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Abstract

A simple graph G = (V,E) admits an H-covering if every edge in E belongs to a subgraph of
G isomorphic to H . G is H-magic if there is a total labeling f : V ∪E → {1, 2, 3, · · · , |V |+ |E|}
such that for each subgraph H ′ = (V ′, E′) of G isomorphic to H ,

∑
v∈V1

f(v) +
∑

e∈E1

f(e) = s is

constant. When f(V ) = {1, 2, · · · , |V |}, then G is said to be H-supermagic. In this paper, we show
that Pm,n and the splitting graph of a cycle Cn are cycle-supermagic.
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1 Introduction

The concept of H-magic graphs was introduced in [2]. An edge-covering of a graph G is a family

of different subgraphs H1, H2, . . . ,Hk such that each edge of E belongs to at least one of the subgraphs

Hi, 1 ≤ i ≤ k. Then, it is said that G admits an (H1, H2, . . . ,Hk) - edge covering. If every Hi is

isomorphic to a given graph H , then we say that G admits an H-covering.

If all subgraphs in the covering are edge-disjoint, the covering is also called an H-decomposition of

G.

Let G = (V,E) admit an H-covering. We say that a bijective function f : V ∪E → {1, 2, 3, · · · , |V |+
|E|} is an H-magic labeling of G if there is a positive integer m(f), which we call magic sum, such that

for each subgraph H ′ = (V ′, E′) of G isomorphic to H , we have, f(H ′) =
∑

v∈V ′
f(v) +

∑
e∈E′

f(e) =

m(f). In this case we say that the graph G is H-magic. If f(V ) = {1, 2, · · · , |V |}, we say that f is

an H-supermagic labeling. An H-covering of G is said to be an H-(super)magic covering of G if G

admits an H-(super)magic labeling and the supermagic sum is denoted by s(f).

We use the following notations. For any two integers n < m, we denote by [n,m], the set of all

consecutive integers from n to m. For any set I ⊂ N we write,
∑

I =
∑
x∈I

x and for any integers k,
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I+ k = {x+ k : x ∈ I}. Thus k+ [n,m] is the set of consecutive integers from k+ n to k+m. It can

be easily verified that
∑

(I+ k) =
∑

I+ k|I|.
If P = {X1, X2, · · · , Xn} is a partition of a set X of integers with the same cardinality then we

say P is an n-equipartition of X . Also we denote the set of subsets sums of the parts of P by
∑

P =

{
∑

X1,
∑

X2, · · · ,
∑

Xn}. Finally, given a graph G = (V,E) and a total labeling f on it we denote

by f(G) =
∑

f(V ) +
∑

f(E).

2 Preliminary Results

Lemma 2.1. [4] Let h and k be two positive integers and h is odd. Then there exists a k-equipartition

P = {X1, X2, · · · , Xk} of X = [1, hk] such that
∑

Xr = (h−1)(hk+k+1)
2 + r for 1 ≤ r ≤ k. Thus,∑

P is a set of consecutive integers given by
∑

P = (h−1)(hk+k+1)
2 + [1, k].

Lemma 2.2. [4] Let h and k be two positive integers such that h is even and k ≥ 3 is odd. Then there

exists a k-equipartition P = {X1, X2, · · · , Xk} of X = [1, hk] such that
∑

Xr = (h−1)(hk+k+1)
2 + r

for 1 ≤ r ≤ k. Thus,
∑

P is a set of consecutive integers given by
∑

P = (h−1)(hk+k+1)
2 + [1, k].

Lemma 2.3. [4] If h is even, then there exists a k-equipartition P = {X1, X2, · · · , Xk} of X = [1, hk]

such that
∑

Xr =
h(hk+1)

2 for 1 ≤ r ≤ k.

Lemma 2.4. [4] Let h and k be two even positive integers. If X = [1, hk+2]−{1, k2 +2}, there exists

a k-equipartition P = {X1, X2, · · · , Xk} of X such that
∑

Xr =
h2k+5h−k−2

2 +r for 1 ≤ r ≤ k. Thus,∑
P is a set of consecutive integers h2k+5h−k−2

2 + [1, k].

Lemma 2.5. [4] Let h ≥ 3 be an odd integer. If k is odd then there exists a k-equipartition P =

{X1, X2, · · · , Xk} of X = [1, hk] such that
∑

Xr =
(h(hk+1)

2 for 1 ≤ r ≤ k.

Lemma 2.6. [4] Let h ≥ 3 be an odd integer. If k is even then there exists a k-equipartition P =

{X1, X2, · · · , Xk} of X = [1, hk + 1]− {k2 + 1} such that
∑

Xr =
h2k+3h−1

2 for 1 ≤ r ≤ k.

Lemma 2.7. [4] Let h and k be two even positive integers. If X = [1, hk+ 1]− {k2 + 1} there exists a

k-equipartition P = {X1, X2, · · · , Xk} of X such that
∑

Xr =
h2k+3h−k−2

2 + r for 1 ≤ r ≤ k. Thus,∑
P is a set of consecutive integers h2k+3h−k−2

2 + [1, k].

Lemma 2.8. [4] If h is even then there exists a k-equipartition P = {X1, X2, · · · , Xk} of X = [1, hk]

such that
∑

Xr =
k(h2−2)+h−2

2 + 2r for 1 ≤ r ≤ k.

3 Main Results

Definition 3.1. [3] Let u and v be two fixed vertices. We connect u and v by means of n ≥ 2 internally

disjoint paths of length m ≥ 2 each. The resulting graph embedded in a plane is denoted by Pm,n.

Pm,n has (m− 1)n+ 2 vertices and mn edges.
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Theorem 3.2. The graph Pm,n is C2m-supermagic for all m,n ≥ 2.

Proof: Let u and v be two fixed vertices. We join u and v by means of n internally disjoint paths of

length m.

For 1 ≤ i ≤ n, let Pi = uvi,1vi,2 · · · vi,m−1v be the ith path between u and v. Let Ci,j = PiP
−1
j . Then

Ci,j = uvi,1vi,2 · · · vi,m−1vvj,m−1vj,m−2, · · · v2v1u is a cycle of length 2m.

Then clearly {Ci,j : i, j = 1, 2, · · · , n and i 6= j} is a covering for Pm,n. Also, Ci,j
∼= C2m for

i, j = 1, 2, · · · , n and i 6= j. Therefore, {Ci,j : i, j = 1, 2, · · · , n and i 6= j} is a C2m-covering for

Pm,n.

Now, we prove that there exists a C2m-supermagic covering for Pm,n.

Let V be the vertex set and E be the edge set of Pm,n. Then |V | = (m − 1)n + 2 and |E| = mn.

Let Vi be the vertex set and Ei be the edge set of the path Pi for i = 1, 2, · · · , n. Let V ′i = Vi − {u, v}.
Case 1: m is even and n is odd.

Since m− 1 is odd, by Lemma 2.1 there exists an n-equipartition Q1 = {X1, X2, · · · , Xn} of [1, (m−
1)n] such that

∑
Xi =

(m− 2)[(m− 1)n+ n+ 1]

2
+ i for 1 ≤ i ≤ n

=
(m− 2)(mn+ 1)

2
+ i for 1 ≤ i ≤ n.

Since m is even and n is odd, by Lemma 2.2 there exists an n-equipartition Q′2 = {Y ′1 , Y ′2 , · · · , Y ′n} of

[1,mn] such that

∑
Y ′i =

(m− 1)(mn+ n+ 1)

2
+ i for 1 ≤ i ≤ n.

Add (m−1)n+2 to each element of the set [1,mn]. We get an n-equipartition Q2 = {Y1, Y2, · · · , Yn}
of [(m− 1)n+ 3, 2mn− n+ 2] such that

∑
Yi = [(m− 1)n+ 2]m+

(m− 1)(mn+ n+ 1)

2
+ i for 1 ≤ i ≤ n.

Define a total labeling f : V ∪ E → [1, 2mn− n+ 2] as follows:

f(u) = (m− 1)n+ 1 and f(v) = (m− 1)n+ 2.

f(V ′i ) = Xi for 1 ≤ i ≤ n.

f(Ei) = Yn−i+1 for 1 ≤ i ≤ n.

Then for 1 ≤ i ≤ n,

f(Pi) = f(u) + f(v) +
∑

f(V ′i ) +
∑

f(Ei)

= f(u) + f(v) +
∑

Xi +
∑

Yn−i+1



140 P. Jeyanthi and N.T. Muthuraja

= constant.

Thus, f(Pi) is constant for 1 ≤ i ≤ n. Now, f(Ci,j) = f(Pi) + f(Pj) − f(u) − f(v) which is a

constant. Since Ci,j
∼= C2m, Pm,n is C2m-supermagic.

Case 2: m is even and n is even.

Since m−1 is odd and n is even, by Lemma 2.6 there exists an n-equipartition Q1 = {X1, X2, · · · , Xn}
of [1, (m− 1)n+ 1]−

{
n
2 + 1

}
such that

∑
Xr =

(m− 1)2n+ 3(m− 1)− 1

2
for 1 ≤ i ≤ n.

Since m is even, by Lemma 2.3 there exists an n-equipartition Q′2 = {Y ′1 , Y ′2 , · · · , Y ′n} of [1,mn] such

that ∑
Y ′i =

m(mn+ 1)

2
for 1 ≤ i ≤ n.

Add (m−1)n+2 to each element of the set [1,mn]. We get an n-equipartition Q2 = {Y1, Y2, · · · , Yn}
of [(m− 1)n+ 3, 2mn− n+ 2] such that

∑
Yi = [(m− 1)n+ 2]m+

m(mn+ 1)

2
for 1 ≤ i ≤ n.

Define a total labeling f : V ∪ E → [1, 2mn− n+ 2] as follows:

f(u) =
n

2
+ 1 and f(v) = (m− 1)n+ 2.

f(V ′i ) = Xi for 1 ≤ i ≤ n.

f(Ei) = Yi for 1 ≤ i ≤ n.

Then for 1 ≤ i ≤ n,

f(Pi) = f(u) + f(v) +
∑

f(V ′i ) +
∑

f(Ei)

= f(u) + f(v) +
∑

Xi +
∑

Yi

= constant.

Thus, f(Pi) is constant for 1 ≤ i ≤ n. Now, f(Ci,j) = f(Pi) + f(Pj) − f(u) − f(v) which is a

constant. Since Ci,j
∼= C2m, Pm,n is C2m-supermagic.

Case 3: m is odd and n is odd.

Since m−1 is even and n is odd, by Lemma 2.2 there exists an n-equipartition Q1 = {X1, X2, · · · , Xn}
of [1, (m− 1)n] such that

∑
Xi =

(m− 2)[(m− 1)n+ n+ 1]

2
+ i for 1 ≤ i ≤ n
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=
(m− 2)(mn+ 1)

2
+ i for 1 ≤ i ≤ n.

Since m is odd, by Lemma 2.1 there exists an n-equipartition Q′2 = {Y ′1 , Y ′2 , · · · , Y ′n} of [1,mn] such

that ∑
Xi =

(m− 1)(mn+ n+ 1)

2
+ i for 1 ≤ i ≤ n.

Add (m−1)n+2 to each element of the set [1,mn]. We get an n-equipartition Q2 = {Y1, Y2, · · · , Yn}
of [(m− 1)n+ 3, 2mn− n+ 2] such that

∑
Yi = [(m− 1)n+ 2]m+

(m− 1)(mn+ n+ 1)

2
+ ifor 1 ≤ i ≤ n.

Define a total labeling f : V ∪ E → [1, 2mn− n+ 2] as follows:

f(u) = (m− 1)n+ 1 and f(v) = (m− 1)n+ 2.

f(V ′i ) = Xi for 1 ≤ i ≤ n.

f(Ei) = Yn−i+1 for 1 ≤ i ≤ n.

Then for 1 ≤ i ≤ n,

f(Pi) = f(u) + f(v) +
∑

f(V ′i ) +
∑

f(Ei)

= f(u) + f(v) +
∑

Xi +
∑

Yn−i+1

= constant.

Hence, f(Ci,j) is a constant and consequently Pm,n is C2m-supermagic.

Case 4: m is odd and n is even.

Since m− 1 and n are even, by Lemma 2.4 there exists an n-equipartition Q1 = {X1, X2, · · · , Xn} of

[1, (m− 1)n+ 2]− {1, n2 + 2} such that∑
Xi =

(m− 1)2n+ 5(m− 1)− n− 2

2
+ i for 1 ≤ i ≤ n.

Since m is odd, by Lemma 2.1 there exists an n-equipartition Q′2 = {Y ′1 , Y ′2 , · · · , Y ′n} of [1,mn] such

that ∑
Y ′i =

(m− 1)(mn+ n+ 1)

2
+ i for 1 ≤ i ≤ n.

Add (m−1)n+2 to each element of the set [1,mn]. We get an n-equipartition Q2 = {Y1, Y2, · · · , Yn}
of [(m− 1)n+ 3, 2mn− n+ 2] such that

∑
Yi = [(m− 1)n+ 2]m+

(m− 1)(mn+ n+ 1)

2
+ i for 1 ≤ i ≤ n.
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Define a total labeling f : V ∪ E → [1, 2mn− n+ 2] as follows:

f(u) = 1 and f(v) =
n

2
+ 2

f(V ′i ) = Xi for 1 ≤ i ≤ n

f(Ei) = Yn−i+1 for 1 ≤ i ≤ n.

Then for 1 ≤ i ≤ n,

f(Pi) = f(u) + f(v) +
∑

f(V ′i ) +
∑

f(Ei)

= f(u) + f(v) +
∑

Xi +
∑

Yn−i+1

= constant.

Thus, f(Pi) is constant for 1 ≤ i ≤ n. Now, f(Ci,j) = f(Pi)+f(Pj)−f(u)−f(v) which is a constant.

Since Ci,j
∼= C2m, Pm,n is C2m-supermagic. Hence, Pm,n is C2m-supermagic for all m,n ≥ 2.

Illustration 3.3. C10-supermagic labeling of P5,5 is given in Figure 1.

s s
s
s
s
s

s
s
s
s
s

s
s
s
s
s

s
s
s
s
s

s"
"
""

b
b
bb

e
e
e
ee

21 25 3 30 8 35 13 42 18 43 22

5 32 10 33 11 39 16

4 31 9 34 12 38 17

2 29 7 36 14 41 19

1 28 6 37 15 40 20

23

24

25

26

27

47

45

43

46

44

Figure 1: C10-supermagic labeling of P5,5.

Illustration 3.4. C10-supermagic labeling of P5,4 is given in Figure 2.
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3 8 11 18

2 10 12 17

6 7 13 16

5 9 14 15

20 33

17 36

19 34

18 35

24 28 29

23 27 30

22 26 31

21 25 32

Figure 2: C10-supermagic labeling of P5,4.

Definition 3.5. [1] For a graph G, the splitting graph of G; S(G), is obtained from G by adding for each

vertex v of G a new vertex v′ so that v′ is adjacent to every vertex that is adjacent to v.



Some cycle-supermagic graphs 143

Theorem 3.6. The splitting graph of a cycle Cn is C4-supermagic for n 6= 4.

Proof: Let Cn = v1v2 · · · vn be a cycle of length n and S(Cn) be its splitting graph. Let v′1, v′2, · · · v′n
be the added vertices corresponding to v1, v2, · · · vn. Let V be the vertex set and E be the edge set of

the splitting graph S(Cn). Then,

V = {v1, v2, · · · , vn, v′1, v′2, · · · , v′n} and

E = {v1v2, v2v3, · · · vn−1vn, vnv1}∪{v′1v2, v′2v3, · · · v′n−1vn, v′nv1}∪{v′1vn, v′2v1, , v′3v2, · · · v′nvn−1}.
Let Ci

4 = vivi+1v
′
ivi−1 for 2 ≤ i ≤ n − 1, C1

4 = v1v2v
′
1vn and Cn

4 = vnv1v
′
nvn−1. Then, clearly

{Ci
4 : 1 ≤ i ≤ n} is a covering for S′(Cn). Since Ci

4
∼= C4 for 1 ≤ i ≤ n we have {Ci

4 : 1 ≤ i ≤ n} is

a C4-covering and we prove that it is a C4-supermagic covering.

Define a total labeling f : V ∪ E ← {1, 2, 3, · · · , |V ∪ E|} by

f(vi) = i for 1 ≤ i ≤ n

f(v′i) = 2n− i for 1 ≤ i ≤ n− 1

f(v′n) = 2n

f(vivi+1) = 3n− i+ 1 for 1 ≤ i ≤ n− 1

f(vnv1) = 2n+ 1

f(v′ivi+1) = 3n+ i for 1 ≤ i ≤ n− 1

f(v′nv1) = 4n

f(v′ivi−1) = 5n− i+ 1 for 2 ≤ i ≤ n

f(v′1vn) = 5n

For 2 ≤ i ≤ n− 1,

f(Ci
4) = f(vi) + f(vi+1) + f(v′i) + f(vi−1) + f(v′ivi+1) + f(vi+1v

′
i) + f(v′ivi−1) + f(vi−1vi)

= i+ i+ 1 + 2n− i+ i− 1 + 3n− i+ 1 + 3n− i+ 5n− i+ 1 + 3n− i+ 1 + 1

= 16n+ 4.

f(C1
4 ) = f(v1) + f(v2) + f(v′1) + f(vn) + f(v1v2) + f(v2v

′
1) + f(v′1vn) + f(v1vn)

= 1 + 2 + 2n− 1 + n+ 3n+ 3n+ 1 + 5n+ 2n+ 1

= 16n+ 4.

f(Cn
4 ) = f(vn) + f(v1) + f(v′n) + f(vn−1) + f(vnv1) + f(v1v

′
n) + f(v′nvn−1) + f(vn−1vn)

= n+ 1 + 2n+ n− 1 + 2n+ 1 + 4n+ 4n+ 1 + 2n+ 2

= 16n+ 4.

Hence f(Ci
4) = 16n+4 for 1 ≤ i ≤ n. Since Ci

4
∼= C4 for 1 ≤ i ≤ n we have {Ci

4} is a C4-supermagic

covering for the splitting graph S′(Cn). Hence, S′(Cn) is C4-supermagic.
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Figure 3: A C4-supermagic labeling of S′(Cn) with supermagic strength 84.
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