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Abstract 

In this paper we consider a continuous review perishable inventory system in Multi-echelon 

system, which is a building block for supply chain. A (s, Q) type perishable inventory system with 

Poisson demand and exponential distributed lead times for items are assumed at DC (middle 

echelon). A one-for- one type inventory policy is assumed at retailer node (lower echelon). 

Demands occurring during the stock out periods are assumed to be lost. The DC replenishes their 

stocks with exponential distributed lead times from warehouse (upper echelon) has abundant 

supply source. The items are supplied to the DC in packs of Q (= S-s) items from the warehouse. 

The steady state probability distribution and the operating characteristics are obtained explicitly. 

The required algorithm is derived and it is implemented using Mat lab. The measures of system 

performance in the steady state are obtained. 

Keywords: Supply Chain, Markov process, Inventory control, Optimization. 
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1    Introduction 

Supply chain is a network of facilities and distribution options that performs the functions of 

procurement of materials, transformation of these materials into intermediate and finished products and 

the distribution of these finished products to customers. Supply Chain exists in both service and 

manufacturing organizations, but the complexity of the chain may vary greatly from industry to 

industry. 
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Inventory decision is an important component of the supply chain management, because 

Inventories exist at each and every stage of the supply chain as raw material or semi- finished or 

finished goods. They can also be as  Work-in-process between the stages or stations. Since holding of 

inventories can cost anywhere between 20% to 40% of their value, their efficient management is 

critical in Supply Chain operations 

The usual objective for a multi-echelon inventory model is to coordinate the inventories at the 

various echelons so as to minimize the total cost associated with the entire multi-echelon inventory 

system. This is a natural objective for a fully integrated corporation that operates the entire system. It 

might also be a suitable objective when certain echelons are managed by either the suppliers or the 

retailers of the company. The reason is that a key concept of supply chain management is that a 

company should strive to develop an informal partnership relation with its suppliers and retailers that 

enable them jointly to maximize their total profit. 

Information technology has a substantial impact on supply chains. Scanners collect sales data at the 

point-of-sale, and Electronic Data Interchange (EDI) allows these data to be shared immediately with 

all stages of the supply chain. 

Multi-echelon inventory system has been studied by many researchers and its applications in supply 

chain management has proved worthy in recent literature. As supply chains integrates many operators 

in the network and optimize the total cost involved without compromising as customer service 

efficiency. 

The first quantitative analysis in inventory studies started with the work of Harris [9].Clark and 

Scarf [4] had put forward the multi-echelon inventory first.  They analyzed a N-echelon pipelining 

system without considering a lot size, Recent developments in two-echelon models may be found in 

Q.M. He and E.M. Jewkes[17].Sven Axsäter [1] proposed an approximate model of inventory structure 

in SC. One of the oldest papers in  the field  of continuous  review multi-echelon  inventory system  is  

a basic  and seminal paper written by Sherbrooke [19] in 1968. He assumed (S-1,  S) polices in the 

Deport-Base systems for repairable items in the American Air Force and could approximate the 

average inventory and stock out level in bases. 

Continuous review models of multi-echelon inventory system in 1980’s concentrated more on 

repairable items in a Depot-Base system than as consumable items (see Graves [6,7], Moinzadeh and 

Lee [15]). All these papers deal with repairable items with batch ordering. Seifbarghy and Jokar [18] 

analyzed  a two echelon inventory system with one warehouse and multiple retailers controlled by 

continuous review (R, Q) policy. A Complete review was provided by Benita M. Beamon (1998)[2]. 

the supply chain concept grow largely out of two-stage multi-echelon inventory models, and it is 

important to note that considerable research in this area is based on the classic work of Clark and Scarf 

(1960)[4]. In the case of continuous review perishable inventory models with random life times for the 

items, most of the models assume instantaneous supply of order [8,13,14]. The assumption of positive 

lead times further increases the complexity of the analysis of these models and hence there are only a 



Perishable inventory system with (s, Q) policy in supply chain 215 

limited number of papers dealing with positive lead times. A continuous review perishable inventory 

system at Service Facilities was studied by Elango (2001) [5]. A continuous review (s, S) policy with 

positive lead times in two-echelon Supply Chain was considered by K. Krishnan and  C. Elango[12]. 

The rest of the paper is organized as follows. The model formulation is described in section 2, 

along with some important notations used in the paper. In section 3, both transient and steady state  

analysis  are  done.  Section 4 deals with the derivation of operating characteristics of the system. In 

Section 5, the cost analysis for the operation is derived. Numerical examples and sensitivity analysis 

are provided in section 6 and the last section 7 concludes the paper. 

2    The Model description 

We  consider  a  supply  chain  system  consisting  of  a  manufacturer,  warehousing facility, Two 

Distribution Centre’s (DC) each associated with n identical retailers dealing with a single perishable  

product. These finished products moves from the manufacturer through the network consist of WH, 

DC, Retailer then the final customer. 

 

 

Figure 1: Multi-echelon Inventory System. 

 

A finished product is supplied from MF to WH which adopts (0, M) replenishment policy then the 

product is supplied to DC’s who adopts (s, Q) policy. The demand at retailer node follows a Poisson 

distribution with rate ),,2,1;2,1( njiij  . Scanners collect sales data at retailer nodes and 

Electronic Data Interchange (EDI) allows these data to be shared to the corresponding DC. With the 

strong communication network and transport facility a unit of item is transferred from Dc to the related 

retailer with negligible lead time. That is all the inventory transactions are managed by DC’s. Supply 

to the Manufacturer in packets of Q items is administrated with exponential lead time having 

parameter 1,2).( 0> ii  It is assumed that the items are perishes only at DC with rate γ. The 
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replenishment of items in terms of pockets is made from Manufacturer to WH is instantaneous. 

Demands occurring during the stock out periods are assumed to be lost. The maximum inventory level 

at DC node S is fixed and the reorder point is s and the ordering quantity is Q(=S-s) items. The 

maximum inventory level at Manufacturer is M (M = nQ). The optimization criterion is to minimize 

the total cost incurred at all the locations subject to the performance level constraints. 

According to the assumptions the on hand inventory levels at both nodes follows a Markov process. 

We fix the following notations for the forthcoming analysis part of our paper. 

[R]ij : The element /sub matrix at (i,j)th position of R. 

0 : Zero matrix. I : Identity matrix. 

e : A column vector of 1’s of appropriate dimension. 

Ii(t) : On hand inventory level at time t at location i(i =0,1,2) . 

kiD : Fixed ordering cost, regardless of order size at DC node i(i =1,2). 

kiR : the ordering cost at retailer node related to DC i(i =1,2). 

ki0 : kiD + kiR , ordering cost  for integrated DC system i(i =1,2). 

k1 : Fixed ordering cost for WH. 

hiD : The holding cost per unit of item per unit time at DC i(i =1,2). 

hR : the holding cost per unit of item per unit time at retailer nodes. 

hi0 : hiD + hiR  the holding cost for integrated DC i(i =1,2). 

h1 : The holding cost per unit of item per unit time at WH. 

gD : gD = g1D + g2D The unit shortage cost at DC. 

gR : The average shortage cost per unit shortage at retailer node. 

g :g= gD + gR The unit shortage cost for integrated DC system. 



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3    Analysis 

Let ID(t) denote the on hand inventory at warehouse and I1(t) , I2(t) denote the on hand inventory at 

DCi ( i=1,2 ) respectively at time t. From the assumptions on the input and output processes, 

we define  I(t)= {(I1(t), I2(t), ID(t)) : t 0} and we  get {I(t) : t 0} = {(I1(t), I2(t), ID(t)) : t  0} as 

a Markov process with state space E = {(i, k, m) / I = S,S-1,…, s,s-1,…,2,1,0; k = S,S-1,…  s,s-1, …, 

2,1,0; m = nQ, (n-1)Q, ... 2Q, Q}, since E is finite and all its states are aperiodic, recurrent non-null 
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and also irreducible. That is all the states are ergodic. Hence the limiting distribution exists and is 

independent of the initial state. 

The infinitesimal generator of this process A= (a(i,k,m : j,l,n))(i,k,m),(j,l,n)E  can be obtained from 

the following arguments. 

 The arrival of a demand or perish of an item at DC1 makes a state transition in the 

Markov process from (i, k, m) to (i-1,k,m) with intensity of transition 1j + iγ (j=1,2,...,n). 

 

 The arrival of a demand for an item at DC2 makes a state transition in the Markov 

process from (i, k, m) to (i,k-1,m) with intensity of transition 2j + kγ (j=1,2,...,n). 
 

 Replenishment of inventory at DC1 makes a state transition from ((i, k, m) to ( i+Q, k, m-Q) 

with rate of transition µ1(> 0). 

 Replenishment of inventory at DC2 makes a state transition from (i, k, m) to (i, k+Q, 

 

m-Q) with rate of transition µ2(> 0). 

 

The infinitesimal generator R is given by 
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The sub matrices of  A and B are 
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3.1    Transient Analysis 

Define the transient probability function  

    .m)k,(i,(0)I(0),I(0),I|n)(j,1,(t)I(t),I(t),IPrt):n(j,1,p D21D21mk,i,   

The transient matrix for 0t   is of the form  
En)m)(j,1,k,(i,mk,i, t):n(j,1,pP(t)


 satisfies the 

Kolmogorov- forward equation P(t)R(t)P'         (1) 

where R is the infinitesimal generator of the process  0tI(t),  . 

The solutions of (1) can be written in the form 
RtRt eP(0)eP(t)   where 

Rte is the matrix given 
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Assume that the eigenvalues of R are all distinct. Then from the spectral theorem of matrices, we have 

R=HDH
-1

 where H is a non-singular matrix(formed with the right eigenvectors of R) and D is the 

diagonal matrix having for its diagonal elements the eigenvalues of R. Now , 0 is an eigen value of R 

and midi ...,,2,1,0   m are the other distinct eigenvalues, then 
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The right-hand side of above equation gives explicit solution of the matrix p(t). Note that even in 

the general case when the Eigenvalues of R are not necessarily distinct, a canonical representation of 

R=SZS
-1 

exists. 

3.2    Steady state analysis 

The structure of the infinitesimal matrix R, reveals that the state space E of the Markov process 

 0tI(t), 
 is finite and irreducible. Let the limiting probability distribution of the inventory level 

process be   m)k,(i,(t)I(t),I(t),IPrlimkm D21
t

vi 


 where kmvi  is the steady state probability 

that the system be in state (i, k, m), (Cinlar [3]). 
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system under consideration. For each (i, k, m),  kmvi  can be obtained by solving the matrix equation 

vR = 0 together with normalizing condition 



Emki

v km
j

),,(

1 . 

Assuming aVQ , we obtain the steady state probabilities kk BAa )()1(iQV  , i = 1,2, … n  ; k 
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4    Operating characteristics 

In this section, we derive some important system performance measures. 

4.1    Mean Reorder states 

The event 21 β,β and Dβ  are the mean reorder rate at DC1, DC2 and WH and are given by 
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4.2    Mean Inventory levels 

Let denote the mean inventory level in the steady state at node i (i=D,1,2). Thus the mean inventory 

level at WH is given by 

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4.3    Mean storage rates 

The shortage rates at DC1 and DC2 are given by 
kq

vkq
,

11
0

  and 
kq,

v22 0
i

qλα   (4) 

5    Cost analysis 

In this section we impose a cost structure for the proposed model and analyze it by the criteria of 

minimization of long run total expected cost per unit time.  

The long run expected cost rate C(s, Q) is given by 

22112211DD2211DD gαgαβkβkβkIhIhIhQ)C(s,      (5) 

Although we have not proved analytically the convexity of the cost function C(s,Q), our experience 

with considerable number of numerical examples indicates that C(s,Q) for fixed Q appears to be 

convex in s. In some cases it turned out to be an increasing function of s. For large number cases of 
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C(s, Q) revealed a locally convex structure. Hence we adopted the numerical search procedure to 

determine the optimal values s*. 

6    Numerical Example and Sensitivity Analysis 

In this section we discuss the problem of minimizing the steady state expected cost rate under the 

following cost structure. We assume 01 kk  , since the setup cost which includes the freight charges 

could be higher for the larger size order (pockets) compared to that of the small one initiated at retailer 

nodes. Regarding the holding cost we assume 01 hh  , since the holding cost at distribution node is 

less than that of the retailer node as the rental charge may be high at retailer node. The results we 

obtained in the steady state case may be illustrated through the following numerical example. 

For the following example, we assume that,  S = 6,  M = 12, 1 = 2, 2 = 5,  D = 0.4, 1 = 0.3,   

2 = 0.7,   hD = 1.25,  h1 = 3.8,   h2 = 0.9,   kD = 0.6,   k1 = 0.7,   k2 = 0.7,  g1 = 1.25, g2 = 3 and γ 

= 1.2. 

The cost for different reorder levels are given by 

Table 1. Total expected cost rate as a function s and Q. 

s Q C(s,Q) 

0 6 7.5002 

1 5 7.4979 

2 4 7.4843 

3* 3* 7.4581* 

4 2 7.5047 

5 1 7.5083 

For the inventory capacity S, the optimal reorder  level‘s*’ and optimal cost C(s,Q) are 

indicated by the symbol ’*’. 

The graphical representation of the long run expected cost rate C(s*,Q*) is given below. 

 

Figure 2: The graphical representation of the long run expected cost rate C(s*,Q*). 
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6.1    Sensitivity Analysis 
 

Table 2 presents a numerical study to exhibit the sensitivity of the system on the effect of varying  

demand rates 1 and 2 with fixed reorder at s=3. 

Table 2. The total expected cost vs. demand rates (1 and 2) 
 

1 2 3 4 5 6 

5 7.4588 7.7172 7.9818 8.2479 8.5146 

6 8.8049 9.0576 9.3181 9.5806 9.8438 

7 10.1493 10.3974 10.6550 10.9151 11.1760 

8 11.4918 11.7360 11.9914 12.2497 12.5089 

9 12.8327 13.0734 13.3270 13.5839 13.8418 
 

It is observed that the total expected cost C(s, Q) is increasing with the different demand 

rates. Hence the demand rate is a very important parameter of this system. 

7    Concluding remarks 

In this paper we analyzed a continuous review perishable inventory system in a supply chain. The 

structure of the chain allows vertical movement of goods from distribution center to retailers. A (s, Q) 

type inventory system with Poisson demand and exponential distributed lead times for items are 

assumed at DC (middle echelon). And one-for-one type inventory policy is assumed at retailer node 

(lower echelon). Demands occurring during the stock out periods are assumed to be lost. The DC 

replenishes their stocks with exponential distributed lead times from warehouse (upper echelon) has 

abundant supply source. The items are supplied to the DC in packs of Q (= S-s) items from the 

warehouse. The model deals with lost sales at DC and the supply from manufacturer is in terms of 

pockets. It would be interesting to analyze the problem discussed in this article where the life time of 

items are constant. Naturally, with the inclusion of constant life time of each items, the problem will be 

more challenging. Another important extension could be made by relaxing the assumption of 

exponentially distributed lead times to a class of arbitrarily distributed lead times using techniques 

from renewal theory and semi-regenerative processes. Once this is done, the general model can be used 

to generate various special cases. For example, three different lead time distributions one with 

coefficient of variation greater than one, one with coefficient of variation less than one and another 

with coefficient of variation equal to one can be compared. Cost analysis can then be carried out for (s, 

Q), (S, S-1) and lot-for-lot models using each of the three different lead time distributions to determine 

which policy is optimal for any given lead time distribution. 
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