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Abstract

The packing chromatic number χρ(G) of a graph G is the smallest integer k for which

there exists a mapping π : V (G) −→ {1, 2, ..., k} such that any two vertices of color i are

at distance at least i + 1. It is a frequency assignment problem used in wireless networks,

which is also called broadcast coloring. It is proved that packing coloring is NP-complete

for general graphs and even for trees. In this paper, we compute the packing chromatic

number for circular fans with two and four chords and mesh of trees.
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1 Introduction

Let G be a connected graph and k be an integer, k ≥ 1. A packing k-coloring of a

graph G is a mapping π : V (G) −→ {1, 2, ..., k} such that any two vertices of color i are at

distance at least i + 1. The packing chromatic number χρ(G) of G is the smallest integer k

for which G has packing k-coloring. The concept of packing coloring comes from the area of

frequency assignment in wireless networks and was introduced by Goddard et al. [8] under the

name Broadcast coloring. It also has several applications, such as, resource replacement and

biological diversity. The term packing chromatic number was introduced by Brešar [3].

Goddard et al. [8] proved that the packing coloring problem is NP-complete for general

graphs and Fiala and Golovach [5] proved that it is NP-complete even for trees. Sloper [13]

studied a special type of packing coloring, called eccentric coloring and proved that the infinite

3-regular tree has packing chromatic number 7. For the infinite planar square lattice Z2, 10

≤ χρ(Z2) ≤ 17 [6, 9]. The packing coloring of distance graphs were studied in [4, 14]. For the

infinite hexagonal lattice H, χρ(H) = 7 [3, 11].

Argiroffo et al. [1, 2] proved that the packing coloring is solvable in polynomial time for

the class of (q, q − 4) graphs, partner limited graphs and for an infinite subclass of lobsters,
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including caterpillars. It is proved in [7, 12] that the infinite, planar triangular lattice and the

three dimensional square lattice have unbounded packing chromatic number. In this paper, we

study the packing chromatic number of circular fans with two and four chords and mesh of

trees.

2 Preliminaries

Proposition 2.1. [8] Let H be a subgraph of G. Then χρ(H) ≤ χρ(G).

Proposition 2.2. [8] χρ(Cn) =

{
3 when n is a multiple of 4

4 when n is not a multiple of 4

We introduce the following notations: α0(G) for the vertex cover number and β0(G) for the

independence number. By Gallai’s theorem n− β0(G) = α0(G)[8].

Proposition 2.3. [8] For every graph G, χρ(G) = α0(G) + 1 if G has diameter 2.

Proposition 2.4. [8] Let T be a tree of diameter 4 with central vertex v. For i = 1, 2, 3, let ni

denote the number of neighbours of v of degree i, and L denote the large (vertex with degree

4 or more) neighbours of v. If L = 0 then χρ(T ) = 4 if n3 ≥ 2 and n1 + n2 + n3 ≥ 3

3 Circular fan with four and two chords

Definition 3.1. [10] Let C : x1x2...xmx1 be a cycle on m vertices. Let u be a new vertex.

The graph obtained by adding edges (u, xi), i = 1, 2, ...,m − 8 to C and chords (xm−2, xm),

(xm−4, xm−1), (xm−6, xm−3) and (xm−5, xm−7) is called a circular fan with four chords and is

denoted by F (m, 4). See Figure 1(a).

Theorem 3.2. χρ(F (m, 4)) = (dm−72 e) + 2 for m ≥ 16.

Proof: Let G denote F (m, 4), m ≥ 16. Then, consider the subgraph H of F (m, 4) induced

by u and its neighbours. The graph H is of diameter 2 with m − 7 vertices. Therefore, the

independence number is bm−72 c and the vertex cover number is (m− 7) − bm−72 c = dm−72 e. By

Proposition 2.3, χρ(H) = (dm−72 e) + 1. Since m ≥ 16, at most four vertices of H are colored

with 2,3,4 and 5.

Consider the subgraph H ′ induced by V (G)\V (H). By Definition 3.1, H ′ consists of only eight

vertices constituting four edges (xm−2, xm),(xm−4, xm−1),(xm−6, xm−3), (xm−5, xm−7). Since

diameter of F (m, 4) is 5, no vertex of H ′ can be colored 5.

Since d({xm−7, xm−6, xm−5, xm−2, xm−1, xm}, xi) ≤ 4 for 1 ≤ i ≤ m − 8, vertices xm, xm−1,

xm−2, xm−5, xm−6, xm−7 can not be colored with 4. Thus, either xm−3 or xm−4 can be colored

with 4. Since d({xm, xm−7}, xi) ≤ 3 for 1 ≤ i ≤ m−8, vertices xm and xm−7 can not be colored

3 and giving color 3 to any other vertex of H ′ , no other vertices receive color 3 because except

vertices xm and xm−7, all other vertices are at distance less than 4 to each other. Thus at most
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one vertex can be colored 4 and one vertex can be colored 3. Since diameter of H ′ is 4, at most

two vertices with color 2 and three vertices with color 1 can be colored and the remaining one

vertex should receive distinct color greater than (dm−72 e)+1. Hence χρ(F (m, 4)) ≥ (dm−72 e)+2.

We give an algorithm to color the circular fan F (m, 4) and prove that the bound is sharp.

Procedure PACKING COLORING (F (m, 4)),m ≥ 16

Algorithm

Step 1: Color the vertices x2i−1, 1 ≤ i ≤ dm−82 e with color 1.

Step 2: Color the vertices x2,x4 and x6 with 2,3 and 4.

Step 3: Color the vertices xm−1, xm−2, xm−3, xm−4, xm−5, xm−6, xm−7 sequentially with

2,1,4,1,3,2,1 when m is even and with 2,1,4,1,3,1,2 sequentially when m is odd.

Step 4: Color the vertices x2i, u and xm, 4 ≤ i ≤ bm−82 c consecutively beginning with 5.

Output: χρ(F (m, 4)) = dm−72 e+ 2.

Proof of Correctness: Since d(x6, xm−3) = 5, vertices x6 and xm−3 are colored with 4 for all

m.

Since d(x4, xm−5) = 4, vertices x4 and xm−5 are colored with 3 for all m.

Since d(x2, xm−1) = 3, d(x2, xm−6) = 3 and d(xm−1, xm−6) = 3, vertices x2, xm−1 and xm−6

are colored with 2 when m is even. Similarly, since d(x2, xm−1) = 3, d(x2, xm−7) = 3 and

d(xm−1, xm−7) = 3, vertices x2, xm−1 and xm−7 are colored with 2 when m is odd.

Since d(xm−2, xm−4) = 2, d(xm−2, xm−7) = 3, d(xm−4, xm−7) = 2 and d({xm−2, xm−4, xm−7}, x2i−1) ≥
2 for 1 ≤ i ≤ dm−82 e, vertices xm−2, xm−4, xm−7 and x2i−1 for 1 ≤ i ≤ dm−82 e are colored with

1 when m is even.

Since d(xm−2, xm−4) = 2, d(xm−2, xm−6) = 3, d(xm−4, xm−6) = 2 and d({xm−2, xm−4, xm−6}, x2i−1) ≥
2, 1 ≤ i ≤ dm−82 e, vertices xm−2, xm−4, xm−6 and x2i−1 for 1 ≤ i ≤ dm−82 e are colored with 1

when m is odd.

The remaining (dm−72 e − 2) vertices are labeled consecutively beginning with 5.
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Figure 1: (a) F (m, 4), (b) χρ(F (16, 4)) = 7 and (c) χρ(F (17, 4)) = 7.



148 Albert William, S. Roy and Indra Rajasingh

The proof of Theorems 3.4, 3.6 and 3.8 are similar to that of Theorem 3.2.

Definition 3.3. [10] Let C : x1x2...xmx1 be a cycle on m vertices. Let u be a new vertex.

The graph obtained by adding edges (u, xi), i = 1, 2, ...,m− 4 to C and chords (xm−2, xm) and

(xm−1, xm−3) is called a circular fan with two chords and is denoted by F (m, 2). See Figure

2(a).

Theorem 3.4. χρ(F (m, 2)) = dm−42 e+ 3 for m ≥ 10.

u
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Figure 2: (a) F (m, 2), (b) χρ(F (13, 2)) = 8 and (c) χρ(F (12, 2)) = 7.

Definition 3.5. [10] Let C : x1x2...xmx1 be a cycle on m vertices. Let u and v be two

new vertices. The graph obtained by adding edges (u, xi), i = 1, 2, ...,m − 3 and (v, xi), i =

m − 2,m − 1,m to C is called a double headed circular fan and is denoted by DF (m). See

Figure 3(a).

Theorem 3.6. χρ(DF (m)) = dm−32 e+ 3 for m ≥ 10.
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Figure 3: (a) DF (m), (b) χρ(DF (13)) = 8 and (c) χρ(F (12)) = 8.

Definition 3.7. [10] Let C : x1x2...xmx1 be a cycle on m vertices. Let u and v be two

new vertices. The graph obtained by adding edges (u, xi), i = 1, 2, ...,m − 7 and (v, xi), i =

m − 3,m − 4,m − 5 to C and chords (xm−2, xm) and (xm−1, xm−6) is called a double headed

circular fan with two chords and is denoted by DF (m, 2). See Figure 4(a).
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Theorem 3.8. χρ(DF (m, 2))= dm−72 e+ 3 for m ≥ 16.
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Figure 4: (a) DF (m, 2), (b) χρ(DF (17, 2)) = 8 and (c) χρ(DF (16, 2)) = 8.

4 Mesh of Trees

Let N = 2n. The N ×N mesh of trees denoted by MT (n) is constructed from an N ×N
grid of vertices by adding vertices and edges to form a complete binary tree in each row and

each column and is said to be of dimension n. The leaves of the tree are precisely the original

vertices of the grid, and the added vertices are precisely the internal vertices of trees. Overall,

the network has 3N2−2N vertices. The leaf and root vertices have degree 2 and all other

vertices have degree 3.

Since MT (1) is a cycle on 8 vertices, by Propositions 2.1 and 2.2, χρ(MT (1)) = 3. hence,

we have the following theorem.

Theorem 4.1. χρ(MT (1)) = 3.

Theorem 4.2. χρ(MT (2)) = 3.

Proof: Since C8 is a subgraph of MT (2), by Propositions 2.1 and 2.2, χρ(MT (2)) ≥ 3. The

coloring shown in Figure 5 shows that χρ(MT (2)) = 3.
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Figure 5: χρ(MT (2)) = 3.
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Theorem 4.3. χρ(MT (3) = 4.

Proof: Since a tree of diameter 4 with 4 colors is a subgraph of MT (3), by Propositions 2.1

and 2.4, χρ(MT (3)) ≥ 4. The coloring of MT (3) in Figure 6 shows that χρ(MT (3)) = 4.
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Figure 6: χρ(MT (3)) = 4.

Theorem 4.4. For MT (4), 4 ≤ χρ(MT (4)) ≤ 5.

Proof: Since MT (3) is a subgraph of MT (4), χρ(MT (4)) ≥ 4.

MT
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Figure 7: Four copies of MT (3) in MT (4).

We give an algorithm to show that the upper bound for MT (4) is 5. See Figure 8.

Procedure PACKING COLORING MT (4)

The Mesh of Tree MT (4) has 4 copies of MT (3). We call them as MT 1(3), MT 2(3), MT 3(3)

and MT 4(3). See Figure 7.

Algorithm

Step 1: Copy the coloring of MT (3) given in the proof of Theorem 4.3 to MT 1(3) and MT 4(3).

Step 2: Copy the coloring of MT (3) to MT 2(3) and MT 3(3) and replace the color 4 by 5.

Step 3: Color the remaining vertices with color 1.
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Output: χρ(MT (4)) ≤ 5

Proof of Correctness: Coloring MT 1(3), MT 2(3), MT 3(3) and MT 4(3) as in MT (3) implies

that the vertices receive color i are at distance i+ 1 apart from each other for 1 ≤ i ≤ 3. Since

the distance between any vertex of MT 1(3) to MT 4(3) is at most 9, the vertices in MT 1(3)

and MT 4(3) can be given color 4. Similarly, since the distance between any vertex of MT 2(3)

to MT 3(3) is at most 9, the vertices in MT 2(3) and MT 3(3) can be given color 5. Since the

root vertices of degree two connecting four copies of MT 1(3), MT 2(3), MT 3(3) and MT 4(3)

are at distance at most 2 from the vertices which received color 1, these vertices of degree 2 are

colored with 1. Thus the number of colors used is 5. Therefore χρ(MT (4)) ≤ 5.
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Figure 8: χρ(MT (4)) = 5.
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[12] D. Rall, B. Brešar, A. Finbow and S. Klavžar, On the Packing Chromatic Number of Trees,

Cartesian Products and Some Infinite Graphs, Electronic Notes in Discrete Mathematics,

30 (2008), 57 -61.

[13] C. Sloper, An eccentric coloring of trees, Australas. Journal of Combin., 29 (2004), 309 –

321.

[14] O. Togni, On Packing Colorings of Distance Graphs, Discrete Appl. Math., 167 (2014),

280 – 289.


