

ISSN Print : 2249 - 3328

ISSN Online: 2319 - 5215

Some cycle-supermagic graphs

P. Jeyanthi

Research Centre, Department of Mathematics Govindammal Aditanar College for Women Tiruchendur, Tamilnadu, India. E-mail: jeyajeyanthi@rediffmail.com

N.T. Muthuraja

Department of Mathematics Cape Institute of Technology Levengipuram, Tamilnadu, India. E-mail: bareeshraja@yahoo.com

Abstract

A simple graph G=(V,E) admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to H. G is H-magic if there is a total labeling $f:V\cup E\to \{1,2,3,\cdots,|V|+|E|\}$ such that for each subgraph H'=(V',E') of G isomorphic to H, $\sum\limits_{v\in V_1}f(v)+\sum\limits_{e\in E_1}f(e)=s$ is constant. When $f(V)=\{1,2,\cdots,|V|\}$, then G is said to be H-supermagic. In this paper, we show that $P_{m,n}$ and the splitting graph of a cycle C_n are cycle-supermagic.

Keywords: Total labeling, *H*-magic, *H*-covering, *H*- supermagic covering. **AMS Subject Classification(2010):** 05C78.

1 Introduction

The concept of H-magic graphs was introduced in [2]. An edge-covering of a graph G is a family of different subgraphs H_1, H_2, \ldots, H_k such that each edge of E belongs to at least one of the subgraphs $H_i, 1 \leq i \leq k$. Then, it is said that G admits an (H_1, H_2, \ldots, H_k) - edge covering. If every H_i is isomorphic to a given graph H, then we say that G admits an H-covering.

If all subgraphs in the covering are edge-disjoint, the covering is also called an H-decomposition of G.

Let G=(V,E) admit an H-covering. We say that a bijective function $f:V\cup E\to\{1,2,3,\cdots,|V|+|E|\}$ is an H-magic labeling of G if there is a positive integer m(f), which we call magic sum, such that for each subgraph H'=(V',E') of G isomorphic to H, we have, $f(H')=\sum\limits_{v\in V'}f(v)+\sum\limits_{e\in E'}f(e)=m(f)$. In this case we say that the graph G is H-magic. If $f(V)=\{1,2,\cdots,|V|\}$, we say that f is an H-supermagic labeling. An H-covering of G is said to be an H-(super)magic covering of G if G admits an G-(super)magic labeling and the supermagic sum is denoted by g(f).

We use the following notations. For any two integers n < m, we denote by [n,m], the set of all consecutive integers from n to m. For any set $\mathbb{I} \subset \mathbb{N}$ we write, $\sum \mathbb{I} = \sum_{x \in \mathbb{I}} x$ and for any integers k,

 $\mathbb{I}+k=\{x+k:x\in\mathbb{I}\}$. Thus k+[n,m] is the set of consecutive integers from k+n to k+m. It can be easily verified that $\sum(\mathbb{I}+k)=\sum\mathbb{I}+k|\mathbb{I}|$.

If $\mathbb{P} = \{X_1, X_2, \dots, X_n\}$ is a partition of a set X of integers with the same cardinality then we say \mathbb{P} is an n-equipartition of X. Also we denote the set of subsets sums of the parts of \mathbb{P} by $\sum \mathbb{P} = \{\sum X_1, \sum X_2, \dots, \sum X_n\}$. Finally, given a graph G = (V, E) and a total labeling f on it we denote by $f(G) = \sum f(V) + \sum f(E)$.

2 Preliminary Results

Lemma 2.1. [4] Let h and k be two positive integers and h is odd. Then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X = [1, hk] such that $\sum X_r = \frac{(h-1)(hk+k+1)}{2} + r$ for $1 \leq r \leq k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P} = \frac{(h-1)(hk+k+1)}{2} + [1, k]$.

Lemma 2.2. [4] Let h and k be two positive integers such that h is even and $k \geq 3$ is odd. Then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X = [1, hk] such that $\sum X_r = \frac{(h-1)(hk+k+1)}{2} + r$ for $1 \leq r \leq k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P} = \frac{(h-1)(hk+k+1)}{2} + [1, k]$.

Lemma 2.3. [4] If h is even, then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X = [1, hk] such that $\sum X_r = \frac{h(hk+1)}{2}$ for $1 \le r \le k$.

Lemma 2.4. [4] Let h and k be two even positive integers. If $X = [1, hk + 2] - \{1, \frac{k}{2} + 2\}$, there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X such that $\sum X_r = \frac{h^2k + 5h - k - 2}{2} + r$ for $1 \le r \le k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^2k + 5h - k - 2}{2} + [1, k]$.

Lemma 2.5. [4] Let $h \ge 3$ be an odd integer. If k is odd then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X = [1, hk] such that $\sum X_r = \frac{(h(hk+1)}{2})$ for $1 \le r \le k$.

Lemma 2.6. [4] Let $h \geq 3$ be an odd integer. If k is even then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of $X = [1, hk + 1] - \{\frac{k}{2} + 1\}$ such that $\sum X_r = \frac{h^2k + 3h - 1}{2}$ for $1 \leq r \leq k$.

Lemma 2.7. [4] Let h and k be two even positive integers. If $X = [1, hk + 1] - \{\frac{k}{2} + 1\}$ there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X such that $\sum X_r = \frac{h^2k + 3h - k - 2}{2} + r$ for $1 \le r \le k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^2k + 3h - k - 2}{2} + [1, k]$.

Lemma 2.8. [4] If h is even then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X = [1, hk] such that $\sum X_r = \frac{k(h^2-2)+h-2}{2} + 2r$ for $1 \le r \le k$.

3 Main Results

Definition 3.1. [3] Let u and v be two fixed vertices. We connect u and v by means of $n \ge 2$ internally disjoint paths of length $m \ge 2$ each. The resulting graph embedded in a plane is denoted by $P_{m,n}$.

 $P_{m,n}$ has (m-1)n+2 vertices and mn edges.

Theorem 3.2. The graph $P_{m,n}$ is C_{2m} -supermagic for all $m, n \geq 2$.

Proof: Let u and v be two fixed vertices. We join u and v by means of n internally disjoint paths of length m.

For $1 \le i \le n$, let $P_i = uv_{i,1}v_{i,2}\cdots v_{i,m-1}v$ be the i^{th} path between u and v. Let $C_{i,j} = P_iP_j^{-1}$. Then $C_{i,j} = uv_{i,1}v_{i,2}\cdots v_{i,m-1}vv_{j,m-1}v_{j,m-2}\cdots v_2v_1u$ is a cycle of length 2m.

Then clearly $\{C_{i,j}: i, j=1,2,\cdots,n \text{ and } i\neq j\}$ is a covering for $P_{m,n}$. Also, $C_{i,j}\cong C_{2m}$ for $i,j=1,2,\cdots,n$ and $i\neq j$. Therefore, $\{C_{i,j}: i,j=1,2,\cdots,n \text{ and } i\neq j\}$ is a C_{2m} -covering for $P_{m,n}$.

Now, we prove that there exists a C_{2m} -supermagic covering for $P_{m,n}$.

Let V be the vertex set and E be the edge set of $P_{m,n}$. Then |V|=(m-1)n+2 and |E|=mn. Let V_i be the vertex set and E_i be the edge set of the path P_i for $i=1,2,\cdots,n$. Let $V_i'=V_i-\{u,v\}$. Case 1: m is even and n is odd.

Since m-1 is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{Q}_1 = \{X_1, X_2, \cdots, X_n\}$ of [1, (m-1)n] such that

$$\sum X_i = \frac{(m-2)[(m-1)n + n + 1]}{2} + i \text{ for } 1 \le i \le n$$

$$= \frac{(m-2)(mn+1)}{2} + i \text{ for } 1 \le i \le n.$$

Since m is even and n is odd, by Lemma 2.2 there exists an n-equipartition $\mathbb{Q}'_2 = \{Y'_1, Y'_2, \cdots, Y'_n\}$ of [1, mn] such that

$$\sum Y_i' = \frac{(m-1)(mn+n+1)}{2} + i \text{ for } 1 \le i \le n.$$

Add (m-1)n+2 to each element of the set [1, mn]. We get an n-equipartition $\mathbb{Q}_2 = \{Y_1, Y_2, \cdots, Y_n\}$ of [(m-1)n+3, 2mn-n+2] such that

$$\sum Y_i = [(m-1)n + 2]m + \frac{(m-1)(mn+n+1)}{2} + i \quad \text{for } 1 \le i \le n.$$

Define a total labeling $f: V \cup E \rightarrow [1, 2mn - n + 2]$ as follows:

$$\begin{array}{lcl} f(u) & = & (m-1)n+1 & \text{ and } f(v) = (m-1)n+2. \\ f(V_i') & = & X_i & \text{ for } 1 \leq i \leq n. \\ f(E_i) & = & Y_{n-i+1} & \text{ for } 1 \leq i \leq n. \end{array}$$

Then for $1 \le i \le n$,

$$f(P_i) = f(u) + f(v) + \sum f(V_i') + \sum f(E_i)$$

= $f(u) + f(v) + \sum X_i + \sum Y_{n-i+1}$

= constant.

Thus, $f(P_i)$ is constant for $1 \le i \le n$. Now, $f(C_{i,j}) = f(P_i) + f(P_j) - f(u) - f(v)$ which is a constant. Since $C_{i,j} \cong C_{2m}$, $P_{m,n}$ is C_{2m} -supermagic.

Case 2: m is even and n is even.

Since m-1 is odd and n is even, by Lemma 2.6 there exists an n-equipartition $\mathbb{Q}_1=\{X_1,X_2,\cdots,X_n\}$ of $[1,(m-1)n+1]-\{\frac{n}{2}+1\}$ such that

$$\sum X_r = \frac{(m-1)^2 n + 3(m-1) - 1}{2} \text{ for } 1 \le i \le n.$$

Since m is even, by Lemma 2.3 there exists an n-equipartition $\mathbb{Q}_2' = \{Y_1', Y_2', \cdots, Y_n'\}$ of [1, mn] such that

$$\sum Y_i' = \frac{m(mn+1)}{2} \text{ for } 1 \le i \le n.$$

Add (m-1)n+2 to each element of the set [1, mn]. We get an n-equipartition $\mathbb{Q}_2 = \{Y_1, Y_2, \cdots, Y_n\}$ of [(m-1)n+3, 2mn-n+2] such that

$$\sum Y_i = [(m-1)n + 2]m + \frac{m(mn+1)}{2} \text{ for } 1 \le i \le n.$$

Define a total labeling $f: V \cup E \rightarrow [1, 2mn - n + 2]$ as follows:

$$f(u) = \frac{n}{2} + 1 \quad \text{and } f(v) = (m-1)n + 2.$$

$$f(V_i') = X_i \quad \text{for } 1 \le i \le n.$$

$$f(E_i) = Y_i \quad \text{for } 1 \le i \le n.$$

Then for $1 \le i \le n$,

$$f(P_i) = f(u) + f(v) + \sum f(V_i') + \sum f(E_i)$$

= $f(u) + f(v) + \sum X_i + \sum Y_i$
= $constant$.

Thus, $f(P_i)$ is constant for $1 \le i \le n$. Now, $f(C_{i,j}) = f(P_i) + f(P_j) - f(u) - f(v)$ which is a constant. Since $C_{i,j} \cong C_{2m}$, $P_{m,n}$ is C_{2m} -supermagic.

Case 3: m is odd and n is odd.

Since m-1 is even and n is odd, by Lemma 2.2 there exists an n-equipartition $\mathbb{Q}_1 = \{X_1, X_2, \cdots, X_n\}$ of [1, (m-1)n] such that

$$\sum X_i = \frac{(m-2)[(m-1)n + n + 1]}{2} + i \text{ for } 1 \le i \le n$$

$$=\frac{(m-2)(mn+1)}{2}+i \text{ for } 1 \le i \le n.$$

Since m is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{Q}_2' = \{Y_1', Y_2', \cdots, Y_n'\}$ of [1, mn] such that

$$\sum X_i = \frac{(m-1)(mn+n+1)}{2} + i \text{ for } 1 \le i \le n.$$

Add (m-1)n+2 to each element of the set [1,mn]. We get an n-equipartition $\mathbb{Q}_2=\{Y_1,Y_2,\cdots,Y_n\}$ of [(m-1)n+3,2mn-n+2] such that

$$\sum Y_i = [(m-1)n + 2]m + \frac{(m-1)(mn+n+1)}{2} + i \text{ for } 1 \le i \le n.$$

Define a total labeling $f: V \cup E \rightarrow [1, 2mn - n + 2]$ as follows:

$$f(u) = (m-1)n+1$$
 and $f(v) = (m-1)n+2$.

$$f(V_i') = X_i \quad \text{for } 1 \le i \le n.$$

$$f(E_i) = Y_{n-i+1}$$
 for $1 \le i \le n$.

Then for $1 \le i \le n$,

$$f(P_i) = f(u) + f(v) + \sum_{i} f(V_i') + \sum_{i} f(E_i)$$

= $f(u) + f(v) + \sum_{i} X_i + \sum_{i} Y_{n-i+1}$
= constant

Hence, $f(C_{i,j})$ is a constant and consequently $P_{m,n}$ is C_{2m} -supermagic.

Case 4: m is odd and n is even.

Since m-1 and n are even, by Lemma 2.4 there exists an n-equipartition $\mathbb{Q}_1=\{X_1,X_2,\cdots,X_n\}$ of $[1,(m-1)n+2]-\{1,\frac{n}{2}+2\}$ such that

$$\sum X_i = \frac{(m-1)^2 n + 5(m-1) - n - 2}{2} + i \text{ for } 1 \le i \le n.$$

Since m is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{Q}_2' = \{Y_1', Y_2', \cdots, Y_n'\}$ of [1, mn] such that

$$\sum Y_i' = \frac{(m-1)(mn+n+1)}{2} + i \quad \text{for } 1 \le i \le n.$$

Add (m-1)n+2 to each element of the set [1, mn]. We get an n-equipartition $\mathbb{Q}_2 = \{Y_1, Y_2, \cdots, Y_n\}$ of [(m-1)n+3, 2mn-n+2] such that

$$\sum Y_i = [(m-1)n + 2]m + \frac{(m-1)(mn+n+1)}{2} + i \quad \text{for } 1 \le i \le n.$$

Define a total labeling $f: V \cup E \rightarrow [1, 2mn - n + 2]$ as follows:

$$f(u) = 1 \quad \text{and } f(v) = \frac{n}{2} + 2$$

$$f(V'_i) = X_i \quad \text{for } 1 \le i \le n$$

$$f(E_i) = Y_{n-i+1} \quad \text{for } 1 \le i \le n.$$

Then for $1 \le i \le n$,

$$f(P_i) = f(u) + f(v) + \sum f(V_i') + \sum f(E_i)$$

= $f(u) + f(v) + \sum X_i + \sum Y_{n-i+1}$
= $constant$.

Thus, $f(P_i)$ is constant for $1 \le i \le n$. Now, $f(C_{i,j}) = f(P_i) + f(P_j) - f(u) - f(v)$ which is a constant. Since $C_{i,j} \cong C_{2m}$, $P_{m,n}$ is C_{2m} -supermagic. Hence, $P_{m,n}$ is C_{2m} -supermagic for all $m, n \ge 2$.

Illustration 3.3. C_{10} -supermagic labeling of $P_{5,5}$ is given in Figure 1.

Figure 1: C_{10} -supermagic labeling of $P_{5,5}$.

Illustration 3.4. C_{10} -supermagic labeling of $P_{5,4}$ is given in Figure 2.

Figure 2: C_{10} -supermagic labeling of $P_{5,4}$.

Definition 3.5. [1] For a graph G, the splitting graph of G; S(G), is obtained from G by adding for each vertex v of G a new vertex v' so that v' is adjacent to every vertex that is adjacent to v.

Theorem 3.6. The splitting graph of a cycle C_n is C_4 -supermagic for $n \neq 4$.

Proof: Let $C_n = v_1 v_2 \cdots v_n$ be a cycle of length n and $S(C_n)$ be its splitting graph. Let $v'_1, v'_2, \cdots v'_n$ be the added vertices corresponding to $v_1, v_2, \cdots v_n$. Let V be the vertex set and E be the edge set of the splitting graph $S(C_n)$. Then,

$$V = \{v_1, v_2, \cdots, v_n, v_1', v_2', \cdots, v_n'\}$$
 and

$$E = \{v_1v_2, v_2v_3, \dots v_{n-1}v_n, v_nv_1\} \cup \{v_1'v_2, v_2'v_3, \dots v_{n-1}'v_n, v_n'v_1\} \cup \{v_1'v_n, v_2'v_1, v_3'v_2, \dots v_n'v_{n-1}\}.$$
Let $C_4^i = v_iv_{i+1}v_i'v_{i-1}$ for $2 \le i \le n-1$, $C_4^i = v_1v_2v_1'v_n$ and $C_4^n = v_nv_1v_n'v_{n-1}$. Then, clearly

 $\{C_4^i: 1 \le i \le n\}$ is a covering for $S'(C_n)$. Since $C_4^i \cong C_4$ for $1 \le i \le n$ we have $\{C_4^i: 1 \le i \le n\}$ is a C_4 -covering and we prove that it is a C_4 -supermagic covering.

Define a total labeling $f: V \cup E \leftarrow \{1, 2, 3, \cdots, |V \cup E|\}$ by

$$f(v_i) = i \text{ for } 1 \le i \le n$$

$$f(v_i') = 2n - i \text{ for } 1 \le i \le n - 1$$

$$f(v_n') = 2n$$

$$f(v_i v_{i+1}) = 3n - i + 1 \text{ for } 1 \le i \le n - 1$$

$$f(v_n v_1) = 2n + 1$$

$$f(v_i' v_{i+1}) = 3n + i \text{ for } 1 \le i \le n - 1$$

$$f(v_n' v_1) = 4n$$

$$f(v_i' v_{i-1}) = 5n - i + 1 \text{ for } 2 \le i \le n$$

$$f(v_1' v_n) = 5n$$

For 2 < i < n - 1,

$$f(C_4^i) = f(v_i) + f(v_{i+1}) + f(v_i') + f(v_{i-1}) + f(v_i'v_{i+1}) + f(v_{i+1}v_i') + f(v_i'v_{i-1}) + f(v_{i-1}v_i)$$

$$= i + i + 1 + 2n - i + i - 1 + 3n - i + 1 + 3n - i + 5n - i + 1 + 3n - i + 1 + 1$$

$$= 16n + 4.$$

$$f(C_4^1) = f(v_1) + f(v_2) + f(v_1') + f(v_n) + f(v_1v_2) + f(v_2v_1') + f(v_1'v_n) + f(v_1v_n)$$

$$= 1 + 2 + 2n - 1 + n + 3n + 3n + 1 + 5n + 2n + 1$$

$$= 16n + 4.$$

$$f(C_4^n) = f(v_n) + f(v_1) + f(v_n') + f(v_{n-1}) + f(v_nv_1) + f(v_1v_n') + f(v_n'v_{n-1}) + f(v_{n-1}v_n)$$

$$= n + 1 + 2n + n - 1 + 2n + 1 + 4n + 4n + 1 + 2n + 2$$

$$= 16n + 4.$$

Hence $f(C_4^i) = 16n + 4$ for $1 \le i \le n$. Since $C_4^i \cong C_4$ for $1 \le i \le n$ we have $\{C_4^i\}$ is a C_4 -supermagic covering for the splitting graph $S'(C_n)$. Hence, $S'(C_n)$ is C_4 -supermagic.

Figure 3: A C_4 -supermagic labeling of $S'(C_n)$ with supermagic strength 84.

References

- [1] J. A. Gallian, *A Dynamic Survey of Graph Labeling*, The Electronic Journal of Combinatorics, 16 (2013), #DS6.
- [2] A. Gutierrez, A.Llado, Magic coverings, J. Combin. Math. Combin. Comput., 55(2005), 43-56.
- [3] K. Kathiresan, Two classes of graceful graphs, Ars Combin., 55 (2000) 129-132.
- [4] P. Selvagopal, *A study on graph labeling*, Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli, 2010.