,18],
the therapeutic attributes of S. montana remains largely
unexplored. In view of this, coupled with no known scientific
reports on its antioxidant and antidiabetic potentials, the
present study was designed to analyse the phytochemical
constituents, as well as evaluate the antioxidant and
antidiabetic activities of S. montana leaf extracts via the
in vitro models.
2. Materials and methods

2.1. Plant collection, identification and authentication

The fresh aerial parts of S. montana were collected in June
2016 in Kestell (28� 18.7860 S and 28� 40.4980 E; altitude
10 245 m), Free State Province, South Africa. The plant's name
was checked at http://www.theplantlist.org (assessed on 12th,
April, 2017). Proper identification and authentication were done
by Dr. Sieben EJJ of the Department of Plant Sciences, Uni-
versity of the Free State (QwaQwa campus). A voucher spec-
imen with reference number AliMed/01/2016/QHb was
subsequently deposited at the Herbarium of the University.
2.2. Extracts' preparation

The freshly collected stems were rinsed with distilled water
to remove foliar contaminants after which the leaves were
separated from the twigs and stems. The leaf components were
then air-dried at room temperature and subsequently ground into
fine powder materials. Thereafter, exactly 20 g each of the
powdered sample was extracted in 200 mL ethanol, hydro-
ethanol (50: 50), decoction, and distilled water. The flasks
were placed on Labcon Platform shaker (Laboratory Consum-
ables, PTY, Durban, South Africa) for 24 h to allow for proper
agitation. All extracts were filtered using Whatman No. 1 filter
paper. The ethanol extract was concentrated under reduced
pressure at 40 �C using rotary evaporator (Cole-Parmer, SB
1100, Shanghai, China), while water, decoction and hydro-
ethanol extracts were freeze-dried using lyophilizer (Virtis
Bench Top, SP Scientific Series, USA). This yielded 14.1%,
22.5%, 35.3% and 32% of ethanol, hydro-ethanol, decoction and
aqueous extracts, respectively. All extracts were kept air-tight
and refrigerated (4 �C) prior to further experimental analysis.
2.3. Chemicals and reagents

Porcine pancreatic a-amylase, rat intestinal a-glucosidase,
1,1-diphenyl-2-picrylhydrazyl (DPPH), gallic acid, acarbose,
and para-nitrophenyl-glucopyranoside (pNPG) were obtained
from Sigma–Aldrich Co. St Louis, USA. Starch soluble (extra
pure) was a product of J.T. Baker Inc., Phillipsburg, USA, while
other chemicals and reagents used were of analytical grade. The
water used was glass-distilled.
2.4. Qualitative phytochemical analysis

The extracts of S. montana were analysed for the detection of
different phytonutrients using standard methods of [19,20]. Nine
chemical groups were tested.

2.4.1. Test for alkaloids
S. montana extracts were dissolved in dilute hydrochloric

acid and filtered. Thereafter, Wagner's reagent (2 g iodine and
6 g potassium iodide in 100 mL water) was added to the filtrate.
Formation of brown/reddish precipitate revealed the presence of
alkaloids.
2.4.2. Test for anthraquinones
Exactly 2 mL of chloroform was added to 0.2 g of the ex-

tracts. The resulting mixture was vigorously shaken for 5 min
and filtered, after which 10% ammonia solution was thoroughly
mixed with filtrate obtained. A bright pink colouration formed in
the aqueous layer of the mixture confirmed the presence of
anthraquinones.
2.4.3. Test for glycosides
For this test, 10% aqueous hydrochloric acid was used to

hydrolyse the extracts and thereafter treated with 2% sodium
nitroprusside in pyridine and 20% sodium hydroxide. The pink
to blood red colour observed showed that cardiac glycoside is
present in the extracts.

2.4.4. Test for flavonoids
Few drops of 10% sodium hydroxide solution were added to

0.5 g of the extracts. An intense yellow colour was obtained,
which turned colourless on the addition of dilute acid, indicated
the presence of flavonoids.

2.4.5. Test for phenols
In this test, 3–4 drops of 10% ferric chloride solution was

added to 0.5 g of S. montana extracts. Formation of bluish black
colour suggested the presence of phenols.

2.4.6. Test for saponins
Exactly 2.0 g of extracts powder was boiled in 20 mL

distilled water for 5 min and filtered. Thereafter, 5 mL distilled
water was mixed with 10 mL filtrate in a graduated cylinder,
shaken vigorously and left to stand for 15 min for persistent
frothing. Following this, 3–4 drops of olive oil was mixed with
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the froth and shaken again. An emulsion layer was observed
which signified the presence of saponins.

2.4.7. Test for tannins
To test for tannins, 1% gelatin solution containing 10% so-

dium chloride was added to 0.5 g of the extracts. Formation of
white precipitate revealed the presence of tannins.

2.4.8. Test for triterpenes
Chloroform was added to S. montana extracts and filtered.

Then the filtrate was subjected to a few drops of concentrated
sulphuric acid, shaken and allowed to stand. The appearance of
golden yellow colour indicated the presence of triterpenes.

2.4.9. Test for phytosterols
A part of the extracts was mixed with chloroform and filtered.

The filtrate obtained was then treated with few drops of acetic
anhydride, boiled and cooled. Formation of a brown ring at the
layer junction following addition of concentrated sulphuric acid,
suggested the presence of phytosterols.

2.5. Quantitative phytochemical analysis

2.5.1. Determination of total phenolic content
Adopting the method described by Wolfe et al. [21], the total

phenolic content in the plant extracts was determined. Briefly,
1 mL aliquot of the extracts was mixed with 5 mL Folin-
Ciocalteu reagent (previously diluted with water 1:10 v/v) and
4 mL (75 g/L) of sodium carbonate. The tubes were vortexed for
15 s and left to stand for 30 min at 40 �C for colour change.
Absorbance was taken at 765 nm using a spectrophotometer
(Biochrom WPA Biowave II, Cambridge, England). The equa-
tion obtained from the calibration curve of gallic acid was used
to extrapolate the total phenolic content and expressed as mg/g
gallic acid equivalent.

2.5.2. Determination of total flavonoids content
The total flavonoids contained in the extracts were estimated

following the procedure of Ordon-ez et al. [22]. Briefly, 0.5 mL
of 2% AlCl3 ethanolic solution was added to 0.5 mL of the
extracts, left for 1 h at 25 �C; after which the absorbance was
measured at 420 nm. The appearance of yellow colour
suggested the presence of flavonoids. Extracts sample was
evaluated at final concentration of 1 mg/mL. Total flavonoid
content was expressed as quercetin equivalent (mg/g) using
the equation obtained from the calibration curve.

2.5.3. Determination of total flavonols content
Total flavonols content was determined using the method

reported by Kumaran and Karunakaran [23]. Exactly 20 g of
AlCl3 and 50 g of sodium acetate anhydrous powder were
separately dissolved in a little amount of distilled water and
then made up to 1 L with distilled water respectively.
Following this, rutin calibration curve was got by mixing
2 mL of varying concentrations of rutin (0.2–1.0 mg/mL) with
2 mL (20 g/L) AlCl3 and 6 mL (50 g/L) sodium acetate. After
2.5 h at 20 �C, the absorbance was taken at 440 nm. Similar
method was used for 2 mL of S. montana extracts (0.1/
1.0 mg/mL) in place of rutin solution. The flavonol content
was obtained from rutin calibration curve and expressed as
rutin equivalents (mg/g).
2.6. In vitro antioxidant assays

2.6.1. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical
scavenging assay

The antioxidant activity of the various extracts of S. montana
was determined by measuring their ability to decolorize the
purple-coloured methanol solution of DPPH, as described by
Turkoglu et al. [24]. In brief, 1 mL of a 0.2 mM DPPH methanol
solution was added to 1 mL of various concentrations (0.2–
1.0 mg/mL) of the extracts and incubated at 25 �C for 30 min.
The absorbance of the resulting mixture was measured against
blank at 516 nm using a microplate reader (BIO RAD, Model
680, Japan). The percentage inhibition rate (I%) on the DPPH
radical was calculated using the formula:

Percentage inhibition (I%) = [(Acontrol − Aextract)/Acontrol] × 100
(1)

where Acontrol is the absorbance of the control, Aextract is the
absorbance of the extract. The concentration of S. montana ex-
tracts causing 50% inhibition (IC50) of DPPH radical was
calculated from the standard calibration curve.

2.6.2. Nitric oxide scavenging ability
The capacity of S. montana extracts to scavenge nitric oxide

radical was evaluated using the procedure reported by Garrat
[25]. Two mL of 10 M sodium nitroprusside was prepared in
0.5 mL phosphate buffer saline (pH 7.4) and mixed with
0.5 mL of different concentrations of the extracts (0.2–1.0 mg/
mL) in a 96-wells plate. The mixture was then incubated at
25 �C for 2 h, after which 0.5 mL was taken from the incubated
mixtures and added to 1 mL sulfanilic acid reagent (0.33% in
20% glacial acetic acid). The mixture was further incubated at
25 �C for 5 min. Thereafter, 1 mL naphthyl ethylenediamine
dihydrochloride (0.1% w/v) was added to the mixtures and the
resulting solution was incubated at 25 �C for 30 min. The
absorbance was read at 540 nm and the IC50 was then estimated
from calibration curve following estimation of percentage nitric
oxide radical scavenging capacity of S. montana extracts using
the expression above [Eq. (1)].

2.6.3. Metal chelating ability of the extracts
The metal chelation ability of S. montana extracts was

assayed following the procedure of Dinis et al. [26]. Summarily,
0.1 mL of the extract (0.2–1.0 mg/mL) was added to 0.5 mL of
0.2 mM ferrous chloride solution. The reaction was started by
adding 0.2 mL of ferrozine (5 mM) and incubating at 25 �C
for 10 min. The absorbance was read at 562 nm in a
microplate reader (BIO RAD, Model 680, Japan). Citrate was
used as control and the chelating potential of the extracts that
competed with ferrozine for the ferrous ions was revealed
from the colour reduction. IC50 value was extrapolated from
the calibration curve.

2.6.4. Reducing power property
The reduction property of the extracts was assessed accord-

ing to the method of Oyaizu [27]. Different concentrations (0.2–
1.0 mg/mL) of S. montana extracts were added to 1 mL of
distilled water and then mixed with 2.5 mL of 0.2 m
phosphate buffer (pH 6.6) and 2.5 mL of 1% potassium
ferrocyanide. The mixture was incubated at 50 �C for 20 min
before the addition of 2.5 mL of trichloroacetic acid. The
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resulting mixture was centrifuged at 3 000 rpm for 10 min. After
this, 2.5 mL of the supernatant was mixed with an equal amount
of distilled water and 0.5 mL of 0.1% FeCl3. The colour change
of the resulting solution was then taken at 700 nm.
2.6.5. 2, 20-azinobis(3-ethylbenzothiazoline-6-sulfonic
acid) ABTS radical scavenging ability

This test was conducted using the procedure of Re et al. [28].
The ABTS+ was generated by reacting 7 mM ABTS aqueous
solution with K2S2O8 (2.45 mM, final concentration) in the
dark for 16 h and adjusting the pH to 0.7 with ethanol.
Exactly 0.2 mL of the various dilutions of extracts (0.2–
1.0 mg/mL) was added to 2.0 mL ABTS+ solution and the
absorbance was measured at 734 nm after 15 min. The
silymarin equivalent antioxidant capacity was thereafter
determined.
2.6.6. Hydroxyl radical inhibitory potential
The ability of the various extracts of S. montana to stop Fe2

+/
H2O2 induced decomposition of deoxyribose was assayed using
the modified method of Oboh and Rocha [29]. In brief, 40 mL of
the freshly prepared extracts (0.2–1.0 mg/mL) was added to a
reaction mixture containing 20 mL 20 mM deoxyribose,
80 mL of 0.1 M phosphate buffer, 10 mL of 500 mM FeSO4,
and the volume was made up to 200 mL with distilled water.
The reaction mixture was initiated at 37 �C for 30 min, and
stopped by adding 50 mL of 2.8% TCA (trichloroacetic acid).
This was followed by the addition of 50 mL of 0.6%
thiobarbituric acid solution. The mixture was then incubated
in boiling water for 20 min and absorbance was read at
532 nm in a microplate reader (BIO RAD, Model 680,
Japan). The same procedure was done for a standard
antioxidant by replacing the extracts with silymarin (0.2–
1.0 mg/mL), and the IC50 value was then calculated from the
calibration curve.

2.6.7. Superoxide anion radical scavenging capacity
Determination of superoxide anion scavenging effect of the

various extracts of S. montana was conducted using the pro-
cedure of Liu et al. [30]. Superoxide radicals was generated in
50 mL of Tris–HCl buffer (16 mM, pH 8.0) containing 50 mL
of 50 mM nitroblue tetrazolium solution, 50 mL of 78 mM
nicotinamide adenine dinucleotide and varying concentrations
of the extracts (0.2–1.0 mg/mL). The reaction was initiated by
adding 1 mL of 10 mM phenazine methosulphate solution to
the mixture. The reaction mixture was incubated at 25 �C for
5 min, and the absorbance measured at 560 nm. Superoxide
anion radical scavenging ability of a standard antioxidant was
also tested by replacing the extracts with silymarin (0.2–
1.0 mg/mL). Results were estimated from the calibration curve
and expressed as IC50 value.

2.7. In vitro antidiabetic assays

2.7.1. a-amylase inhibitory assay and kinetics
The a-amylase inhibitory activity and kinetics of inhibition

were assessed using methods described by Elsnoussi et al. [31]

and Kazeem et al. [32] respectively. Briefly, 500 mL of each of
the varying extracts' dilutions (0.2–1.0 mg/mL) was mixed
with 500 mL of 0.02 M sodium phosphate buffer (pH 6.9)
containing 0.5 mg/mL of a-amylase solution. The mixture
was pre-incubated in test tubes at 25 �C for 10 min. There-
after, 500 mL of 1% starch solution in 0.02 M sodium phos-
phate buffer (pH 6.9) was added to each test tube at timed
intervals. The reaction mixtures were incubated at 25 �C for
10 min and stopped with 1.0 mL of dinitrosalicylic acid
colour reagent. The tubes were incubated in a boiling water
bath for 5 min and left to cool at 25 �C. Then 15 mL of
distilled water was used to dilute the reaction mixtures, and
the absorbance was measured at 504 nm using a spectro-
photometer (Biochrom WPA Biowave II, Cambridge, En-
gland). Similar procedure was repeated for acarbose which
serves as the positive control by preparing it in distilled water
at same concentrations (0.2–1.0 mg/mL) as extracts. The
values were compared with those of acarbose used as control.
The result of the triplicate determinations of a-amylase
inhibitory activity was expressed as % inhibition [Eq. (1)].
The concentration of the extract causing 50% inhibition (IC50)
of a-amylase activity was calculated from its standard cali-
bration curve.

For the kinetics of a-amylase inhibition, 250 mL of the mild
inhibitor of a-amylase (ethanol extract; IC50: 5.52 mg/mL) was
incubated with 250 mL of a-amylase and 250 mL of varying
concentration (0.3–5 mg/mL) of starch (substrate). Thereafter,
the reaction followed the same procedure as stated above. The
quantity of reducing sugars released was determined spectro-
photometrically using maltose standard curve and converted to
reaction velocities (v). Lineweaver–Burk double reciprocal plot
(1/v versus 1/[S]) was drawn and the mode of a-amylase inhi-
bition by the extract was evaluated [33].

2.7.2. a-glucosidase inhibitory assay and mode of
inhibition

The a-glucosidase inhibitory potential was conducted
adopting the method of Elsnoussi et al. [31]. In brief, 50 mL of
varying concentrations (0.2–1.0 mg/mL) of S. montana
extracts were mixed with 100 mL of 0.1 M phosphate buffer
(pH 6.9) containing 1.0 M of the a-glucosidase solution. The
mixtures were incubated in 96-well plates at 25 �C for
10 min. Thereafter, 50 mL of 5 mM p-NPG solution in 0.1 M
phosphate buffer (pH 6.9) was added to each well at timed in-
tervals. The reaction mixtures were incubated at 25 �C for 5 min
and stopped with 50 mL of 0.1 M Na2CO3. The absorbance was
read at 405 nm using a microplate reader (BIO RAD, Model
680, Japan) and the values were compared with acarbose were
used as control. The a-glucosidase inhibitory activity of tripli-
cate experiments was expressed as % inhibition using the
formula:

%Inhibition = [(DAcontrol − DAextract)/DAcontrol] × 100 (2)

where DAcontrol and DAextract are the absorbance changes of
the control and extracts respectively. The concentration of
S. montana extracts causing 50% inhibition (IC50) of a-gluco-
sidase activity was determined using standard calibration curve.

The kinetics of a-glucosidase inhibitory activity of
S. montana was assayed following the modified method of
Dnyaneshwar and Archana [34]. In brief, 50 mL of decoction
extract (strongest a-glucosidase inhibitor) was pre-incubated
with 100 mL of a-glucosidase solution for 10 min at 25 �C in
one set of tubes. In another set of tubes, a-glucosidase was pre-
incubated with 50 mL of phosphate buffer (pH 6.9). And 50 mL
of p-NPG at concentrations (0.63–2.0 mg/mL) was added to
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both sets of test tubes to initiate the reaction. The mixture was
thereafter incubated for 10 min at 25 �C, and 500 mL of 0.1 M
Na2CO3 was added to halt the reaction. The amount of reducing
sugars released was determined spectrophotometrically using a
para-nitrophenol standard curve. Reaction velocities (v) were
then determined and double reciprocal plot of enzyme kinetics
was constructed according to Lineweaver and Burk method to
establish the type of inhibition. Km and Vmax values were also
calculated from the Lineweaver–Burk plot (1/v versus 1/[S]) [34].

2.8. Statistical analysis

Statistical analysis was carried out using GraphPad Prism 5
statistical package (GraphPad Software, USA). One-way anal-
ysis of variance (ANOVA) was used to analyse the data fol-
lowed by Bonferroni test. Results were expressed as
mean ± standard error of mean (SEM) of triplicate de-
terminations. Statistical significance of the mean values was
considered at P < 0.05.

3. Results

3.1. Phytochemicals

The qualitative phytochemical screening conducted on the
different extracts of S. montana showed the presence of a diverse
class of chemical groups, including alkaloid, cardiac glycosides,
flavonoids, phenols, saponin, triterpene, and phytosterols
(Table 1) in all the extracts. Triterpene was detected in aqueous
and decoction extracts but absent in ethanol and hydro-ethanol
extracts. Presence of phytosterols was detected in aqueous,
decoction and hydro-ethanol extracts but absent in ethanol
Table 1

Qualitative phytochemical constituents of S. montana leaf extracts.

Phytochemicals Aqueous Decoction Ethanol H. Ethanol

Alkaloid + + + +
Anthraquinones − − − −

Cardiac glycosides + + + +
Flavonoids + + + +
Phenols + + + +
Saponin + + + +
Tannin − − − −

Triterpene + + − −

Phytosterols + + − +
Sterols − − − −

+: Detected; −: Not Detected; H. Ethanol: Hydro-Ethanol.

Table 2

Total phenolics, flavonoids, and flavonols contents of S. montana leaf extrac

Phytochemicals Aqueous Decoc

Total phenolics 6.19 ± 0.02a 12.09 ±
Total flavonoids 8.90 ± 0.10a 68.20 ±
Total flavonols 3.52 ± 0.02a 8.83 ±

Values are presented as means ± SEM of triplicate determinations and e
are significantly different (P < 0.05) with each other. Unit for phenolics: m
mg rutin/g; H. Ethanol: Hydro-Ethanol.
extract. However, anthraquinones, tannins, and sterols were
absent in all the extracts (Table 1).

Table 2 presents the total phenolics, flavonoids and flavonols
composition of S. montana extracts. Although marginally
different, the total phenolic contents of the ethanol (12.48 mg
gallic acid/g), decoction (12.09 mg gallic acid/g) and hydro-
ethanol (10.81 mg gallic acid/g) extracts were not significantly
different (P > 0.05), but significantly higher (P < 0.05) than that
of aqueous extract (6.19 mg/g). The decoction extract had the
highest quantity of flavonoids (68.20 mg/g), which was signif-
icantly greater (P < 0.05) than those of other extracts. Just as for
the other phenolics, the aqueous extract had the least flavonol
constituent (3.52 mg/g) while ethanol extract had the highest
(12.19 mg/g) which was significantly higher (P < 0.05) than
those of decoction and hydro-ethanol extracts.

3.2. Antioxidant activities of S. montana extracts

The result of the in vitro antioxidant activities of S. montana
extracts is shown below (Table 3). Judging by the IC50 values,
ethanol extract elicited the most potent antioxidant capacity in
scavenging DPPH, NO, ABTS, O2− and OH radicals. As the
extract (ethanol) compared favourably well with silymarin in
annihilating ABTS and O2− radicals, it is noteworthy that it had
significantly (P < 0.05) better effect than silymarin against
DPPH, NO and OH radicals.

3.2.1. Reducing power effect of S. montana extracts
Ethanol extract significantly (P < 0.05) exhibited the best

reducing power efficiency on ferric ion in a concentration
dependent manner; with the highest dose (1.0 mg/mL) display-
ing the strongest effect (Table 4). This effect was even superior
when compared with the standard (silymarin).

3.3. Antidiabetic potential of S. montana extracts

The IC50 values for the inhibitory efficiency of S. montana
extracts on the specific activities of a-amylase and a-glucosidase
are presented in Table 5. There was a significant difference
(P < 0.05) in the inhibitory potential of the standard (acarbose)
and all extracts tested on a-amylase activities. Aqueous extract
displayed the best inhibition against a-amylase (IC50: 0.13 mg/
mL), and the IC50 value was significantly lower (P < 0.05) than
those of other extracts and acarbose. However, decoction extract
significantly (P < 0.05) exhibited the greatest inhibitory effect
on the activities of a-glucosidase (0.05 mg/mL), when compared
with other extracts and standard.
ts.

tion Ethanol H. Ethanol

0.02b 12.48 ± 0.01b 10.81 ± 0.02b

0.02b 54.90 ± 0.15c 15.90 ± 0.15d

0.02b 12.19 ± 0.01c 5.31 ± 0.11d

xpressed per g of plant extracts. Means not sharing a common letter
g gallic acid/g; Unit for flavonoids: mg quercetin/g; Unit for flavonols:



Table 3

IC50 (mg/mL) values for the antioxidant properties of S. montana leaf extracts.

Assay IC50 (mg/mL)

Silymarin Aqueous Decoction Ethanol Hydro-ethanol Citrate

DPPH 2.74 ± 0.01a 5.11 ± 0.01b 1.94 ± 0.01c 0.47 ± 0.01d 1.93 ± 0.01c ND
Nitric oxide 0.47 ± 0.01a 0.65 ± 0.01b 0.35 ± 0.01c 0.20 ± 0.01d 0.28 ± 0.01d ND
ABTS 0.39 ± 0.01a 0.50 ± 0.01b 0.67 ± 0.01c 0.36 ± 0.02a 0.50 ± 0.01b ND
Superoxide 0.02 ± 0.01a 0.63 ± 0.01b 0.61 ± 0.01b 0.01 ± 0.01a 0.30 ± 0.01c ND
Hydroxyl 0.77 ± 0.01a 0.85 ± 0.01b 1.41 ± 0.01c 0.29 ± 0.01d 1.02 ± 0.01e ND
Metal chelating ND 0.87 ± 0.01a 0.71 ± 0.01b 0.96 ± 0.01c 0.76 ± 0.01c 0.59 ± 0.02d

The values are presented as mean ± SEM of triplicate determinations. Means along the same row not sharing a common superscript for each parameter
are significantly different (P < 0.05). ND: Not determined.

Table 4

Reducing power potential of S. montana extracts.

Conc. (mg/mL) Absorbance (nm)

Silymarin Aqueous Decoction Ethanol Hydro-ethanol

0.2 0.32 ± 0.01a 0.39 ± 0.01a 0.42 ± 0.02a 0.67 ± 0.02b 0.31 ± 0.01a

0.4 0.53 ± 0.01a 0.52 ± 0.01a 0.59 ± 0.01a 0.88 ± 0.03b 0.55 ± 0.01a

0.6 0.64 ± 0.02a 0.65 ± 0.01a 0.63 ± 0.01a 0.95 ± 0.03b 0.60 ± 0.01a

0.8 1.10 ± 0.01a 0.96 ± 0.02a 0.82 ± 0.01a 1.83 ± 0.02b 0.99 ± 0.02a

1.0 1.67 ± 0.02a 1.55 ± 0.02a 1.24 ± 0.01a 2.79 ± 0.01b 1.40 ± 0.01a

Values presented as mean ± SEM of triplicate determinations. Means with different superscript along the same row are significantly different
(P < 0.05).

Table 5

IC50(mg/mL) values for the inhibitory potentials of S. montana leaf ex-

tracts on the specific activities of a-amylase and a-glucosidase.

Samples IC50 (mg/mL)

a-amylase a-glucosidase

Aqueous 0.13 ± 0.01a 0.29 ± 0.02a

Decoction 1.48 ± 0.02b 0.05 ± 0.01b

Ethanol 5.52 ± 0.03c 0.43 ± 0.01c

Hydro-ethanol 2.27 ± 0.01d 0.24 ± 0.01a

Acarbose 0.24 ± 0.01e 0.31 ± 0.02a

The values are expressed as mean ± SEM of triplicate determinations.
Means along vertical columns not sharing a common superscript are
significantly different (P < 0.05) from each other. Acarbose is the
standard a-amylase and a-glucosidase inhibitor.

Figure 1. Lineweaver–Burk plot of S. montana ethanol extract eliciting
uncompetitive inhibition on a-amylase activity.
Results were expressed as mean ± SEM; n = 3; P < 0.05 is considered to be
significant.
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3.4. In vitro kinetics of a-amylase and a-glucosidase
enzymes

The modes of inhibition of a-amylase and a-glucosidase
enzymes are shown in Figures 1 and 2, respectively. It revealed
that ethanol extract uncompetitively inhibited a-amylase ac-
tivities. This is obvious from the double reciprocal plot,
showing a decrease in both Vmax and Km values. The relative
Vmax and Km values of the control were 0.04 mM/min and
0.03 mg respectively, which decreased to 0.02 mM/min and
0.01 mg for the extract (Figure 1). Conversely, decoction
extract exhibited non-competitive inhibition against a-glucosi-
dase activities, as apparent in the reduction in Vmax value of the
control from 0.05 mM/min to 0.02 mM/min for the extract, and
constant Km values of 0.003 mg for both the control and extract
(Figure 2).
Figure 2. Lineweaver–Burk plot of S. montana decoction extract exhib-
iting non-competitive inhibition on a-glucosidase activity.
Results were expressed as mean ± SEM; n = 3; P < 0.05 is considered to be
significant.
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4. Discussion

The value of medicinal plants to mankind is well established,
as numerous discoveries have shown that plants' extracts contain
not only minerals and primary metabolites, but also a wide range
of secondary metabolites with great therapeutic efficiencies
[35,36]. The presence of phytochemicals like alkaloid, glycosides,
flavonoids, phenols, saponin, triterpenes and phytosterols
detected in various extracts of S. montana have been reported
to support bioactive activities in medicinal plants and may
therefore justify the pharmacological effects of the extracts.
For instance, phenols are well known antioxidants and cellular
event modifiers [37], while flavonoids are powerful free radical
scavengers with strong anticancer activity [38,39]. In the same
vein, the protective functions of alkaloids are well documented
[35], just like plant saponins are reported to possess various
biological activities, including antioxidant, anti-cancer, anti-
viral and hepatoprotective actions [40,41]. Similarly, phytosterols
have been proven to have direct immunemodulatory activity on
human lymphocytes [42]. The presence and synergistic
relationship among most of these general phytochemicals
might be responsible for the overall medicinal effects of
S. montana. The antioxidant efficiency of medicinal plants has
generally been ascribed to their high phenolic contents [43,44].
In the present study, the occurrence of phenolic compounds
(phenols, flavonoids, and flavonols) in various extracts of
S. montana, is suggestive of the plant as a potent antioxidant.
Similarly, the strongest scavenging activity and metal
chelating effect displayed by ethanol and decoction extracts
respectively (judging by their IC50 values), may not be
unconnected with the active constituents present in the
phenolics of the extracts. This submission agrees with
previous findings [45–47], where polyphenolic compounds in
plants were therapeutically valued as antioxidants.

The inhibition of the specific activities of key enzymes
involved in the absorption of dietary carbohydrates is a unique
pharmacologically approach towards diabetes management
[48,49]. In this study, aqueous extract displayed the strongest
inhibition of a-amylase activity (IC50 0.13 mg/mL), showing
more potency than the standard (IC50 0.24 mg/mL). However,
strong inhibition of a-amylase activity is a one of the factors
that results in the common downside connected with the use
of synthetic antidiabetic drugs; hence a mild inhibitor becomes
a better alternative [32]. Going by this reason, ethanol extract
(IC50 5.52 mg/mL) was chosen in the present study as a mild
inhibitor of a-amylase activity, as it exhibited a remarkably
higher IC50 than that of acarbose. Conversely, decoction
extract demonstrated the strongest inhibition against the
specific activity of a-glucosidase (IC50: 0.05 mg/mL) when
compared with other extracts and acarbose. Therefore, the
respective moderate and strong inhibition of a-amylase and a-
glucosidase by both extracts (ethanol and decoction) is
expected to delay starch hydrolysis in the gastro-intestinal
tract, thus decreasing the amount of glucose released into the
blood stream, and ultimately suppressing post-prandial hyper-
glycemia. These findings corroborate previous studies that re-
ported extracts with strong inhibitory potential against a-
glucosidase as an ideal antidiabetic agent both in vitro [11,50,51]

and in vivo [52–54]. The uncompetitive mode of a-amylase
inhibition displayed by ethanol extract infers that some
bioactive components in the extract bind to the enzyme–
substrate complex and possibly interferes with the formation
of the product. On the other hand, non-competitive inhibition
of a-glucosidase exhibited by decoction extract implies that its
phytoconstituents bind to another site (allosteric site) rather than
the enzyme's active site. This results in conformational change in
the enzyme structure, hence slowing down the hydrolysis of
starch to glucose. Generally, the diverse group of phytochemi-
cals present in S. montana extracts could have acted synergis-
tically to produce the observed potential hypoglycemic effect
observed in this study. This potency may also be related to the
high antioxidant activity of the plant's extracts, thereby mopping
up free radicals that could be generated under hyperglycaemic
condition.

Findings from this study revealed that S. montana is rich in
phytochemicals with proven antioxidant activities. Specifically,
this study has substantiated and scientifically appraised the
folkloric use of the plant as a potential antidiabetic agent.
Further studies are necessary to determine the exact nature of the
bioactive principle(s) in the plant extracts that are responsible for
its hypoglycemic effect. This can promote their use as natural
products with the prospects of increasing the quality of life of
diabetic sufferers.
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