Some graceful graphs

V J Kaneria
Department of Mathematics
Saurashtra University, RAJKOT - 360005.
E-mail: kaneria_ vinodray_ j @yahoo.co.in
H M Makadia
Govt. Engineering College
RAJKOT - 360005.
E-mail: makadia.hardik@yahoo.com
\section*{Meera Meghapara}
Saurashtra University, RAJKOT - 360005.
E-mail: meera.meghpara@gmail.com

Abstract

In this paper, we have investigate some general classes of connected graceful graphs. We prove that cycles C_{n}, C_{m} joined by an arbitrary path P_{k}, where $m, n \equiv 0(\bmod 4)$, a cycle $C_{n},(n \equiv 2$ $(\bmod 4))$ with twin chords and a path union of cycles $C_{n},(n \equiv 0(\bmod 4))$ are graceful graphs.

Keywords: Cycle, path, path union, graceful graph, cycle with twin chords.
AMS Subject Classification(2010): 05C78.

1 Introduction

The graceful labeling was introduced by A. Rosa [7] during 1967. He proved that the cycle C_{n} is graceful, when $n \equiv 0,3(\bmod 4)$. Golomb [1] proved that the complete graph K_{n} is graceful when $n \leq 4$. Hoede and Kuiper [5], Frucht [3] proved that all wheels $W_{n}=C_{n}+K_{1}$ are graceful.

The cordial labeling was introduced by Cahit [2] in 1987 as a weaker version of graceful labeling. Vaidya et al. [10] proved that the graph G obtained by joining two copies of cycle C_{n} by a path of arbitrary length is cordial. Shee and Ho [8] proved that the path union of cycles is cordial. Vaidya et al. [9] proved that cycles C_{n} with twin chords are cordial as well as 3 -equitable. For a detailed survey of graph labeling one can refer Gallian [4].

We begin with a simple, undirected and finite graph $G=(V, E)$. For all standard terminology and notations we follow Harary [6]. We give a brief summary of definitions which are useful for this paper.

Definition 1.1. If the vertices of the graph are assigned values subject to certain conditions then it is known as graph labeling.

Definition 1.2. A function f is called graceful labeling of a graph $G=(V, E)$ if $f: V \longrightarrow\{0,1, \ldots, q\}$ is injective and the induce function $f^{*}: E \longrightarrow\{1,2, \ldots, q\}$ defined as $f^{*}(e=u v)=|f(u)-f(v)|$ is bijective, $\forall e=u v \in E$. A graph G, which admits a graceful labeling is called graceful graph.

Definition 1.3. Let $G=(V, E)$ be a graph. A function $f: V \longrightarrow\{0,1\}$ is called binary vertex labeling of a graph G and $f(v)$ is called label of the vertex v of G under f.

For an edge $e=u v$, the induced function $f^{*}: E \rightarrow\{0,1\}$ is given as $f^{*}(e=u v)=|f(u)-f(v)|$. Let $v_{f}(0), v_{f}(1)$ be number of vertices of G having labels 0 and 1 respectively under f and let $e_{f}(0)$, $e_{f}(1)$ be number of edges of G having labels 0 and 1 respectively under f^{*}.

A binary vertex labeling f of a graph G is called cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph which admits a cordial labeling is called cordial graph.

Definition 1.4. Let G be a graph and $G_{1}, G_{2}, \ldots, G_{n}, n \geq 2$ be n copies of graph G. Then the graph obtained by adding an edge from G_{i} to G_{i+1} (for $i=1,2, \ldots, n-1$) is called path union of G.

Definition 1.5. Let $G=(V, E)$ be a graph. A function $f: V \rightarrow\{0,1,2\}$ is called ternary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f.

For an edge $e=u v$, the induced edge labeling $f^{*}: E \rightarrow\{0,1,2\}$ is given by $f^{*}(e)=|f(u)-f(v)|$. Let $v_{f}(0), v_{f}(1), v_{f}(2)$ be the number of vertices of G having labels 0,1 and 2 respectively under f and let $e_{f}(0), e_{f}(1), e_{f}(2)$ be the number of edges having labels 0,1 and 2 respectively under f^{*}.

A ternary vertex labeling of a graph G is called 3-equitable labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1,0 \leq i, j \leq 2$. A graph G is called 3 -equitable if it admits a 3 -equitable labeling.

Definition 1.6. Two chords of a cycle are said to be twin chords if they form a triangle with an edge of the cycle C_{n}.

In the present paper we prove some cycle related graphs with graceful labeling.

2 Main Results

Theorem 2.1. The graph obtained by joining two cycles C_{n}, C_{m} by a path of arbitrary length is graceful, where $n, m \equiv 0(\bmod 4)$.

Proof: Let $G=(V, E)$ be the graph obtained by joining two cycles $C_{n}(n \equiv 0(\bmod 4)), C_{m}(m \equiv 0$ $(\bmod 4))$ by a path P_{k} of length k. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the cycle $C_{n} ; w_{1}, w_{2}, \ldots, w_{m}$ be the vertices of the cycle C_{m} and $v_{0}, v_{1}, \ldots, v_{k}$ be the vertices of the path P_{k} with $v_{0}=u_{n}$ and $v_{k}=w_{1}$. We consider the following two cases.
Case 1: $\quad k$ is odd.
Define $f: V \longrightarrow\{0,1, \ldots, q\}$, where $q=n+m+k$ as follows:

$$
\begin{aligned}
f\left(u_{j}\right) & =n+m+k-\frac{j-1}{2}, & & \forall j=1,3, \ldots, n-1 \\
& =\frac{j-2}{2}, & & \forall j=2,4, \ldots, \frac{n}{2} \\
& =\frac{j}{2}, & & \forall j=\frac{n}{2}+2, \frac{n}{2}+4, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
f\left(v_{i}\right) & =\frac{n}{2}+\frac{i}{2}, & & \forall i=0,2,, \ldots, k-1 \\
& =m+\frac{n}{2}+k-\frac{i-1}{2}, & & \forall j=1,3, \ldots, k \\
f\left(w_{j}\right) & =m+\frac{n}{2}+\frac{k-j+2}{2}, & & \forall j=1,3, \ldots, m-1 \\
& =\frac{n+k+1}{2}+\frac{j-2}{2}, & & \forall j=2,4, \ldots, \frac{m}{2} \\
& =\frac{n+k+1}{2}+\frac{j}{2}, & & \forall j=\frac{m}{2}+2, \frac{m}{2}+4, \ldots, m .
\end{aligned}
$$

Case 2: $\quad k$ is even.
Define $f: V \longrightarrow\{0,1, \ldots, q\}$, where $q=n+m+k$ as follows:

$$
\begin{aligned}
f\left(u_{j}\right) & =n+m+k-\frac{j-1}{2}, & & \forall j=1,3, \ldots, n-1 \\
& =\frac{j-2}{2}, & & \forall j=2,4, \ldots, \frac{n}{2} \\
& =\frac{j}{2}, & & \forall j=\frac{n}{2}+2, \frac{n}{2}+4, \ldots, n \\
f\left(v_{i}\right) & =\frac{n}{2}+\frac{i}{2}, & & \forall i=0,2, \ldots, k \\
& =m+\frac{n}{2}+k-\frac{i-1}{2}, & & \forall j=1,3, \ldots, k-1 \\
f\left(w_{j}\right) & =\frac{n+k}{2}+\frac{j-1}{2}, & & \forall j=3,5, \ldots, m-1 \\
& =m+\frac{n+k}{2}-\frac{j}{2}, & & \forall j=2,4, \ldots, \frac{m}{2} \\
& =m+\frac{n+k}{2}-\frac{j+2}{2}, & & \forall j=\frac{m}{2}+2, \frac{m}{2}+4, \ldots, m .
\end{aligned}
$$

In both the cases, we can verify that f is a graceful labeling of the graph G.
Illustration 2.2. A graceful labeling of the graph obtained by joining C_{8} and C_{12} by a path P_{5} is shown in Figure 1.

Figure 1: A graceful labeling of the graph obtained by joining C_{8} and C_{12} by P_{5}.

Theorem 2.3. The path union of a finite number of copies of cycle $C_{n}(n \equiv 0(\bmod 4))$ is a graceful graph.

Proof: Let $G=(V, E)$ be the graph obtained by the path union of k copies of cycle C_{n} where $n \equiv 0$ $(\bmod 4)$. Let $C_{n}^{(i)}, i=1,2, \ldots, k$ be k copies of cycle $C_{n}(n \equiv 0(\bmod 4))$ in which $v_{i, j} ; j=1,2, \ldots, n$ be the vertices of cycle $C_{n}^{(i)} ; i=1,2, \ldots, k$. Form the path union of $C_{n}^{(i)}$ and $C_{n}^{(i+1)}$ by joining $v_{i, n}$ with $v_{i+1,1}$ by an edge for $1 \leq i \leq n-1$. Hence, G has $n k$ vertices and $n k+(k-1)$ edges.

Define $f: V \longrightarrow\{0,1, \ldots, q\}$, where $q=n k+(k-1)$ as follows:

$$
\begin{array}{rlrl}
f\left(v_{i, j}\right)=(2 k-i+1) \frac{n}{2}+k-\frac{j+1}{2}, & \forall j=1,3, \ldots, n-1 \\
=\left(\frac{n+2}{2}\right)(i-1)+\frac{j-2}{2}, & \forall j=2,4, \ldots, \frac{n}{2} \\
=\left(\frac{n+2}{2}\right)(i-1)+\frac{j}{2}, & \forall j=\frac{n}{2}+2, \frac{n}{2}+4, \ldots, n ; \\
& \forall i=1,2, \ldots, k . &
\end{array}
$$

Then, f is a graceful labeling of the graph G.
Illustration 2.4. A graceful labeling of the path union of three copies of C_{8} is given in Figure 2.

Figure 2: A graceeful labeling of the path union of three copies of C_{8}.
Theorem 2.5. The path union of a finite number of copies of cycle $C_{n}(n \equiv 0(\bmod 4))$ obtained by joining any vertex of one cycle to any vertex of next cycle is graceful.

Proof: Let $G=(V, E)$ be the path union of finite number of copies of cycle $C_{n}(n \equiv 0(\bmod 4))$ obtained by joining any vertex of one cycle to any vertex of next cycle. Let $C_{n}^{(i)}, i=1,2, \ldots, k$ be the k copies of the cycle $C_{n}(n \equiv 0(\bmod 4))$. G has $n k$ vertices and $n k+(k-1)$ edges.
We consider the following two cases.
Case 1: $\quad k$ is odd.
Define $f: V \longrightarrow\{0,1, \ldots, q\}$, where $q=n k+(k-1)$ as follows:

$$
f\left(u_{1, j}\right)=k(n+1)-\frac{j+1}{2}, \quad \forall j=1,3, \ldots, n-1
$$

$$
\begin{array}{cl}
=\frac{j-2}{2}, & \forall j=2,4, \ldots, \frac{n}{2} \\
=\frac{j}{2}, & \forall j=\frac{n}{2}+2, \frac{n}{2}+4, \ldots, n \\
f\left(u_{l, j}\right)=f\left(u_{(l-1), j}\right)-\frac{n}{2}, & \forall j=1,3, \ldots, n-1 \\
=f\left(u_{(l-1), j}\right)+\frac{n}{2}+1, & \forall j=2,4, \ldots, n ; \\
\forall l=2,3, \ldots, \frac{k+1}{2} & \\
f\left(u_{\left(\frac{k+3}{2}\right), j}\right)=f\left(u_{\left(\frac{k+1}{2}\right), n}\right)+\frac{j+1}{2}, & \forall j=1,3, \ldots, n-1 \\
=f\left(u_{\left(\frac{k+1}{2}\right),(n-1)}\right)-\frac{j}{2}, & \forall j=2,4, \ldots, \frac{n}{2} \\
=f\left(u_{\left(\frac{k+1}{2}\right),(n-1)}\right)-\frac{j+2}{2}, & \forall j=\frac{n}{2}+2, \frac{n}{2}+4, \ldots, n \\
f\left(u_{l, j}\right)=f\left(u_{(l-1), j)+\frac{n}{2},}\right. & \forall j=1,3, \ldots, n-1 \\
=f\left(u_{(l-1), j)-\frac{n+2}{2},}\right. & \forall j=2,4, \ldots, n ; \\
& \forall l=\frac{k+3}{2}, \frac{k+5}{2}, \ldots,
\end{array}
$$

Case 2: $\quad k$ is even.
Define $f: V \longrightarrow\{0,1, \ldots, q\}$ as follows:

$$
\begin{array}{cr}
f\left(u_{1, j}\right)=k(n+1)-\frac{j+1}{2}, & \forall j=1,3, \ldots, n-1 \\
=\frac{j-2}{2}, & \forall j=2,4, \ldots, \frac{n}{2} \\
=\frac{j}{2}, & \forall j=\frac{n}{2}+2, \frac{n}{2}+4, \ldots, n \\
f\left(u_{l, j}\right)=f\left(u_{(l-1), j}\right)-\frac{n}{2}, & \forall j=1,3, \ldots, n-1 \\
=f\left(u_{(l-1), j}\right)+\frac{n}{2}+1, & \forall j=2,4, \ldots, n ; \\
\forall l=2,3, \ldots, \frac{k}{2} & \\
\begin{aligned}
f\left(u_{\left(\frac{k+2}{2}\right), j}\right)=f\left(u_{\left(\frac{k}{2}\right), n}\right)+\frac{j+1}{2}, & \forall j=1,3, \ldots, n-1 \\
=f\left(u_{\left(\frac{k}{2}\right),(n-1)}\right)-\frac{j}{2}, & \forall j=2,4, \ldots, \frac{n}{2} \\
=f\left(u_{\left(\frac{k}{2}\right),(n-1)}\right)-\frac{j+2}{2}, & \forall j=\frac{n}{2}+2, \frac{n}{2}+4, \ldots, n \\
f\left(u_{l, j}\right)=f\left(u_{(l-1), j}\right)+\frac{n}{2}, & \forall j=1,3, \ldots, n-1 \\
=f\left(u_{(l-1), j)-\frac{n+2}{2},}\right. & \forall j=2,4, \ldots, n ; \\
& \forall l=\frac{k+2}{2}, \frac{k+4}{2}, \ldots, k .
\end{aligned}
\end{array}
$$

Then, f induces the labels $(i-1)(n+1)+1,(i-1)(n+1)+2, \ldots, i(n+1)-1$ for the edges of the cycles $C_{n}^{(i)}$, for $i=1,2, \ldots, k$.

For the function f to be graceful on G, we should have labels $n+1,2(n+1), \ldots,(k-1)(n+1)$ for the edges of the path in G joining a vertex of one cycle to a vertex of the next cycle.

For this, we rearrange the cycles as $C_{1}, C_{3}, C_{2}, C_{5}, C_{4}, \ldots, C_{k}, C_{k-1}$, when k is odd and $C_{1}, C_{3}, C_{2}, C_{5}, C_{4}, \ldots, C_{k-1}, C_{k-2}, C_{k}$, when k is even.

Note that C_{1} contains one vertex with label $0, C_{3}$ contains one vertex with label $(k-1)(n+1), C_{2}$ contains one vertex with label $n+1, C_{5}$ contains one vertex with label $(k-2)(n+1), C_{4}$ contains one vertex with label $2(n+1)$ and so on. Hence, f defines a graceful labeling for G.

Illustration 2.6. A graceful labeling of the path union of five copies of C_{8} obtained by joining a vertex of one cycle to a vertex of next cycle are shown in Figure 3.

Figure 3(a): Labeling of 8 copies of C_{8}.

Figure 3(b): Graceful labeling of the path union of five copies of C_{8}.
Theorem 2.7. Any cycle $C_{n}(n \equiv 2(\bmod 4))$ with twin chords is graceful.
Proof: Let $G=(V, E)$ be a cycle C_{n}, where $n \equiv 2(\bmod 4)$ with twin chords. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n} and $v_{2} v_{n}, v_{2} v_{n-1}$ be the twin chords of C_{n}.

Define $f: V \longrightarrow\{0,1, \ldots, q\}$, where $q=n+2$ as follows:

$$
\begin{aligned}
& f\left(v_{n}\right)=q=n+2 \\
& f\left(v_{n-1}\right)=q-2=n \\
& f\left(v_{1}\right)=q-1=n+1 \\
& f\left(v_{i}\right)=\frac{i-2}{2}, \quad \forall i=2,4, \ldots, \frac{n}{2}-1
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{i}{2}, & \forall i=\frac{n}{2}+1, \frac{n}{2}+3, \ldots, n-2 \\
=n-\frac{i-1}{2}, & \forall i=3,5, \ldots, n-3
\end{array}
$$

Then, f is a graceful labeling of G and hence G is a graceful graph.
Illustration 2.8. A graceful labeling of a cycle C_{10} with twin chords is shown in Figure 5.

Figure 4: A graceful labeling of C_{10} with twin chords.
Acknowledgement: The authors of this paper would like to thank the reviewers for their valuable suggestions.

References

[1] G. S. Bloom and S. W. Golomb, Application of numbered undirected graphs, Proceedings of IEEE, 165 (4) (1977), 562-570.
[2] I. Cahit, Cordial Graphs: A weaker version of graceful and Harmonious Graphs, Ars Combinatoria, 23 (1987), 201-207.
[3] R. Frucht, Graceful numbering of wheels and related graphs, Ann. N.Y. Acad. Sci., 319 (1979), 219-229.
[4] J. A. Gallian, The Electronics Journal of Combinatorics, 16, $\sharp \mathrm{DS} 6(2013)$.
[5] C. Hoede and H. Kuiper, All wheels are graceful, Util. Math., 14 (1987), 311.
[6] F. Harary, Graph theory, Addition Wesley, Massachusetts, 1972.
[7] A. Rosa, On certain valuation of graph, Theory of Graphs, (Rome, July 1966), Goden and Breach, N. Y. and Paris, 1967, 349-355.
[8] S. C. Shee and Y. S. Ho, The cordiality of the path union of n copies of a graph, Discrete Math., 151 (1996), 221-229.
[9] S. K. Vaidya, G. V. Ghodasara, Sweta Srivastav and V. J. Kaneria, Cordial labeling for two Cycle related graphs, The Mathematics Student, Vol 76(2007), 273-282.
[10] S. K. Vaidya, Sweta Srivastav, V. J. Kaneria and G. V. Ghodasara, Cordial and 3-equitable labeling of cycle with twin chords, Proc. ICETAETS, Vol. 1, Jan 2008, 905-907.

