International Journal of Mathematics and Soft Computing Vol.4, No.2 (2014), 137 - 144. ISSN Print : 2249 - 3328

ISSN Online: 2319 - 5215

Some cycle-supermagic graphs

P. Jeyanthi

Research Centre, Department of Mathematics Govindammal Aditanar College for Women Tiruchendur, Tamilnadu, India. E-mail: jeyajeyanthi@rediffmail.com

N.T. Muthuraja

Department of Mathematics Cape Institute of Technology Levengipuram, Tamilnadu, India. E-mail: bareeshraja@yahoo.com

Abstract

A simple graph $G = (V, E)$ admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to H. G is H-magic if there is a total labeling $f : V \cup E \rightarrow \{1, 2, 3, \dots, |V| + |E|\}$ such that for each subgraph $H' = (V', E')$ of G isomorphic to H , \sum $v \in V_1$ $f(v) + \sum$ $e \in E_1$ $f(e) = s$ is constant. When $f(V) = \{1, 2, \dots, |V|\}$, then G is said to be H-supermagic. In this paper, we show that $P_{m,n}$ and the splitting graph of a cycle C_n are cycle-supermagic.

Keywords: Total labeling, H-magic, H-covering, H- supermagic covering. AMS Subject Classification(2010): 05C78.

1 Introduction

The concept of H-magic graphs was introduced in [2]. An edge-covering of a graph G is a family of different subgraphs H_1, H_2, \ldots, H_k such that each edge of E belongs to at least one of the subgraphs $H_i, 1 \leq i \leq k$. Then, it is said that G admits an (H_1, H_2, \ldots, H_k) - edge covering. If every H_i is isomorphic to a given graph H , then we say that G admits an H -covering.

If all subgraphs in the covering are edge-disjoint, the covering is also called an H-decomposition of G.

Let $G = (V, E)$ admit an H-covering. We say that a bijective function $f : V \cup E \rightarrow \{1, 2, 3, \dots, |V| +$ $|E|\}$ is an H-magic labeling of G if there is a positive integer $m(f)$, which we call magic sum, such that for each subgraph $H' = (V', E')$ of G isomorphic to H, we have, $f(H') = \sum$ $v\in V'$ $f(v) + \sum$ $e \in E'$ $f(e) =$ $m(f)$. In this case we say that the graph G is H-magic. If $f(V) = \{1, 2, \dots, |V|\}$, we say that f is an H-supermagic labeling. An H-covering of G is said to be an H-(super)magic covering of G if G admits an H-(super)magic labeling and the supermagic sum is denoted by $s(f)$.

We use the following notations. For any two integers $n < m$, we denote by $[n, m]$, the set of all consecutive integers from *n* to *m*. For any set $\mathbb{I} \subset \mathbb{N}$ we write, $\sum \mathbb{I} = \sum$ $\sum_{x\in\mathbb{I}}$ x and for any integers k ,

 $\mathbb{I} + k = \{x + k : x \in \mathbb{I}\}.$ Thus $k + [n, m]$ is the set of consecutive integers from $k + n$ to $k + m$. It can be easily verified that $\sum(\mathbb{I} + k) = \sum \mathbb{I} + k|\mathbb{I}|$.

If $\mathbb{P} = \{X_1, X_2, \dots, X_n\}$ is a partition of a set X of integers with the same cardinality then we say $\mathbb P$ is an *n*-equipartition of X. Also we denote the set of subsets sums of the parts of $\mathbb P$ by $\sum \mathbb P =$ $\{\sum X_1, \sum X_2, \cdots, \sum X_n\}.$ Finally, given a graph $G = (V, E)$ and a total labeling f on it we denote by $f(G) = \sum f(V) + \sum f(E)$.

2 Preliminary Results

Lemma 2.1. [4] Let h and k be two positive integers and h is odd. Then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of $X = [1, hk]$ such that $\sum X_r = \frac{(h-1)(hk+k+1)}{2} + r$ for $1 \le r \le k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P} = \frac{(h-1)(hk+k+1)}{2} + [1, k].$

Lemma 2.2. [4] Let h and k be two positive integers such that h is even and $k > 3$ is odd. Then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of $X = [1, hk]$ such that $\sum X_r = \frac{(h-1)(hk+k+1)}{2} + r$ for $1 \le r \le k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P} = \frac{(h-1)(hk+k+1)}{2} + [1, k]$.

Lemma 2.3. [4] If h is even, then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \dots, X_k\}$ of $X = [1, hk]$ such that $\sum X_r = \frac{h(hk+1)}{2}$ $\frac{k+1}{2}$ for $1 \leq r \leq k$.

Lemma 2.4. [4] Let h and k be two even positive integers. If $X = [1, hk+2] - \{1, \frac{k}{2} + 2\}$, there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X such that $\sum X_r = \frac{h^2k+5h-k-2}{2} + r$ for $1 \le r \le k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^2k+5h-k-2}{2} + [1, k]$.

Lemma 2.5. [4] Let $h \geq 3$ be an odd integer. If k is odd then there exists a k-equipartition \mathbb{P} = $\{X_1, X_2, \cdots, X_k\}$ of $X = [1, hk]$ such that $\sum X_r = \frac{(h(hk+1))}{2}$ $\frac{2(k+1)}{2}$ for $1 \leq r \leq k$.

Lemma 2.6. [4] Let $h \geq 3$ be an odd integer. If k is even then there exists a k-equipartition \mathbb{P} = $\{X_1, X_2, \cdots, X_k\}$ of $X = [1, hk + 1] - \{\frac{k}{2} + 1\}$ such that $\sum X_r = \frac{h^2k + 3h - 1}{2}$ $\frac{-3h-1}{2}$ for $1 \leq r \leq k$.

Lemma 2.7. [4] Let h and k be two even positive integers. If $X = \begin{bmatrix} 1, hk + 1 \end{bmatrix} - \begin{bmatrix} \frac{k}{2} + 1 \end{bmatrix}$ there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \dots, X_k\}$ of X such that $\sum X_r = \frac{h^2k+3h-k-2}{2} + r$ for $1 \le r \le k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^2k+3h-k-2}{2} + [1, k]$.

Lemma 2.8. [4] If h is even then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \dots, X_k\}$ of $X = [1, hk]$ such that $\sum X_r = \frac{k(h^2-2)+h-2}{2} + 2r$ for $1 \le r \le k$.

3 Main Results

Definition 3.1. [3] Let u and v be two fixed vertices. We connect u and v by means of $n \ge 2$ internally disjoint paths of length $m \geq 2$ each. The resulting graph embedded in a plane is denoted by $P_{m,n}$.

 $P_{m,n}$ has $(m-1)n + 2$ vertices and mn edges.

Theorem 3.2. The graph $P_{m,n}$ is C_{2m} -supermagic for all $m, n \ge 2$.

Proof: Let u and v be two fixed vertices. We join u and v by means of n internally disjoint paths of length m.

For $1 \le i \le n$, let $P_i = uv_{i,1}v_{i,2}\cdots v_{i,m-1}v$ be the i^{th} path between u and v. Let $C_{i,j} = P_i P_j^{-1}$. Then $C_{i,j} = uv_{i,1}v_{i,2} \cdots v_{i,m-1}vv_{j,m-1}v_{j,m-2}, \cdots v_2v_1u$ is a cycle of length $2m$.

Then clearly $\{C_{i,j} : i,j = 1,2,\cdots,n \text{ and } i \neq j\}$ is a covering for $P_{m,n}$. Also, $C_{i,j} \cong C_{2m}$ for $i, j = 1, 2, \dots, n$ and $i \neq j$. Therefore, $\{C_{i,j} : i, j = 1, 2, \dots, n$ and $i \neq j\}$ is a C_{2m} -covering for $P_{m,n}$.

Now, we prove that there exists a C_{2m} -supermagic covering for $P_{m,n}$.

Let V be the vertex set and E be the edge set of $P_{m,n}$. Then $|V| = (m-1)n + 2$ and $|E| = mn$. Let V_i be the vertex set and E_i be the edge set of the path P_i for $i = 1, 2, \dots, n$. Let $V'_i = V_i - \{u, v\}$. **Case 1:** m is even and n is odd.

Since $m-1$ is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{Q}_1 = \{X_1, X_2, \cdots, X_n\}$ of $[1, (m-1)]$ $1|n|$ such that

$$
\sum X_i = \frac{(m-2)[(m-1)n + n + 1]}{2} + i \text{ for } 1 \le i \le n
$$

$$
= \frac{(m-2)(mn+1)}{2} + i \text{ for } 1 \le i \le n.
$$

Since m is even and n is odd, by Lemma 2.2 there exists an n-equipartition $\mathbb{Q}'_2 = \{Y'_1, Y'_2, \cdots, Y'_n\}$ of $[1, mn]$ such that

$$
\sum Y'_i = \frac{(m-1)(mn+n+1)}{2} + i \text{ for } 1 \le i \le n.
$$

Add $(m-1)n+2$ to each element of the set $[1, mn]$. We get an n-equipartition $\mathbb{Q}_2 = \{Y_1, Y_2, \cdots, Y_n\}$ of $[(m-1)n + 3, 2mn - n + 2]$ such that

$$
\sum Y_i = [(m-1)n + 2]m + \frac{(m-1)(mn+n+1)}{2} + i \quad \text{for } 1 \le i \le n.
$$

Define a total labeling $f : V \cup E \rightarrow [1, 2mn - n + 2]$ as follows:

$$
f(u) = (m-1)n + 1 \text{ and } f(v) = (m-1)n + 2.
$$

\n
$$
f(V'_i) = X_i \text{ for } 1 \le i \le n.
$$

\n
$$
f(E_i) = Y_{n-i+1} \text{ for } 1 \le i \le n.
$$

Then for $1 \leq i \leq n$,

$$
f(P_i) = f(u) + f(v) + \sum f(V'_i) + \sum f(E_i)
$$

= $f(u) + f(v) + \sum X_i + \sum Y_{n-i+1}$

140 P. Jeyanthi and N.T. Muthuraja

= constant.

Thus, $f(P_i)$ is constant for $1 \leq i \leq n$. Now, $f(C_{i,j}) = f(P_i) + f(P_j) - f(u) - f(v)$ which is a constant. Since $C_{i,j} \cong C_{2m}$, $P_{m,n}$ is C_{2m} -supermagic.

Case 2: m is even and n is even.

Since $m-1$ is odd and n is even, by Lemma 2.6 there exists an n-equipartition $\mathbb{Q}_1 = \{X_1, X_2, \cdots, X_n\}$ of $[1, (m-1)n + 1] - \{\frac{n}{2} + 1\}$ such that

$$
\sum X_r = \frac{(m-1)^2n + 3(m-1) - 1}{2}
$$
 for $1 \le i \le n$.

Since m is even, by Lemma 2.3 there exists an n-equipartition $\mathbb{Q}'_2 = \{Y'_1, Y'_2, \dots, Y'_n\}$ of $[1, mn]$ such that

$$
\sum Y'_i = \frac{m(mn+1)}{2} \text{ for } 1 \le i \le n.
$$

Add $(m-1)n+2$ to each element of the set $[1, mn]$. We get an n-equipartition $\mathbb{Q}_2 = \{Y_1, Y_2, \cdots, Y_n\}$ of $[(m-1)n + 3, 2mn - n + 2]$ such that

$$
\sum Y_i = [(m-1)n + 2]m + \frac{m(mn+1)}{2} \text{ for } 1 \le i \le n.
$$

Define a total labeling $f : V \cup E \rightarrow [1, 2mn - n + 2]$ as follows:

$$
f(u) = \frac{n}{2} + 1 \quad \text{and } f(v) = (m - 1)n + 2.
$$

\n
$$
f(V'_i) = X_i \quad \text{for } 1 \le i \le n.
$$

\n
$$
f(E_i) = Y_i \quad \text{for } 1 \le i \le n.
$$

Then for $1 \leq i \leq n$,

$$
f(P_i) = f(u) + f(v) + \sum f(V'_i) + \sum f(E_i)
$$

= $f(u) + f(v) + \sum X_i + \sum Y_i$
= constant.

Thus, $f(P_i)$ is constant for $1 \leq i \leq n$. Now, $f(C_{i,j}) = f(P_i) + f(P_j) - f(u) - f(v)$ which is a constant. Since $C_{i,j} \cong C_{2m}$, $P_{m,n}$ is C_{2m} -supermagic.

Case 3: m is odd and n is odd.

Since $m-1$ is even and n is odd, by Lemma 2.2 there exists an n-equipartition $\mathbb{Q}_1 = \{X_1, X_2, \cdots, X_n\}$ of $[1,(m-1)n]$ such that

$$
\sum X_i = \frac{(m-2)[(m-1)n + n + 1]}{2} + i \text{ for } 1 \le i \le n
$$

$$
= \frac{(m-2)(mn+1)}{2} + i \text{ for } 1 \le i \le n.
$$

Since m is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{Q}'_2 = \{Y'_1, Y'_2, \cdots, Y'_n\}$ of $[1, mn]$ such that

$$
\sum X_i = \frac{(m-1)(mn+n+1)}{2} + i \text{ for } 1 \le i \le n.
$$

Add $(m-1)n + 2$ to each element of the set $[1, mn]$. We get an n-equipartition $\mathbb{Q}_2 = \{Y_1, Y_2, \dots, Y_n\}$ of $[(m-1)n + 3, 2mn - n + 2]$ such that

$$
\sum Y_i = [(m-1)n + 2]m + \frac{(m-1)(mn+n+1)}{2} + i \text{for } 1 \le i \le n.
$$

Define a total labeling $f : V \cup E \rightarrow [1, 2mn - n + 2]$ as follows:

$$
f(u) = (m-1)n + 1 \text{ and } f(v) = (m-1)n + 2.
$$

\n
$$
f(V'_i) = X_i \text{ for } 1 \le i \le n.
$$

\n
$$
f(E_i) = Y_{n-i+1} \text{ for } 1 \le i \le n.
$$

Then for $1 \leq i \leq n$,

$$
f(P_i) = f(u) + f(v) + \sum f(V'_i) + \sum f(E_i)
$$

= $f(u) + f(v) + \sum X_i + \sum Y_{n-i+1}$
= constant.

Hence, $f(C_{i,j})$ is a constant and consequently $P_{m,n}$ is C_{2m} -supermagic.

Case 4: m is odd and n is even.

Since $m-1$ and n are even, by Lemma 2.4 there exists an n-equipartition $\mathbb{Q}_1 = \{X_1, X_2, \cdots, X_n\}$ of $[1,(m-1)n+2] - \{1,\frac{n}{2}+2\}$ such that

$$
\sum X_i = \frac{(m-1)^2n + 5(m-1) - n - 2}{2} + i \text{ for } 1 \le i \le n.
$$

Since m is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{Q}'_2 = \{Y'_1, Y'_2, \cdots, Y'_n\}$ of $[1, mn]$ such that

$$
\sum Y_i' = \frac{(m-1)(mn+n+1)}{2} + i \quad \text{for } 1 \le i \le n.
$$

Add $(m-1)n + 2$ to each element of the set $[1, mn]$. We get an n-equipartition $\mathbb{Q}_2 = \{Y_1, Y_2, \dots, Y_n\}$ of $[(m-1)n + 3, 2mn - n + 2]$ such that

$$
\sum Y_i = [(m-1)n + 2]m + \frac{(m-1)(mn+n+1)}{2} + i \quad \text{for } 1 \le i \le n.
$$

Define a total labeling $f : V \cup E \rightarrow [1, 2mn - n + 2]$ as follows:

$$
f(u) = 1 \quad \text{and } f(v) = \frac{n}{2} + 2
$$

\n
$$
f(V'_i) = X_i \quad \text{for } 1 \le i \le n
$$

\n
$$
f(E_i) = Y_{n-i+1} \quad \text{for } 1 \le i \le n.
$$

Then for $1 \leq i \leq n$,

$$
f(P_i) = f(u) + f(v) + \sum f(V'_i) + \sum f(E_i)
$$

= $f(u) + f(v) + \sum X_i + \sum Y_{n-i+1}$
= constant.

Thus, $f(P_i)$ is constant for $1 \le i \le n$. Now, $f(C_{i,j}) = f(P_i) + f(P_j) - f(u) - f(v)$ which is a constant. Since $C_{i,j} \cong C_{2m}$, $P_{m,n}$ is C_{2m} -supermagic. Hence, $P_{m,n}$ is C_{2m} -supermagic for all $m, n \ge 2$. \blacksquare

Illustration 3.3. C_{10} -supermagic labeling of $P_{5,5}$ is given in Figure 1.

s ✧ ^s ✧ ✧✧ ❜❜❜❜ ❡ ❡ ❡ ❡❡ ²¹ ²⁵ ³ 30 8 ³⁵ ¹³ ⁴² ¹⁸ ⁴³ ²² 5 32 10 33 11 39 16 4 31 9 34 12 38 17 2 29 7 36 14 41 19 1 28 6 37 15 40 20 23 24 26 27 47 45 46 44

Figure 1: C_{10} -supermagic labeling of $P_{5,5}$.

Illustration 3.4. C_{10} -supermagic labeling of $P_{5,4}$ is given in Figure 2.

Figure 2: C_{10} -supermagic labeling of $P_{5,4}$.

Definition 3.5. [1] For a graph G, the splitting graph of G; $S(G)$, is obtained from G by adding for each vertex v of G a new vertex v' so that v' is adjacent to every vertex that is adjacent to v.

Theorem 3.6. The splitting graph of a cycle C_n is C_4 -supermagic for $n \neq 4$.

Proof: Let $C_n = v_1v_2\cdots v_n$ be a cycle of length n and $S(C_n)$ be its splitting graph. Let $v'_1, v'_2, \cdots v'_n$ be the added vertices corresponding to $v_1, v_2, \cdots v_n$. Let V be the vertex set and E be the edge set of the splitting graph $S(C_n)$. Then,

$$
V = \{v_1, v_2, \dots, v_n, v'_1, v'_2, \dots, v'_n\}
$$
 and
\n $E = \{v_1v_2, v_2v_3, \dots v_{n-1}v_n, v_nv_1\} \cup \{v'_1v_2, v'_2v_3, \dots v'_{n-1}v_n, v'_nv_1\} \cup \{v'_1v_n, v'_2v_1, v'_3v_2, \dots v'_nv_{n-1}\}.$ Let $C_4^i = v_iv_{i+1}v'_iv_{i-1}$ for $2 \leq i \leq n-1$, $C_4^1 = v_1v_2v'_1v_n$ and $C_4^n = v_nv_1v'_nv_{n-1}$. Then, clearly $\{C_4^i : 1 \leq i \leq n\}$ is a covering for $S'(C_n)$. Since $C_4^i \cong C_4$ for $1 \leq i \leq n$ we have $\{C_4^i : 1 \leq i \leq n\}$ is a C_4 -covering and we prove that it is a C_4 -supermagic covering. Define a total labeling $f : V \cup E \leftarrow \{1, 2, 3, \dots, |V \cup E|\}$ by

$$
f(v_i) = i \text{ for } 1 \le i \le n
$$

\n
$$
f(v'_i) = 2n - i \text{ for } 1 \le i \le n - 1
$$

\n
$$
f(v'_n) = 2n
$$

\n
$$
f(v_iv_{i+1}) = 3n - i + 1 \text{ for } 1 \le i \le n - 1
$$

\n
$$
f(v_iv_{i+1}) = 2n + 1
$$

\n
$$
f(v'_iv_{i+1}) = 3n + i \text{ for } 1 \le i \le n - 1
$$

\n
$$
f(v'_iv_{i-1}) = 4n
$$

\n
$$
f(v'_iv_{i-1}) = 5n - i + 1 \text{ for } 2 \le i \le n
$$

\n
$$
f(v'_1v_n) = 5n
$$

For $2 \leq i \leq n-1$,

$$
f(C_4^i) = f(v_i) + f(v_{i+1}) + f(v_i') + f(v_{i-1}) + f(v_i'v_{i+1}) + f(v_{i+1}v_i') + f(v_i'v_{i-1}) + f(v_{i-1}v_i)
$$

\n
$$
= i + i + 1 + 2n - i + i - 1 + 3n - i + 1 + 3n - i + 1 + 3n - i + 1 + 1
$$

\n
$$
= 16n + 4.
$$

\n
$$
f(C_4^1) = f(v_1) + f(v_2) + f(v_1') + f(v_1) + f(v_1v_2) + f(v_2v_1') + f(v_1'v_n) + f(v_1v_n)
$$

\n
$$
= 1 + 2 + 2n - 1 + n + 3n + 3n + 1 + 5n + 2n + 1
$$

\n
$$
= 16n + 4.
$$

\n
$$
f(C_4^n) = f(v_n) + f(v_1) + f(v_n') + f(v_{n-1}) + f(v_n v_1) + f(v_1 v_n') + f(v_n' v_{n-1}) + f(v_{n-1} v_n)
$$

\n
$$
= n + 1 + 2n + n - 1 + 2n + 1 + 4n + 4n + 1 + 2n + 2
$$

\n
$$
= 16n + 4.
$$

Hence $f(C_4^i) = 16n + 4$ for $1 \le i \le n$. Since $C_4^i \cong C_4$ for $1 \le i \le n$ we have $\{C_4^i\}$ is a C_4 -supermagic covering for the splitting graph $S'(C_n)$. Hence, $S'(C_n)$ is C_4 -supermagic.

144 P. Jeyanthi and N.T. Muthuraja

Figure 3: A C_4 -supermagic labeling of $S'(C_n)$ with supermagic strength 84.

 \blacksquare

References

- [1] J. A. Gallian, *A Dynamic Survey of Graph Labeling*, The Electronic Journal of Combinatorics, 16 (2013), #DS6.
- [2] A. Gutierrez, A.Llado, *Magic coverings*, J. Combin. Math. Combin. Comput., 55(2005), 43-56.
- [3] K. Kathiresan, *Two classes of graceful graphs*, Ars Combin., 55 (2000) 129-132.
- [4] P. Selvagopal, *A study on graph labeling*, Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli, 2010.