Some graph products on $(r, 2, k)$-regular graphs

N. R. Santhimaheswari
Department of Mathematics
G. Venkataswamy Naidu College Kovilpatti-628502, Tamil Nadu, India. E-mail: nrsmaths@yahoo.com
\section*{C. Sekar}
Department of Mathematics Aditanar College of Arts and Science
Tiruchendur, Tamil Nadu, India.
E-mail: sekar.acas@gmail.com

Abstract

A graph G is said to be $(2, k)$-regular if $d_{2}(v)=k$, for all v in G. A graph G is said to be $(r, 2, k)$-regular if $d(v)=r$ and $d_{2}(v)=k$, for all v in G. In this paper, we study some graph products in $(2, k)$-regular graph and $(r, 2, k)$-regular graph.

Keywords: $(2, k)$-regular graph, $(r, 2, k)$-regular graph, cartesian product, composition of graphs, join of graphs, strong cartesian product, strong tensor product, strong augumented product in graphs.
AMS Subject Classification(2010): 05C12.

1 Introduction

In this paper, we consider only finite,simple,connected graphs. Notations and terminology that we do not define here can be found in Harary[8] and J.A.Bondy and U.S.R.Murty [4]. The degree of a vertex v is the number of edges incident at v. A graph is regular if all its vertices have the same degree. Consequently, we define the degree of a vertex v as the number of vertices at a distance one from v. For a positive integer d and a vertex v of a graph G, the $d^{t h}$ degree of v in G, denoted by $d_{d}(v)$, is defined as the number of vertices at a distance d away from $v[3]$. Hence $d_{1}(v)=d(v)$. The concept related to the F-degree of a vertex was introduced by Kocay [6], when reconstructing degree sequence on graphs. A graph G is said to be F-regular if the F-degrees of all the vertices of G are the same and it is called F-irregular if the F-degrees of the vertices of G are distinct. In a similar way, we defined d_{2} of a vertex in graph[10].

For a given graph G, the d_{2}-degree of a vertex v in G, denoted by $d_{2}(v)$ means the number of vertices at a distance two away from v. A graph G is said to be d_{2} - regular if d_{2}-degrees of all the vertices of G are the same. A graph G is called d_{2}-irregular if d_{2}-degrees of G are distinct, but there is no d_{2}-irregular graph. We observe that $(2, k)$-regular[10] and semiregular [2] and d_{2}-regular graphs are same. A graph G is said to be $(2, k)$-regular[11] (d_{2}-regular) if $d_{2}(v)=k$, for all v in G. A graph G is said to be $(r, 2, k)$-regular [13] if $d(v)=r$ and $d_{2}(v)=k$, for all v in G. In this paper, we study some graph products in $(2, k)$-regular graph and $(r, 2, k)$-regular graph.

2 Preliminaries.

In this section, we recall some results about the d_{2} of a vertex in following types of composite graphs[4] $G \times H, G[H], G+H, G \circ H, G \otimes H, G \otimes^{\prime} H$.

Definition 2.1. [4] The cartesian product of two simple graphs G and H is a simple graph $G \times H$ with vertex set $V(G) \times V(H)$, in which $\left(u_{1}, v_{1}\right)$ is adjacent to $\left(u_{2}, v_{2}\right)$ if and only if either (1). $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or (2). $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$. Also degree of $\left(u_{1}, v_{1}\right)$ in $G \times H=d\left(u_{1}\right)+d\left(v_{1}\right)$.
Theorem 2.2. [12]Let G and H be connected graphs. Then $d_{2}\left(u_{1}, v_{1}\right)$ in $G \times H=d_{2}\left(u_{1}\right)+d_{2}\left(v_{1}\right)+$ $d\left(u_{1}\right) d\left(v_{1}\right)$.

Definition 2.3. [4] The composition of two simple graphs G and H is a simple graph $G[H]$ with vertex set $V(G) \times V(H)$, in which $\left(u_{1}, v_{1}\right)$ is adjacent to $\left(u_{2}, v_{2}\right)$ if and only if either (1) $u_{1} u_{2} \in E(G)$ or (2) $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$. Also degree of $\left(u_{1}, v_{1}\right)$ in $G[H]=d\left(u_{1}\right)|V(H)|+d\left(v_{1}\right)$.

Theorem 2.4. [12] Let G and H be connected graphs. Then $d_{2}\left(u_{1}, v_{1}\right)$ in $G[H]=d_{2}\left(u_{1}\right)|V(H)|+$ $|V(H)|-1-d\left(v_{1}\right)$.

Definition 2.5. [6] Join of two graphs G and H is a simple graph $G+H$ with vertex set $V(G) \cup V(H)$, in which each vertex of G is adjacent to every vertex of H. Degree of a vertex u in $G+H=d(u)+$ $|V(H)|, u$ in $V(G)$. Degree of a vertex v in $G+H=d(v)+|V(G)|, v$ in $V(H)$.

Theorem 2.6. [12] Let G and H be any two graphs. Then $d_{2}(u)$ in $G+H=|V(G)|-1-d(u)$ for all $u \in V(G)$ and $d_{2}(v)$ in $G+H=|V(H)|-1-d(v)$, for all $v \in V(H)$.

Definition 2.7. [7] Strong cartesian product of two simple graphs G and H is a simple graph $G \circ H$ with vertex set $V(G) \times V(H)$, in which $\left(u_{1}, v_{1}\right)$ is adjacent to $\left(u_{2}, v_{2}\right)$ if (1) $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or (2) $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$ or (3) $u_{1} u_{2} \in E(G)$ and $v_{1} v_{2} \in E(H)$ and also degree of $\left(u_{1}, v_{1}\right)$ in $G \circ H=d\left(u_{1}\right)+d\left(v_{1}\right)+d\left(u_{1}\right) d\left(v_{1}\right)$.

Theorem 2.8. [12] Let G and H be two connected graphs. Then $d_{2}\left(\left(u_{1}, v_{1}\right)\right)$ in $G \circ H=d_{2}\left(u_{1}\right)+$ $d_{2}\left(v_{1}\right)+d_{2}\left(u_{1}\right) d_{2}\left(v_{1}\right)+d_{2}\left(u_{1}\right) d\left(v_{1}\right)+d_{2}\left(v_{1}\right) d\left(u_{1}\right)$.

Definition 2.9. [7] Strong tensor product of two simple graphs G and H is a simple graph $G \otimes H$ with vertex set $V(G) \times V(H)$, in which $\left(u_{1}, v_{1}\right)$ is adjacent to $\left(u_{2}, v_{2}\right)$ if (1) $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or (2) $u_{1} u_{2} \in E(G)$ and $v_{1} v_{2} \in E(H)$. Also degree of $\left(u_{1}, v_{1}\right)$ in $G \otimes H=d\left(u_{1}\right) d\left(v_{1}\right)+d\left(v_{1}\right)$.

Theorem 2.10. [12] Let G and H be connected graphs.Then $d_{2}\left(\left(u_{1}, v_{1}\right)\right)$ in $G \otimes H=d_{2}\left(u_{1}\right)+d_{2}\left(v_{1}\right)+$ $d_{2}\left(u_{1}\right) d_{2}\left(v_{1}\right)+d_{2}\left(v_{1}\right) d\left(u_{1}\right)+d\left(u_{1}\right)$.

Definition 2.11. [7] Strong augumented product of simple graphs G and H is a simple graph $G \otimes^{\prime} H$ with vertex set $V(G) \times V(H)$, in which $\left(u_{1}, v_{1}\right)$ is adjacent to $\left(u_{2}, v_{2}\right)$ if (1) $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$ or (2) $u_{1} u_{2} \in E(G)$ and $v_{1} v_{2} \in E(H)$. Also degree of $\left(u_{1}, v_{1}\right)$ in $G \otimes^{\prime} H=d\left(u_{1}\right) d\left(v_{1}\right)+d\left(u_{1}\right)$.

Theorem 2.12. [12] Let G and H be connected graphs.Then $d_{2}\left(u_{1}, v_{1}\right)$ in $G \otimes^{\prime} H=d_{2}\left(u_{1}\right)+d_{2}\left(v_{1}\right)+$ $d_{2}\left(u_{1}\right) d_{2}\left(v_{1}\right)+d_{2}\left(u_{1}\right) d\left(v_{1}\right)+d\left(v_{1}\right)$.

3 Graph products in ($2, k$)- regular graphs.

In this section, we discuss the graph products on $(2, k)$-regular graphs.
Definition 3.1. A graph G is $(2, k)$-regular if $d_{2}(v)=k$, for all $v \in V(G)$, where $d_{2}(v)$ is defined as the number of vertices at a distance 2 from v.

Result 3.2. If the Cartesian product of two graphs is $(2, k)$-regular then it is not necessary that they are $(2, k)$-regular.

Example: We know that, P_{3} is not a $(2, k)$ - regular graph and K_{2} is $(2,0)$ - regular. But the cartesian product $P_{3} \times K_{2}$ is a $(2, k)$ - regular graph.

Figure 1: $P_{3} \times K_{2}$ is a $(2, k)$ - regular.
Result 3.3. Cartesian product of two $(2, k)$ regular graphs need not be $(2, k)$ - regular.
Example: 1

Figure 2: $H \times G$ is not ($2, k$)-regular.

Example:2

Figure 3: $P_{4} \times K_{2}$ is not ($2, k$)-regular.
Result 3.4. Lexicographic product of two (2,k)- regular graphs need not be $(2, k)$ - regular.

Figure 4: $P_{4}\left[P_{4}\right]$ is not $(2, k)$-regular.

Result 3.5. Join of two $(2, k)$-regular graphs need not be $(2, k)$ - regular.

Figure 5: $H \vee G$ is not $(2, k)$-regular.
Result 3.6. Strong Cartesian product of two $(2, k)$ - regular graphs need not be $(2, k)$-regular.

Figure 6: $P_{4} \circ P_{4}$ is not $(2, k)$-regular.
Result 3.7. Strong tensor product of two $(2, k)$ - regular graphs need not be $(2, k)$ regular.

Figure 7: $H \otimes G$ is not $(2, k)$ - regular.
Result 3.8. Augmented tensor product of two $(2, k)$ - regular graphs need not be $(2, k)$-regular.

Figure 8: $G \otimes^{\prime} H$ is not $(2, k)$ - regular.

4 Graph products in $(r, 2, k)$ - regular graph

Definition 4.1. A graph G is $(r, 2, k)$ - regular if $d(v)=r, d_{2}(v)=k$, for all $v \in V(G)$ where $d_{2}(v)$ is defined as the number of vertices at a distance 2 from v.

Result 4.2. Consider the cartesian product $G \times H$ and let $(u, v) \in G \times H$, then $d(u, v)=d(u)+d(v)$ and $d_{2}(u, v)=d_{2}(u)+d_{2}(v)+d(u) d(v)$.

Theorem 4.3. Let G be a connected $\left(r_{1}, 2, k_{1}\right)$-regular graph and H be a connected $\left(r_{2}, 2, k_{2}\right)$-regular graph. Then the cartesian product $G \times H$ is $\left(r_{1}+r_{2}, 2, k_{1}+k_{2}+r_{1} r_{2}\right)$-regular.

Proof: Let G be a connected $\left(r_{1}, 2, k_{1}\right)$-regular graph. That is, $d(u)=r_{1}$ and $d_{2}(u)=k_{1}$, for all $u \in V(G)$. Let H be a connected $\left(r_{2}, 2, k_{2}\right)$-regular graph. That is, $d(v)=r_{2}$ and $d_{2}(v)=k_{2}$, for all $v \in V(H)$. Let $(u, v) \in V(G \times H)$. Consider $d(u, v)=d(u)+d(v)=r_{1}+r_{2}$, for all $(u, v) \in G \times H$ and $d_{2}(u, v)=d_{2}(u)+d_{2}(v)+d(u) d(v)=k_{1}+k_{2}+r_{1} r_{2}$, for all $(u, v) \in G \times H$. Then, $G \times H$ is $\left(r_{1}+r_{2}, 2, k_{1}+k_{2}+r_{1} r_{2}\right)$-regular .

Example 4.4.

1. $K_{n} \times K_{n}$ is $\left(2 n-2,2,(n-1)^{2}\right)$ - regular, since $d(u, v)=d(u)+d(v)=n-1+n-1=2 n-2$ and $d_{2}(u, v)=d_{2}(u)+d_{2}(v)+d(u) d(v)=0+0+(n-1)(n-1) .=(n-1)^{2}$.
2. For $n \geq 5, C_{n} \times C_{n}$ is (4, 2, 8)-regular, since $d(u, v)=d(u)+d(v)=2+2=4$ and $d_{2}(u, v)=$ $d_{2}(u)+d_{2}(v)+d(u) d(v)=2+2+2 \times 2=8$.
3. Cartesian product of two $(r, 2, r(r-1))$-regular graphs is $\left(2 r, 2,3 r^{2}-2 r\right)$-regular, since $d(u, v)=$ $d(u)+d(v)=r+r=2 r$ and $d_{2}(u, v)=d_{2}(u)+d_{2}(v)+d(u) d(v)=r(r-1)+r(r-1)+r \times r=$ $r^{2}-r+r^{2}-r+r^{2}=3 r^{2}-2 r$.

Result 4.5. Consider the composition of graph $G[H]$ and let $(u, v) \in G[H]$, then $d(u, v)=d(u)|V(H)|+$ $d(v)$ and $d_{2}(u, v)=d_{2}(u)|V(H)|+|V(H)|-1-d(v)$.

Theorem 4.6. Let G be a connected $\left(r_{1}, 2, k_{1}\right)$-regular graph of order n_{1} and H be a connected $\left(r_{2}, 2, k_{2}\right)$-regular graph of order n_{2}. Then the composition $G[H]$ is $\left(r_{1} n_{2}+r_{2}, 2,\left(n_{2}\left(1+k_{2}\right)\right)-\right.$ $\left.\left(1+r_{2}\right)\right)$-regular.

Proof: Let G be a connected $\left(r_{1}, 2, k_{1}\right)$-regular graph of order n_{1}. That is, $d(u)=r_{1}$ and $d_{2}(u)=k_{1}$, for all $u \in V(G)$. Let H be a connected $\left(r_{2}, 2, k_{2}\right)$-regular graph of order n_{2}. That is, $d(v)=r_{2}$ and $d_{2}(v)=k_{2}$, for all $v \in V(H)$. Let $(u, v) \in V(G[H])$. Consider $d(u, v)=d(u)|V(H)|+d(v)=$ $r_{1} n_{2}+r_{2}$, for all $(u, v) \in G[H]$ and $d_{2}(u, v)=d_{2}(u)|V(H)|+|V(H)|-1-d(v)=k_{1} n_{2}+n_{2}-1-r_{2}$, for all $(u, v) \in G[H]$. Therefore, $G[H]$ is $\left(r_{1} n_{2}+r_{2}, 2,\left(n_{2}\left(1+k_{1}\right)\right)-\left(1+r_{2}\right)\right)$ - regular.

Example 4.7.

1. $K_{n}\left[K_{n}\right]$ is $\left(n^{2}-1,2,0\right)$ - regular, since $d(u, v)=d(u)|V(H)|+d(v)=(n-1) n+(n-1)=n^{2}-1$ and $d_{2}(u, v)=d_{2}(u)|V(H)|+|V(H)|-1-d(v)=0+n-1-(n-1)=0$.
2. For $n \geq 5, C_{n}\left[C_{n}\right]$ is $(2 n+2,2,3 n-3)$-regular. $d(u, v)=d(u)|V(H)|+d(v)=2 n+2$ and $d_{2}(u, v)=d_{2}(u)|V(H)|+|V(H)|-1-d(v)=2 n+n-1-2=3 n-3$.
3. Composition of two $(r, 2, r(r-1))$ - regular graphs of order $n 2^{r-2}$ is $\left(r n 2^{r-2}+r, 2,\left(r^{2}-\right.\right.$ $r+1) n 2^{r-2}-(1+r)$-regular graph, since $d(u, v)=d(u)|V(H)|+d(v)=r n 2^{r-2}+r$ and $d_{2}(u, v)=d_{2}(u)|V(H)|+|V(H)|-1-d(v)=\left(r^{2}-r+1\right) n 2^{r-2}-(1+r)$.

Result 4.8. Consider the join $G+H$ of two graphs G and H. Let $u \in G$ and $v \in H$. Then $d(u)$ in $G+H=|V(H)|+d(u)$ and $d(v)$ in $G+H=|V(G)|+d(v)$ and $d_{2}(u)$ in $G+H=|V(G)|-1-d(u)$ and $d_{2}(v)$ in $G+H=|V(H)|-1-d(v)$.

Result 4.9. The join of two $(r, 2, k)$-regular graphs need not be a $(r, 2, k)$-regular graph.
Illustration 4.10. Join of C_{4} and K_{2} is not a $(r, 2, k)$ - regular graph.

Figure 9: $C_{4}+K_{2}$ is not $(r, 2, k)$ - regular.
Theorem 4.11. Let G be a connected $\left(r_{1}, 2, k_{1}\right)$ - regular graph of order n_{1} and H be a connected $\left(r_{2}, 2, k_{2}\right)$ - regular graph of order n_{2}. Then the join $G+H$ is a $(r, 2, k)$-regular graph only when $r_{1}-r_{2}=n_{1}-n_{2}$.

Proof: Let G be a connected $\left(r_{1}, 2, k_{1}\right)$-regular graph of order n_{1}. That is, $d(u)=r_{1}$ and $d_{2}(u)=k_{1}$, for all $u \in V(G)$. Let H be a connected $\left(r_{2}, 2, k_{2}\right)$-regular graph of order n_{2}. That is, $d(v)=r_{2}$ and $d_{2}(v)=k_{2}$, for all $v \in V(H)$.

The join graph $G+H$ is regular only when $d(u)$ in $G+H=d(v)$ in $G+H$. That is, for all $u \in V(G)$ and for all $v \in V(H),|V(H)|+d(u)=|V(G)|+d(v)$ implies that $n_{2}+r_{1}=n_{1}+r_{2}$. Join $G+H$ is regular only when $n_{1}-n_{2}=r_{1}-r_{2}$.

The join graph $G+H$ is d_{2} - regular $\left((2, k)\right.$-regular) only when $d_{2}(u)$ in $G+H=d_{2}(v)$ in $G+H$. That is, for all $u \in V(G)$ and for all $v \in V(H),|V(G)|-1-d(u)=|V(H)|-1-d(v)$ implies that $n_{1}-1-r_{1}=n_{2}-1-r_{2}$. Join $G+H$ is $(2, k)$ - regular only when $n_{1}-n_{2}=r_{1}-r_{2}$. Join $G+H$ is $(r, 2, k)$-regular only when $r_{1}-r_{2}=n_{1}-n_{2}$.

Example 4.12.

1. The join graph $K_{n}+K_{n}$ is $(2 n-1,2,0)$-regular, since $d(u)=2 n-1$ and $d_{2}(u)=0$, for all $u \in K_{n}$.
2. The join graph $C_{n}+C_{n}$ is $(n+2,2, n-3)$-regular, since $d(u)=n+2$, for all u in C_{n} and $d_{2}(u)=n-3$, for all u in C_{n}.
3. Since $d(u)=n 2^{r-2}+r$ and $d_{2}(u)=n 2^{r-2}-r-1$, for all u in $(r, 2, r(r-1))$-regular graph, we have the join of two $(r, 2, r(r-1))$-regular graphs is $\left(n 2^{r-2}+r, 2, n 2^{r-2}-r-1\right)$-regular.

Result 4.13. Consider the strong cartesian product $G \circ H$ and let $(u, v) \in G \circ H$, then $d(u, v)=$ $d(u)+d(v)+d(u) d(v)$ and $d_{2}(u, v)=d_{2}(u)+d_{2}(v)+d_{2}(u) d_{2}(v)+d_{2}(u) d(v)+d(u) d_{2}(v)$.

Theorem 4.14. Let G be a connected $\left(r_{1}, 2, k_{1}\right)$-regular graph and H be a connected $\left(r_{2}, 2, k_{2}\right)$-regular graph. Then the strong cartesian product $G \circ H$ is $\left(r_{1}+r_{2}+r_{1} r_{2}, 2, k_{1}+k_{2}+k_{1} k_{2}+k_{1} r_{2}+k_{2} r_{1}\right)$-regular.

Proof: Let G be a connected $\left(r_{1}, 2, k_{1}\right)$-regular graph. That is, $d(u)=r_{1}$ and $d_{2}(u)=k_{1}$, for all $u \in V(G)$. Let H be a connected $\left(r_{2}, 2, k_{2}\right)$-regular graph. That is, $d(v)=r_{2}$ and $d_{2}(v)=k_{2}$, for all $v \in V(H)$.

Let $(u, v) \in V(G \circ H)$. Consider $d(u, v)=d(u)+d(v)+d(u) d(v)=r_{1}+r_{2}+r_{1} r_{2}$, for all $(u, v) \in$ $G \circ H . d_{2}(u, v)=d_{2}(u)+d_{2}(v)+d_{2}(u) d_{2}(v)+d_{2}(u) d(v)+d(u) d_{2}(v)=k_{1}+k_{2}+k_{1} k_{2}+k_{1} r_{2}+k_{2} r_{1}$, for all $(u, v) \in G \circ H$.Therefore, $G \circ H$ is $\left(r_{1}+r_{2}+r_{1} r_{2}, 2, k_{1}+k_{2}+k_{1} k_{2}+k_{1} r_{2}+k_{2} r_{1}\right)$-regular.

Example 4.15.

1. $K_{n} \circ K_{n}$ is $((n+1)(n-1), 2,0)$-regular, since $d(u, v)=n-1+n-1+(n-1)^{2}=n-1(1+$ $1+n-1)=(n-1)(n+1)$ and $d_{2}(u, v)=0$.
2. For $n \geq 5, C_{n} \circ C_{n}$ is $(8,2,16)$-regular, since $d(u, v)=2+2+4=8$ and $d_{2}(u, v)=16$.
3. Since $d(u, v)=r(r+2)$ and $d_{2}(u, v)=(r(r-1))(r(r+1)+2)$, strong cartesian product of two $(r, 2, r(r-1))$-regular graphs is a $((2+r) r, 2, r(r-1)(r(r+1)+2))$-regular graph.

Result 4.16. Consider the strong tensor product $G \underline{\otimes} H$ of the graphs G and H and let $(u, v) \in G \otimes H$. Then, $d(u, v)=d(u) d(v)+d(v)$ and $d_{2}(u, v)=d_{2}(u)+d_{2}(v)+d_{2}(u) d_{2}(v)+d_{2}(v) d(u)+d(u)$.

Theorem 4.17. Let G be a connected $\left(r_{1}, 2, k_{1}\right)$-regular graph and H be a connected $\left(r_{2}, 2, k_{2}\right)$-regular graph. Then the strong tensor product $G \otimes H$ is $\left(r_{1} r_{2}+r_{2}, 2, k_{1}+k_{2}+k_{1} k_{2}+k_{2} r_{1}+r_{1}\right)$-regular.

Proof: Let G be a connected $\left(r_{1}, 2, k_{1}\right)$ - regular graph. That is, $d(u)=r_{1}$ and $d_{2}(u)=k_{1}$, for all $u \in V(G)$. Let H be a connected $\left(r_{2}, 2, k_{2}\right)$ - regular graph. That is, $d(v)=r_{2}$ and $d_{2}(v)=k_{2}$, for all $v \in V(H)$. Let $(u, v) \in V(G \otimes H)$. Consider $d(u, v)=d(u) d(v)+d(v)=r_{1} r_{2}+r_{2}$,
for all $(u, v) \in G \otimes H . d_{2}(u, v)=d_{2}(u)+d_{2}(v)+d_{2}(u) d_{2}(v)+d_{2}(v) d(u)+d(u)=k_{1}+k_{2}+k_{1} k_{2}+$ $k_{2} r_{1}+r_{1}$, for all $(u, v) \in G \underline{\otimes} H$. Therefore, $G \underline{\otimes} H$ is $\left(r_{1} r_{2}+r_{2}, 2, k_{1}+k_{2}+k_{1} k_{2}+k_{2} r_{1}+r_{1}\right)$-regular.

Example 4.18.

1. Since $d(u, v)=n-1+(n-1)^{2}=n-1(1+n-1)=n(n-1)$ and $d_{2}(u, v)=n-1$, we have $K_{n} \otimes K_{n}$ is $(n(n-1), 2, n-1)$-regular.
2. Since $d(u, v)=6$ and $d_{2}(u, v)=14$, we have $C_{n} \underline{\otimes} C_{n}$ is $(6,2,14)$-regular for $n \geq 5$.
3. Since $d(u, v)=r(r+1)$ and $d_{2}(u, v)=r(r-1)(r(r-1)+2+r)+r$, the strong tensor product of two $(r, 2, r(r-1))$-regular graphs is $((1+r) r, 2, r(r-1)(r(r-1)+2+r)+r)$-regular.

Result 4.19. Consider strong augumented product $G \otimes^{\prime} H$ and let $(u, v) \in G \otimes^{\prime} H$. Then $d(u, v)=$ $d(u) d(v)+d(u)$ and $d_{2}(u, v)=d_{2}(u)+d_{2}(v)+d_{2}(u) d_{2}(v)+d_{2}(u) d(v)+d(v)$.

Theorem 4.20. Let G be a connected ($r_{1}, 2, k_{1}$)-regular graph and H be a connected $\left(r_{2}, 2, k_{2}\right)$-regular graph. Then the strong augumented product $G \otimes^{\prime} H$ is $\left(r_{1} r_{2}+r_{1}, 2, k_{1}+k_{2}+k_{1} k_{2}+k_{1} r_{2}+r_{2}\right)$-regular.

Proof: Let G be a connected $\left(r_{1}, 2, k_{1}\right)$)-regular graph. That is, $d(u)=r_{1}$ and $d_{2}(u)=k_{1}$, for all $u \in V(G)$. Let H be a connected $\left(r_{2}, 2, k_{2}\right)$-regular graph. Then, $d(v)=r_{2}$ and $d_{2}(v)=k_{2}$, for all $v \in V(H)$. Let $(u, v) \in V\left(G \otimes^{\prime} H\right)$. Consider $d(u, v)=d(u) d(v)+d(u)=r_{1} r_{2}+r_{1}$, for all $(u, v) \in G \otimes^{\prime} H$.
$d_{2}(u, v)=d_{2}(u)+d_{2}(v)+d_{2}(u) d_{2}(v)+d_{2}(u) d(v)+d(v)=k_{1}+k_{2}+k_{1} k_{2}+k_{1} r_{2}+r_{2}, \quad$ for all $(u, v) \in G \otimes^{\prime} H$. Therefore, $G \otimes^{\prime} H$ is $\left(r_{1} r_{2}+r_{1}, 2, k_{1}+k_{2}+k_{1} k_{2}+k_{1} r_{2}+r_{2}\right)$-regular.

Example 4.21.

1. Since $d(u, v)=n-1+(n-1)^{2}=n-1(1+n-1)=n(n-1)$ and $d_{2}(u, v)=n-1, K_{n} \otimes^{\prime} K_{n}$ is $(n(n-1), 2, n-1)$-regular.
2. For $n \geq 5, C_{n} \otimes^{\prime} C_{n}$ is (6,2,14)-regular graph, as $d(u, v)=6$ and $d_{2}(u, v)=14$.
3. Since $d(u, v)=r(r+1)$ and $d_{2}(u, v)=r(r-1)(r(r-1)+2+r)+r$, the strong augumented product of two $(r, 2, r(r-1))$-regular graphs is $((1+r) r, 2, r(r-1)(r(r-1)+2+r)+r)$ regular.

Acknowledgement

The authors are thankful to the anonymous referee for the valuable suggestions.

References

[1] Y. Alavi, Gary Chartrand, F. R. K. Chang, Paul Erdos, H. L. Graham and O.R. Oellermann,Highly Irregular graphs, J. Graph Theory, 11(2) (1987), 235-249.
[2] Alison Pechin Northup, A Study of Semiregular Graphs,Bacheler Thesis, Steteson University.(2002).
[3] G.S. Bloom. J. K. Kennedy and L.V. Quintas, Distance Degree Regular Graphs in the Theory and Applications of Graphs, Wiley, New York, (1981) 95-108.
[4] J.A. Bondy and U.S.R. Murty, Graph theory with Applications, Macmillan press, London, (1979).
[5] Douglas B.West, Introduction to Graph Theory, Prentice, Hall of India Private Limited.New Delhi, 1999.
[6] Ebrahim Salehi, On P_{3}-Degree of Graphs, Journal of Combinatirial Mathematics and Combinatorial Computing, 62(2007), 45-51.
[7] Gary Chartrand, Paul Erdos and Ortrud R. Oellerman, How to Define an irregular graph, College Math. Journal, 19(1988), 36-42.
[8] F. Harary, Graph theory, Addition Wesley, Reading Mass., (1969).
[9] K. R. Parthasarathy, Basic Graph Theory, Tata McGraw- Hill Publishing company Limited, New Delhi, 1994.
[10] N. R. Santhi Maheswari and C. Sekar, $(r, 2, r(r-1))$-regular graphs, International Journal of Mathematics and Soft Computing, 2(2) (2012), 25-33.
[11] N. R. Santhi Maheswari and C. Sekar, $(r, 2,(r-1)(r-1))$-regular graphs, International Journal of Mathematics Combinatorics, 4(2012), 40-51.
[12] N. R. Santhi Maheswari and C. Sekar, On d_{2} of a vertex in product of graphs, ICODIMA 2013, Department of Mathematics, Periyar Maniammai University, December $3^{r d} 2013$.
[13] N. R. Santhi Maheswari and C. Sekar, Some minimal ($r, 2, k$) -regular graphs containing given graph - in press.

