Total edge Fibonacci - like sequence irregular labeling

S. Karthikeyan, R. Sridevi
Department of Mathematics
Sri S.R.N.M. College, Sattur - 626203
Tamil Nadu, India.
E-mail: karthikeyan11pm30@gmail.com, r.sridevi_2010@yahoo.com

S. Navanaeethakrishnan
Department of Mathematics
V.O.C. College, Tuticorin - 628008
Tamil Nadu, India.
E-mail: snk.voc@gmail.com

Abstract

In this paper, we define total edge Fibonacci - like sequence irregular labeling $f: V(G) \bigcup E(G)$ $\rightarrow\{1,2, \ldots, K\}$ of a graph $G=(V, E)$ of vertices and edges of G in such a way that for any two different edges $x y$ and $x^{\prime} y^{\prime}$ their weights $f(x)+f(x y)+f(y)$ and $f\left(x^{\prime}\right)+f\left(x^{\prime} y^{\prime}\right)+f\left(y^{\prime}\right)$ are distinct Fibonacci-like sequence numbers. The total edge Fibonacci - like sequence irregularity strength, tefls (G) is defined as the minimum K for which G has a total edge Fibonacci - like sequence irregular labeling. A graph that admits a total edge Fibonacci - like sequence irregular labeling is called a total edge Fibonacci - like sequence irregular graph. In this paper, we prove P_{n} and C_{n} and Book (with 3 and 4 sides) are total edge Fibonacci - like sequence irregular graphs.

Keywords: Total vertex irregular labeling, edge irregular total K-labeling, total edge Fibonacci like sequence irregular labeling.
AMS Subject Classification(2010): 05C78.

1 Introduction

By a graph, we mean a finite, undirected graph without loops and multiple edges and for terms not defined here, we refer to Harary [2].

A total vertex irregular labeling on a graph G with v vertices and e edges is an assignment of integer labels to both vertices and edges so that the weights calculated at vertices are distinct. The weight of a vertex v in G is defined as the sum of the label of v and the labels of all the edges incident with v. That is, $w t(v)=\lambda(v)+\sum_{u v \in E} \lambda(u v)$.

The total vertex irregularity strength of G, denoted by $\operatorname{tvs}(G)$, is the minimum value of the largest label over all such irregular assignments.

For a graph $G=(V, E)$, define a labeling $f: V(G) \bigcup E(G) \rightarrow\{1,2, \ldots, K\}$ to be an edge irregular total K-labeling of the graph G if for every two different edges $x y$ and $x^{\prime} y^{\prime}$ of G the edge weights $w t(x y) \neq w t\left(x^{\prime} y^{\prime}\right)$. The total edge irregularity strength, $\operatorname{tes}(G)$, is defined as the minimum K for which G has an edge irregular total K-labeling.

The notion of total vertex irregular labeling and total edge irregular labeling were introduced by Bača[1]. Motivated by this paper, we defined the total edge Fibonacci-like sequence irregular labeling.

Definition 1.1. The Fibonacci - like sequence is defined by the linear recurrence relation

$$
S_{n}= \begin{cases}2 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ S_{n-1}+S_{n-2} & \text { if } n \geq 2\end{cases}
$$

The Fibonacci - like sequence we generate is $2,4,6,10,16,26,42,68,110,178, \ldots$.

2 Main Results

Definition 2.1. A total edge Fibonacci-like sequence irregular labeling $f: V(G) \bigcup E(G) \rightarrow\{1,2, \ldots, K\}$ of a graph $G=(V, E)$ is a labeling of vertices and edges of G in such a way that for any different edges $x y$ and $x^{\prime} y^{\prime}$ their weights $f(x)+f(x y)+f(y)$ and $f\left(x^{\prime}\right)+f\left(x^{\prime} y^{\prime}\right)+f\left(y^{\prime}\right)$ are distinct Fibonacci-like sequence numbers where the Fibonacci-like sequence is $S_{1}=2, S_{2}=4, S_{3}=6, S_{4}=10, S_{5}=16$, $S_{6}=26, S_{7}=42$ etc.

The total edge Fibonacci-like sequence irregularity strength, tefls (G) is defined as the minimum K for which G has total edge Fibonacci-like sequence irregular labeling.

Note that if f is a total edge Fibonacci-like sequence irregular labeling of $G=(V, E)$ with $|V(G)|=$ p and $|E(G)|=q$ then $S_{4}(=10) \leq w t(x y) \leq S_{q+3}$ which implies that tefls $\geq\left\lceil\frac{S_{q+3}}{3}\right\rceil$.

Theorem 2.2. The path P_{n} of n vertices admits a total edge Fibonacci-like sequence irregular labeling and tefls $\left(P_{n}\right)=\left\lceil\frac{S_{n+2}}{3}\right\rceil$ for any n.

Proof: Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{e_{1}, e_{2} \ldots, e_{n-1}\right\}$.
Define $f: V \bigcup E \rightarrow\left\{1,2, \ldots,\left\lceil\frac{S_{n+2}}{3}\right\rceil\right\}$ by

$$
\begin{aligned}
f\left(v_{i}\right) & =S_{i}, \quad i=1,2, \ldots, n-2 \\
f\left(v_{n-1}\right) & =S_{n+2}-2\left\lceil\frac{S_{n+2}}{3}\right\rceil \\
f\left(v_{n}\right) & =\left\lceil\frac{S_{n+2}}{3}\right\rceil \\
f\left(e_{i}\right) & =S_{i+1}, \quad i=1,2, \ldots, n-3 \\
f\left(e_{n-2}\right) & =S_{n+1}+2\left\lceil\frac{S_{n+2}}{3}\right\rceil-S_{n-2}-S_{n+2} \\
f\left(e_{n-1}\right) & =\left\lceil\frac{S_{n+2}}{3}\right\rceil .
\end{aligned}
$$

By this labeling, $w t\left(e_{i}\right)=f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right) ; i=1,2, \ldots, n-3$

$$
=S_{i}+S_{i+1}+S_{i+1}=S_{i+2}+S_{i+1}=S_{i+3}
$$

$$
w t\left(e_{n-2}\right)=f\left(v_{n-2}\right)+f\left(e_{n-2}\right)+f\left(v_{n-1}\right)
$$

$$
=S_{n-2}+\left(S_{n+1}+2\left\lceil\frac{S_{n+2}}{3}\right\rceil-S_{n-2}-S_{n+2}\right)+\left(S_{n+2}-2\left\lceil\frac{S_{n+2}}{3}\right\rceil\right)
$$

$$
\begin{aligned}
& =S_{n+1} \\
w t\left(e_{n-1}\right) & =f\left(v_{n-1}\right)+f\left(e_{n-1}\right)+f\left(v_{n}\right) \\
& =\left(S_{n+2}-2\left\lceil\frac{S_{n+2}}{3}\right\rceil\right)+\left\lceil\frac{S_{n+2}}{3}\right\rceil+\left\lceil\frac{S_{n+2}}{3}\right\rceil=S_{n+2}
\end{aligned}
$$

Thus, the weights of $e_{1}, e_{2}, \ldots, e_{n-3}, e_{n-2}, e_{n-1}$ are $S_{4}, S_{5}, \ldots, S_{n}, S_{n+1}, S_{n+2}$ respectively. Also, $\operatorname{tefls}\left(P_{n}\right)=\left\lceil\frac{S_{n+2}}{3}\right\rceil$ for any n.

Example 2.3. A total edge Fibonacci-like sequence irregular labeling of P_{10} with tefls $\left(P_{10}\right)=\left\lceil\frac{S_{12}}{3}\right\rceil=$ 156 is given in Figure 1.

Figure 1: Total edge Fibonacci-like sequence irregular labeling of P_{10}.

Theorem 2.4. The cycle C_{n} of length n admits a total edge Fibonacci-like sequence irregular labeling and tefls $\left(C_{n}\right)=\left\lceil\frac{S_{n+3}}{3}\right\rceil$ for all n except for $n=3,4$ and tefls $\left(C_{n}\right)=\left\lceil\frac{S_{n+3}}{3}\right\rceil+2$ for $n=3,4$.

Proof: Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$.
Case(i): Let $n \geq 5$.
Define $f: V \bigcup E \rightarrow\left\{1,2, \ldots,\left\lceil\frac{S_{n+3}}{3}\right\rceil\right\}$ by

$$
\begin{aligned}
f\left(v_{i}\right) & =S_{i}, \quad i=1,2, \ldots, n-2 \\
f\left(v_{n-1}\right) & =S_{n+3}-2\left\lceil\frac{S_{n+3}}{3}\right\rceil \\
f\left(v_{n}\right) & =\left\lceil\frac{S_{n+3}}{3}\right\rceil \\
f\left(e_{i}\right) & =S_{i+1}, \quad i=1,2, \ldots, n-3 \\
f\left(e_{n}\right) & =S_{n+1}-2-\left\lceil\frac{S_{n+3}}{3}\right\rceil \\
f\left(e_{n-2}\right) & =S_{n+2}+2\left\lceil\frac{S_{n+3}}{3}\right\rceil-S_{n-2}-S_{n+3} \\
f\left(e_{n-1}\right) & =\left\lceil\frac{S_{n+3}}{3}\right\rceil .
\end{aligned}
$$

By this labeling, $w t\left(e_{i}\right)=f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right) ; i=1,2, \ldots, n-3$

$$
\begin{aligned}
& =S_{i}+S_{i+1}+S_{i+1}=S_{i+2}+S_{i+1}=S_{i+3} \\
w t\left(e_{n-2}\right) & =f\left(v_{n-2}\right)+f\left(e_{n-2}\right)+f\left(v_{n-1}\right) \\
& =S_{n-2}+\left(S_{n+2}+2\left\lceil\frac{S_{n+3}}{3}\right\rceil-S_{n-2}-S_{n+3}\right)+\left(S_{n+3}-2\left\lceil\frac{S_{n+3}}{3}\right\rceil\right) \\
& =S_{n+2} \\
w t\left(e_{n-1}\right) & =f\left(v_{n-1}\right)+f\left(e_{n-1}\right)+f\left(v_{n}\right) \\
& =\left(S_{n+3}-2\left\lceil\frac{S_{n+3}}{3}\right\rceil\right)+\left\lceil\frac{S_{n+3}}{3}\right\rceil+\left\lceil\frac{S_{n+3}}{3}\right\rceil=S_{n+3} \\
w t\left(e_{n}\right) & =f\left(v_{n}\right)+f\left(e_{n}\right)+f\left(v_{1}\right)
\end{aligned}
$$

$$
=\left\lceil\frac{S_{n+3}}{3}\right\rceil+\left(S_{n+1}-2-\left\lceil\frac{S_{n+3}}{3}\right\rceil\right)+2=S_{n+1}
$$

Thus, the weights of edges $e_{1}, e_{2}, \ldots, e_{n-3}, e_{n-2}, e_{n-1}, e_{n}$ are $S_{4}, S_{5}, \ldots, S_{n+2}, S_{n+3}, S_{n+1}$ respectively and also tefls $\left(C_{n}\right)=\left\lceil\frac{S_{n+3}}{3}\right\rceil$ for any $n \geq 5$.
Case(ii): For $n=3$ and 4 the labelings are as follows.

Figure 2: Total edge Fibonacci-like sequence irregular labeling of $C_{3} a n d C_{4}$.
Thus, we proved that the cycle C_{n} has total edge Fibonacci - like sequence irregular labeling and found tefls $\left(C_{n}\right)$ for all n.

Example 2.5. A total edge Fibonacci-like sequence irregular labeling of C_{8} with tefls $\left(C_{8}\right)=\left\lceil\frac{S_{11}}{3}\right\rceil=96$ is given in Figure 3.

Figure 3: Total edge Fibonacci-like sequence irregular labeling of C_{8}.

Theorem 2.6. Triangular book admits a total edge Fibonacci - like sequence irregular labelings with tefls $\leq\left\lfloor\frac{S_{2 n+4}}{2}\right\rfloor-1$.

Proof: Let $V=\left\{u, v, u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertex set and $E=\left\{e=u v, x_{i}=u u_{i}, y_{i}=v u_{i} ; i=\right.$ $1,2, \ldots, n\}$ be the edge set. Then $|V|=n+2$ and $|E|=2 n+1$.
Define $f: V \bigcup E \rightarrow\left\{1,2, \ldots,\left\lfloor\frac{S_{2 n+4}}{2}\right\rfloor-1\right\}$ by $f(u)=3, f(v)=5, f\left(u_{1}\right)=3, f\left(u_{i}\right)=\left\lfloor\frac{S_{2 i+4}}{2}\right\rfloor-1$ $; i=2,3, \ldots, n, f(e)=8, f\left(x_{1}\right)=20, f\left(x_{i}\right)=S_{2 i+4}-\left\lfloor\frac{S_{2 i+4}}{2}\right\rfloor-2 ; i=2,3, \ldots, n$ and $f\left(y_{1}\right)=2$, $f\left(y_{i}\right)=S_{2 i+3}-\left\lfloor\frac{S_{2 i+4}}{2}\right\rfloor-4 ; i=2,3, \ldots, n$.

By this labeling, $w t(e)=f(u)+f(e)+f(v)$

$$
\begin{aligned}
& =3+8+5=16=S_{5} \\
w t\left(x_{1}\right) & =f(u)+f\left(x_{1}\right)+f\left(u_{1}\right) \\
& =3+20+3=26=S_{6} \\
w t\left(y_{1}\right) & =f(v)+f\left(y_{1}\right)+f\left(u_{1}\right)=5+2+3=10=S_{4} \\
w t\left(x_{i}\right) & =f(u)+f\left(x_{i}\right)+f\left(u_{i}\right) ; i=2,3, \ldots, n \\
& =3+\left(S_{2 i+4}-\left\lfloor\frac{S_{2 i+4}}{2}\right\rfloor-2\right)+\left(\left\lfloor\frac{S_{2 i+4}}{2}\right\rfloor-1\right)=S_{2 i+4}
\end{aligned}
$$

Thus, the weights of $x_{2}, x_{3}, \ldots, x_{n}$ are $S_{8}, S_{10}, \ldots, S_{2 n+4}$.

$$
\begin{aligned}
w t\left(y_{i}\right) & =f(v)+f\left(y_{i}\right)+f\left(u_{i}\right) ; i=2,3, \ldots, n \\
& =5+\left(S_{2 i+3}-\left\lfloor\frac{S_{2 i+4}}{2}\right\rfloor-4\right)+\left(\left\lfloor\frac{S_{2 i+4}}{2}\right\rfloor-1\right) \\
& =S_{2 i+3}
\end{aligned}
$$

The weights of $y_{2}, y_{3}, \ldots, y_{n}$ are $S_{7}, S_{9}, \ldots, S_{2 n+3}$.
Hence we have, the weights of edges $e, x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}$ are $S_{4}, S_{5}, S_{6}, S_{7}, \ldots, S_{2 n+3}$, $S_{2 n+4}$. Also, tefls $\leq\left\lfloor\frac{S_{2 n+4}}{2}\right\rfloor-1$.

Example 2.7. A total edge Fibonacci - like sequence irregular labelingThe following of a triangular book is given in Figure 4. Further, tefls $\leq\left\lfloor\frac{S_{14}}{2}\right\rfloor-1=609$.

Figure 4: Total edge Fibonacci-like sequence irregular labeling of a triangular book.

Theorem 2.8. Quadrilateral book admits total edge Fibonacci - like sequence irregular labelings with tefls $=\left\lceil\frac{S_{3 n+4}}{3}\right\rceil$.

Proof: Let $V=\left\{u, v, u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set and $E=\left\{e=u v, e_{i}=\right.$ $\left.u_{i} v_{i}, x_{i}=u u_{i}, y_{i}=v v_{i} ; i=1,2, \ldots, n\right\}$ be the edge set. Then $|V|=2 n+2$ and $|E|=3 n+1$.
Define $f: V \bigcup E \rightarrow\left\{1,2, \ldots,\left\lceil\frac{S_{3 n+4}}{3}\right\rceil\right\}$ by

$$
\begin{aligned}
f(u) & =2, \quad f(v)=4, \quad f\left(u_{1}\right)=2 \\
f\left(u_{i}\right) & =\left\lceil\frac{S_{3 i+4}}{3}\right\rceil, \quad i=2,3, \ldots, n \\
f\left(v_{1}\right) & =6 \\
f\left(v_{i}\right) & =S_{3 i+4}-2\left\lceil\frac{S_{3 i+4}}{3}\right\rceil, \quad i=2,3, \ldots, n \\
f(e) & =4, \quad f\left(e_{1}\right)=16 \\
f\left(e_{i}\right) & =\left\lceil\frac{S_{3 i+4}}{3}\right\rceil, \quad i=2,3, \ldots, n \\
f\left(x_{1}\right) & =4 \\
f\left(x_{i}\right) & =S_{3 i+3}-2-\left\lceil\frac{S_{3 i+4}}{3}\right\rceil, \quad i=2,3, \ldots, n \\
f\left(y_{1}\right) & =6 \\
f\left(y_{i}\right) & =S_{3 i+2}+2\left\lceil\frac{S_{3 i+4}}{3}\right\rceil-S_{3 i+4}-4 .
\end{aligned}
$$

By this labeling, $w t(e)=f(u)+f(e)+f(v)$

$$
\begin{aligned}
& =2+4+4=10=S_{4} \\
w t\left(e_{1}\right) & =f\left(u_{1}\right)+f\left(e_{1}\right)+f\left(v_{1}\right) \\
& =20+16+6=42=S_{7} \\
w t\left(x_{1}\right) & =f(u)+f\left(x_{1}\right)+f\left(u_{1}\right) \\
& =2+4+20=26=S_{6} \\
w t\left(y_{1}\right) & =f(v)+f\left(y_{1}\right)+f\left(v_{1}\right) \\
& =4+6+6=16=S_{5} \\
w t\left(e_{i}\right) & =f\left(u_{i}\right)+f\left(e_{i}\right)+f\left(v_{i}\right) ; i=2,3, \ldots, n \\
& =\left\lceil\frac{S_{3 i+4}}{3}\right\rceil+\left\lceil\frac{S_{3 i+4}}{3}\right\rceil+\left(S_{3 i+4}-2\left\lceil\frac{S_{3 i+4}}{3}\right\rceil\right) \\
& =S_{3 i+4}
\end{aligned}
$$

That is, the weights of $e_{2}, e_{3}, \ldots, e_{n}$ are $S_{10}, S_{13}, \ldots, S_{3 n+4}$.

$$
\begin{aligned}
w t\left(x_{i}\right) & =f(u)+f\left(x_{i}\right)+f\left(u_{i}\right) ; i=2,3, \ldots, n \\
& =2+\left(S_{3 i+3}-2-\left\lceil\frac{S_{3 i+4}}{3}\right\rceil\right)+\left\lceil\frac{S_{3 i+4}}{3}\right\rceil=S_{3 i+3}
\end{aligned}
$$

That is, the weights of $x_{2}, x_{3}, \ldots, x_{n}$ are $S_{9}, S_{12}, \ldots, S_{3 n+3}$

$$
\begin{aligned}
w t\left(y_{i}\right) & =f(v)+f\left(y_{i}\right)+f\left(v_{i}\right) ; i=2,3, \ldots, n \\
& =4+\left(S_{3 i+2}+2\left\lceil\frac{S_{3 i+4}}{3}\right\rceil-S_{3 i+4}-4\right)+\left(S_{3 i+4}-2\left\lceil\frac{S_{3 i+4}}{3}\right\rceil\right) \\
& =S_{3 i+2}
\end{aligned}
$$

That is, the weights of $y_{2}, y_{3}, \ldots, y_{n}$ are $S_{8}, S_{11}, \ldots, S_{3 n+2}$.
Hence, the weights of edges $e, y_{1}, x_{1}, e_{1}, y_{2}, x_{2}, e_{2}, \ldots, y_{n}, x_{n}, e_{n}$ are $S_{4}, S_{5}, S_{6}, \ldots, S_{3 n+2}$, $S_{3 n+3}, S_{3 n+4}$ respectively and tefls $=\left\lceil\frac{S_{3 n+4}}{3}\right\rceil$.

Example 2.9. A total edge Fibonacci - like sequence irregular labeling of a quadrilateral book is given in Figure 5. Also, tefls $=\left\lceil\frac{S_{16}}{3}\right\rceil=1065$.

Figure 5: Total edge Fibonacci-like sequence irregular labeling of a quadrilateral book.

References

[1] M. Bača, M. Stanislav Jendrol, Miller and Joseph Ryan, On irregular total labeling, Discrete Math.,307(2007), 137-138.
[2] F. Harary, Graph Theory, Addison-Wesley, Reading, MA (1972)

