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Abstract

A b-coloring by k-colors is a proper coloring of the vertices of graph G such that in each color
classes there exists a vertex that has neighbours in all the other k− 1 color classes. The b-chromatic
number ϕ(G) is the largest integer k for which G admits a b-coloring with k-colors. If χ(G) is
the chromatic number of G then G is said to be b-continuous if b-coloring exists for every integer k
satisfying χ (G) ≤ k ≤ ϕ (G). We investigate the b-chromatic number of some cycle related graphs
and also study their b-continuity.
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1 Introduction

We begin with a simple, finite, connected and undirected graph with vertex set V (G) and edge set

E(G). A coloring of the vertices of G is a mapping f : V (G) → N. For every vertex v ∈ V (G),

f(v) is called the color of v. If any two adjacent vertices have different colors then f is called proper

coloring. The chromatic number χ(G) is the smallest integer k such that G admits a proper coloring

using k colors. The set of vertices with a particular color is called a color class.

A b-coloring by k colors is a proper coloring of the vertices of G such that in each color class there

exists a vertex that has neighbours in all the other k-1 color classes. In other words each color class

contains a vertex which has at least one neighbour in all the other color classes. Such vertex is called a

color dominating vertex. If v is a color dominating vertex of a color class c then we write cdv(c) = v.

It is obvious that every coloring of a graph G by χ(G) colors is a b-coloring of G. The b-chromatic

number ϕ(G) is the largest integer k such that G admits a b-coloring with k colors. The concept of b-

coloring was introduced by Irving and Manlove [6] and showed that the problem of determining ϕ(G) is

NP-hard for general graphs but it is polynomial-time solvable for trees. According to Faik [5] the graph

is b-continuous if b-coloring exists for every integer k satisfying χ (G) ≤ k ≤ ϕ (G). The bounds

for the b-chromatic number for various graphs are established by Kouider and Zaker in [7] while the
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discussion on b-coloring of central graph of some graphs is reported in Thilagavathi et al. [9]. The

b-chromatic number of cartesian product of some families of graphs is studied by Balakrishnan et al.

[3] while b-coloring for square of cartesian product of two cycles is investigated by Chandrakumar and

Nicholas [4]. Let G be a graph and A be a P4 in G,a partner of A is a vertex v in G−A such that A∪ v
induces at least two P4 in G. A graph G is P4-tidy if every induced P4 has at most one partner. It has

been proved by Velasquez et al. that all P4-tidy graphs are b-continuous. Some results on b-coloring

and b-continuity are reported in Alkhateeb [1]. The b-chromatic number of Cn is well known but we

initiate the study of b-coloring for the graphs obtained from Cn by means of various graph operations.

For any undefined term we refer to West [10].

We present some results which are useful for the present investigations.

Propostion 1.1. [2] For any graph G, ϕ (G) ≤ ∆ (G) + 1.

Propostion 1.2. [6] If a graphG admits a b-coloring withm-colors,thenGmust have at leastm vertices

with degree at least m− 1 (Since each color class has a b-vertex).

2 Main Results

Definition 2.1. A vertex switching Gv of a graph G is the graph obtained by taking a vertex v of G,

removing all the edges incident to v and adding edges joining v to every vertex which are not adjacent

to v in G.

Lemma 2.2. If Gv is the graph obtained by switching of an arbitrary vertex v in cycle Cn then

χ(Gv) =

{
2, for the cycle Cn; n = 4

3, for the cycle Cn; n ≥ 5 .

Proof: Let G = Cn and v1, v2, ..., vn be the vertices of Cn. Without loss of generality we switch the

vertex v1 of Cn and denote the resultant graph by Gv. We consider the following two cases.

Case 1: For n = 4.

As the graph obtained by switching of v1 is a bipartite graph, we have χ(Gv) = 2.

Case 2: For n ≥ 5.

In this case Gv contains odd cycles which implies that χ (Gv) ≥ 3. Now for proper coloring of Gv,

we need to assign color to only vertex v1, as Gv − v1 is 2-colorable. Hence χ (Gv) = 3.

Remark 2.3. We avoid the case when n = 3 as C3 is a complete graph and switching of any vertex in

C3 will yield a disconnected graph.

Theorem 2.4. Let Gv be the graph obtained by switching of an arbitrary vertex v in cycle Cn then

ϕ(Gv) =


2, for the cycleCn;n = 4

3, for the cycleCn;n = 5

4, for the cycleCn;n ≥ 6.
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Proof: We continue with the terminology and notations used in Lemma 2.2 and consider the following

cases. Here |V (Gv)| = n.

Case 1: For n = 4.

We have |V (Gv)| = 4 and V ((Gv)) = {v1, v2, v3, v4}. The graph Gv is isomorphic to K1,3 and

ϕ (K1,3) = 2 as proved by Kratochvil et al. [8]. Hence ϕ (Gv) = 2.

Case 2: For n = 5.

We have |V (Gv)| = 5 and V ((Gv)) = {v1, v2, v3, v4, v5}. Also Gv has two vertices of degree

three, a vertex of degree two and two vertices of degree one. As ∆(Gv) = 3, then by Proposition 1.1,

ϕ(Gv) ≤ 4.

If ϕ(Gv) = 4 then according to Proposition 1.2 we need minimum four vertices of degree at least three,

which is not possible as there are only two vertices of degree three, one vertex of degree two and two

vertices of degree one.

For Gv, the graph Gv − v1 is a path which is a bipartite graph. Hence it is 2-colorable. For b-coloring

the third color must be assigned to v1 . As d(v1) = 2 and v1 is adjacent to the vertices of both the color

classes. Now consider the color class c = {1, 2, 3} and to assign the proper coloring to the vertices, we

define the color function f : V → {1, 2, 3} as f(v1) = 1, f(v2) = 2, f(v3) = 3, f(v4) = 2, f(v5) =

3. This proper coloring gives cdv(1) = v1, cdv(2) = v4, cdv(3) = v3.

Hence ϕ (Gv) = 3.

Case 3: For n = 6.

Here |V (Gv)| = 6 and let V (Gv) = {v1, v2, v3, v4, v5, v6}. Also Gv has two vertices of degree one

and four vertices of degree three. As ∆(Gv) = 3, by Proposition 1.1 we have ϕ(Gv) ≤ 4.

If ϕ(Gv) = 4 then according to Proposition 1.2, the graph must have four vertices of degree at least

three, which is possible for the graph Gv as there are exactly four vertices of degree three and the

remaining two vertices are of degree one.

Now consider the set of colors c = {1, 2, 3, 4} and to assign the proper coloring to the vertices define

the color function f : V → {1, 2, 3, 4} as f(v1) = 1, f(v2) = 4, f(v3) = 2, f(v4) = 3, f(v5) = 4,

f(v6) = 2.

This proper coloring gives cdv(1) = v1, cdv(2) = v3, cdv(3) = v4, cdv(4) = v5. Hence, ϕ (Gv) = 4.

Case 4: For n > 6.

We color the vertices v1, v2, ..., v6 as in Gv and for the remaining vertices assign the colors as

f(vi) =

{
3, when i is odd

2, when i is even

The color dominating vertices are same as in the case when n = 6. Thus ϕ(Gv) = 4, for all n > 6.

Corollary 2.5. Gv is b-continuous.

Proof: To prove the result we consider the following cases.
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Case 1: For n = 4.

In this case the graph Gv is b-continuous as χ (Gv) = ϕ (Gv) = 2.

Case 2: For n = 5.

In this case the graph is P4-tidy and as mentioned earlier it is b-continuous.

Case 3: For n ≥ 6.

By Lemma 2.2, χ (Gv) = 3 and by Theorem 2.4, ϕ (Gv) = 4. Hence b-coloring exists for every

integer k satisfying χ (Gv) ≤ k ≤ ϕ (Gv) (Here k = 3, 4).

Hence Gv is b-continuous for all n .

Definition 2.6. The splitting graph S′(G) of a graph G is obtained by adding a new vertex v′ corre-

sponding to each vertex v of G such that N(v) = N(v′), where N(v) and N(v′) are the neighborhood

sets of v and v′ respectively in S′(G).

Lemma 2.7.

χ
(
S′ (Cn)

)
=

{
2, when n is even

3, when n is odd.

Proof: Let v1, v2, ..., vn be the vertices and e1, e2, .., en be the edges of cycle Cn. Let v′1, v
′
2, .., v

′
n be

the newly added vertices corresponding to the vertices v1, v2, ..., vn to construct the graph S′(Cn).

Here V (S′(Cn)) = V (Cn) ∪ {v′i/1 ≤ i ≤ n} and E (S′ (Cn)) = E (Cn) ∪ {v′ivi+1/1 ≤ i ≤
n−1}∪{v′nv1}∪{viv′i+1/1 ≤ i ≤ n−1}∪{vnv′1}. Also |V (S′(Cn))| = 2n and |E (S′(Cn))| = 3n.

We consider the following two cases.

Case 1: When n is even.

S′(Cn) is a bipartite graph⇒ χ (S′(Cn)) = 2.

Case 2: When n is odd.

In this case χ (S′(Cn)) ≥ 3 as the graph S′ (Cn) contains odd cycles. Here the graph S′(Cn) −
{v1, v′1} is a bipartite graph and hence it is 2-colorable. As mutually non-adjacent vertices v1 and v′1 are

adjacent to the vertices of both the color classes and for proper coloring the third color must be assigned

to v1 and v′1. Hence χ(S′(Cn)) = 3.

Theorem 2.8. ϕ(S′(Cn)) =



3, n = 3

2, n = 4

4, n = 5, 6, 8

5, n = 7

5, n ≥ 9.

.

Proof: We continue with the terminology and notations used in Lemma 2.7 and consider the following

five cases.

Case 1: For n = 3.

We have |V (S′(C3))| = 6 and V (S′(C3)) = {v1, v2, v3, v′1, v′2, v′3}. Also S′(C3) has three ver-

tices of degree two and three vertices of degree four. Then by Proposition 1.1, ϕ(S′(C3)) ≤ 5 as
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∆(S′(C3)) = 4.

If ϕ(S′(C3)) = 5, then according to Proposition 1.2, the graph S′(C3) must have five vertices of degree

four, which is not possible as there are only three vertices of degree four and the remaining three vertices

are of degree two.

If ϕ(S′(C3)) = 4 then according to Proposition 1.2 we need minimum four vertices of degree at least

three, which is not possible as there are only three vertices of degree four and the remaining three ver-

tices are of degree two.

If ϕ(S′(C3)) = 3, then according to Proposition 1.2, the graph must have three vertices of degree

two. This is possible for S′(C3). For the b-coloring consider the color class c = {1, 2, 3} and

to assign the proper coloring to the vertices, we define the color function f : V → {1, 2, 3} as

f(v1) = f(v′1) = 1, f(v2) = f(v′2) = 2, f(v3) = f(v′3) = 3. This proper coloring gives cdv(1) =

v′1, cdv(2) = v′2, cdv(3) = v′3. Thus ϕ (S′ (C3)) = 3.

Case 2: For n = 4.

For S′(C4) we have |V (S′(C4))| = 8 and V (S′(C4)) = {v1, v2, v3, v4, v′1, v′2, v′3, v′4}. Also S′ (C4)

has four vertices of degree two and four vertices of degree four. Then by Proposition 1.1, we have

ϕ (S′(C4)) ≤ 5 as ∆ (S′(C4)) = 4.

If ϕ (S′ (C4)) = 5 then according to Proposition 1.2 the graph S′(C4) must have five vertices of degree

four, which is not possible as there are only four vertices of degree four and the remaining vertices are

of degree two.

Due to nature of the graph S′(C4) any proper coloring with four or three colors have at least one color

class which does not have any color dominating vertex. Hence such coloring will not be a b-coloring for

the graph S′(C4).

For b-coloring we color the vertices with two colors. Define the color function f : V → {1, 2} as
f (vi) = f(v′i) = 1, i = 1, 3

f(vi) = f (v′i) = 2, i = 2, 4

This proper coloring gives cdv(1) = v′1, cdv(2) = v′2. Hence, ϕ (S′ (C4)) = 2.

Case 3: For n = 5, 6, 8.

Subcase 1: For n = 5.

For S′(C5) we have |V (S′ (C5))| = 10 and V (S′(C5)) = {v1, v2, v3, v4, v5, v′1, v′2, v′3, v′4, v5′}.
Also in the graph S′(C5) we have five vertices of degree two and five vertices of degree four. Since

∆ (S′(C5)) = 4, by Proposition 1.1, ϕ (S′(C5)) ≤ 5.

If ϕ (S′(C5)) = 5, then the graph S′(C5) must have five vertices of degree four which is possible. But

due to nature of the graph S′(C5), any proper coloring with five colors has at least one color class which

does not have any color dominating vertex. Hence, such coloring will not be a b-coloring for the graph

S′(C5). Thus we can color the graph by four colors.

For b-coloring consider the color class c = {1, 2, 3, 4} and to assign the proper coloring to the ver-

tices define the color function f : V → {1, 2, 3, 4} as f(v1) = 1, f(v′1) = 3, f(v2) = 2,
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f(v′2) = 3, f(v3) = 4, f(v′3) = 1, f(v4) = 3, f(v′4) = 1, f(v5) = 2, f(v′5) = 4. This proper col-

oring gives cdv(1) = v1, cdv(2) = v2, cdv(3) = v4, cdv(4) = v3. Hence, ϕ (S′(C5)) = 4.

Subcase 2: For n = 6.

We have |V (S′ (C6))| = 12 and V (S′(C6)) = {v1, v2, v3, v4, v5, v6, v′1, v′2, v′3 v′4, v′5, v′6}. Also in

the graph S′(C6) we have six vertices of degree two and six vertices of degree four. Then by Proposition

1.1, ϕ (S′ (C6)) ≤ 5 as ∆ (S′ (C6))= 4.

If ϕ (S′ (C6)) = 5, S′(C6) must have five vertices of degree four which is possible. But due to

nature of the graph S′(C6) any proper coloring with five colors has at least one color class which does

not have any color dominating vertex. Hence such coloring will not be b-coloring for the graph S′(C6).

Thus we color the graph by four colors.

For b-coloring consider the color class c = {1, 2, 3, 4} and to assign the proper coloring to the

vertices define the color function f : V → {1, 2, 3, 4} as f(v1) = 1, f(v′1) = 3, f(v2) = 2, f(v′2) =

3, f(v3) = 4, f(v′3) = 1, f(v4) = 3, f(v′4) = 1, f(v5) = 2, f(v′5) = 2, f(v6) = 4, f(v′6) = 4. This

proper coloring gives cdv(1) = v1, cdv(2) = v2, cdv(3) = v4, cdv(4) = v3. Hence, ϕ (S′(C6)) = 4.

Subcase 3: For n = 8.

We have |V (S′ (C8))| = 16 and V (S′(C8)) = {v1, v2, v3, v4, v5, v6, v7 , v8, v′1 v′2, v′3, v′4, v′5, v′6,
v′7, v

′
8}. Also in the graph S′(C8) we have eight vertices of degree two and eight vertices of degree four.

Then by Proposition 1.1, ϕ (S′(C8)) ≤ 5 as ∆ (S′(C8)) = 4.

If ϕ (S′(C8)) = 5, S′(C8) must have five vertices of degree four which is possible. But due to the

nature of the graph S′(C8) any proper coloring with five colors has at least one color class which does

not have any color dominating vertex. Hence such coloring will not be b-coloring for the graph S′(C8).

For b-coloring with four colors consider the color class c = {1, 2, 3, 4} and to assign the proper col-

oring to the vertices, we define the color function f : V → {1, 2, 3, 4} as f(v1) = 1, f(v′1) = 3,

f(v2) = 2, f(v′2) = 3, f(v3) = 4, f(v′3) = 1, f(v4) = 3, f(v′4) = 1, f(v5) = 2, f(v′5) = 2,

f(v6) = 3, f(v′6) = 3, f(v7) = 1, f(v′7) = 1, f(v8) = 4, f(v′8) = 4. This proper coloring gives

cdv(1) = v1, cdv(2) = v2, cdv(3) = v4, cdv(4) = v3. Hence, ϕ (S′(C8)) = 4.

Case 4: For n = 7.

We have |V (S′(C7)| = 14 and V (S′(C7)) = {v1, v2, v3 v4, v5, v6, v7, v′1, v′2, v′3, v′4, v′5, v′6, v′7}.
Also the graph S′(C7) has seven vertices of degree two and seven vertices of degree four. Then by

Proposition 1.1, ϕ (S′(C7)) ≤ 5 as ∆ (S′(C7)) = 4. If ϕ (S′(C7)) = 5 then according to Proposition

1.2, we need minimum five vertices of degree at least four which is possible as there are seven vertices

of degree two and seven vertices of degree four.

For b-coloring consider the color class c = {1, 2, 3, 4, 5} and to assign the proper coloring to the

vertices, we define the color function f : V → {1, 2, 3, 4, 5} as f(v1) = 1, f(v′1) = 3, f(v2) =

2, f(v′2) = 3, f(v3) = 4, f(v′3) = 5, f(v4) = 1, f(v′4) = 5,

f(v5) = 3, f(v′5) = 3, f(v6) = 2, f(v′6) = 4, f(v7) = 5, f(v′7) = 4. This proper coloring gives

cdv(1) = v1, cdv(2) = v2, cdv(3) = v5, cdv(4) = v3, cdv(5) = v7. Hence, ϕ (S′(C7)) = 5.
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Case 5: For n ≥ 9.

When n = 9 |V (S′(C9))| = 18 and let V (S′(C9)) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v′1, v′2,
v′3, v

′
4, v

′
5, v

′
6 v

′
7, v

′
8, v

′
9}. Also the graph S′(C9) has nine vertices of degree two and nine vertices of

degree four. Then by Proposition 1.1, ϕ (S′(C9)) ≤ 5 as ∆ (S′(C9)) = 4. According to Proposition

1.2, if ϕ (S′(C9)) = 5 then we need minimum five vertices of degree at least four, which is possible

as there are nine vertices of degree two and nine vertices of degree four. For b-coloring consider the

color class c = {1, 2, 3, 4, 5} and to assign the proper coloring to the vertices define the color func-

tion f : V → {1, 2, 3, 4, 5} as f(v1) = 4, f(v′1) = 3, f(v2) = 1, f(v′2) = 3, f(v3) = 2, f(v′3) =

5, f(v4) = 4, f(v′4) = 5, f(v5) = 3, f(v′5) = 3, f(v6) = 1, f(v′6) = 2, f(v7) = 4, f(v′7) = 3, f(v8) =

5, f(v′8) = 3, f(v9) = 1, f(v′9) = 2. This proper coloring gives cdv(1) = v2, cdv(2) = v3, cdv(3) =

v5, cdv(4) = v7, cdv(5) = v8.

Thus ϕ (S′(C9)) = 5.

When n > 9, we repeat the colors as in the graph S′(C9) for the vertices {v1, v2, v3, v4, v5, v6 , v7
v8, v9, v

′
1, v

′
2, v

′
3, v

′
4, v

′
5, v

′
6, v

′
7, v

′
8, v

′
9} and for the remaining vertices give the colors as

f(v2i) = f(v′2i) = 5; i = 5, 6, 7, ...

f(v2i+1) = f(v′2i+1) = 1; i = 5, 6, 7, ...

The color dominating vertices are the same as the color dominating vertices in the case of S′(C9).

Therefore ϕ (S′(Cn)) = 5, for all n > 9.

Corollary 2.9. S′(Cn) is b-continuous.

Proof: To prove the result we consider the following cases.

Case 1: For n = 3.

In this case the graph S′(C3) is b-continuous as χ(S′(C3)) = ϕ (S′(C3)) = 3.

Case 2: For n = 4.

In this case the graph S′(C4) is b-continuous as χ(S′(C4)) = ϕ (S′(C4)) = 2.

Case 3: For n = 5.

By Lemma 2.7, χ (S′(C5)) = 3 and by Theorem 2.8, ϕ (S′(C5)) = 4. Hence b-coloring exists

for every integer k satisfying χ (S′ (C5)) ≤ k ≤ ϕ (S′ (C5)) (Here k = 3, 4). Hence S′(C5) is b-

continuous.

Case 4: For n = 6.

By Lemma 2.7, χ (S′(C6)) = 2 and by Theorem 2.8, ϕ (S′(C6)) = 4. It is obvious that b-coloring

for the graph S′(C6) is possible using the number of colors k = 2, 4. Now for k = 3 the b-coloring for

the graph S′(C6) as follows. Consider the color class c = {1, 2, 3} and to assign the proper coloring

to the vertices, we define the color function f : V → {1, 2, 3} as f(v1) = 1, f(v′1) = 3, f(v2) =

2, f(v′2) = 3, f(v3) = 1, f(v′3) = 1, f(v4) = 3, f(v′4) = 2, f(v5) = 2, f(v′5) = 2, f(v6) = 3, f(v′6) =

3. This proper coloring gives the color dominating vertices as cdv(1) = v1, cdv(2) = v2, cdv(3) = v4.



120 S. K. Vaidya and M. S. Shukla

Thus S′(C6) is three colorable. Hence b-coloring exists for every integer k satisfying χ (S′ (C6)) ≤
k ≤ ϕ (S′ (C6)) (Here k = 2, 3, 4). Thus S′(C6) is b-continuous.

Case 5: For n = 7.

By Lemma 2.7, χ (S′(C7)) = 3 and by Theorem 2.8, ϕ (S′(C7)) = 5. It is obvious that b-coloring

for the graph S′(C7) is possible using the number of colors k = 3, 5. Now for k = 4 the b-coloring for

the graph S′(C7) is as follows.

Consider the color class c = {1, 2, 3, 4} and to assign the proper coloring to the vertices, we define

the color function f : V → {1, 2, 3, 4} as f(v1) = 1, f(v′1) = 3, f(v2) = 2, f(v′2) = 3, f(v3) =

4, f(v′3) = 4, f(v4) = 1, f(v′4) = 1, f(v5) = 3, f(v′5) = 3, f(v6) = 2, f(v′6) = 4, f(v7) = 3,

f(v′7) = 4.

This proper coloring gives the color dominating vertices cdv(1) = v1, cdv(2) = v2, cdv(3) =

v5, cdv(4) = v3. Thus S′(C7) is four colorable. Hence b-coloring exists for every integer k satisfying

χ (S′ (C7)) ≤ k ≤ ϕ (S′ (C7)) (Here k = 3, 4, 5). Thus S′(C7) is b-continuous.

Case 6: For n = 8.

By Lemma 2.7, χ (S′(C8)) = 2 and by Theorem 2.8, ϕ (S′(C8)) = 4. It is obvious that b-coloring

for the graph S′(C8) is possible with the number of colors k = 2, 4. Now for k = 3 the b-coloring for

the graph S′(C8) is as follows.

Consider the color class c = {1, 2, 3} and to assign the proper coloring to the vertices define the

color function f : V → {1, 2, 3} as f(v1) = 1, f(v′1) = 3, f(v2) = 2, f(v′2) = 3, f(v3) = 1, f(v′3) =

1, f(v4) = 3, f(v′4) = 3, f(v5) = 2, f(v′5) = 2, f(v6) = 3, f(v′6) = 3, f(v7) = 2, f(v′7) = 2,

f(v8) = 3, f(v′8) = 3.

This proper coloring gives the color dominating vertices as cdv(1) = v1, cdv(2) = v2, cdv(3) = v4.

Thus S′(C8) is three colorable. Hence b-coloring exists for every integer k satisfying χ (S′ (C8)) ≤
k ≤ ϕ (S′ (C8)) (Here k = 2, 3, 4). Thus S′(C8) is b-continuous.

Case 7: For n ≥ 9.

By Lemma 2.7, χ (S′(C9)) = 3 and by Theorem 2.8, ϕ (S′(C9)) = 5. It is obvious that b-coloring

for the graph S′(C9) is possible with the number of colors k = 3, 5. Now for k = 4 the b-coloring for

the graph S′(C9) is as follows.

Consider the color class c = {1, 2, 3, 4} and to assign the proper coloring to the vertices, we define

the color function f : V → {1, 2, 3, 4} as f(v1) = 2, f(v′1) = 4, f(v2) = 1, f(v′2) = 3, f(v3) =

2, f(v′3) = 3, f(v4) = 4, f(v′4) = 4, f(v5) = 1, f(v′5) = 2, f(v6) = 3, f(v′6) = 3, f(v7) = 4,

f(v′7) = 4, f(v8) = 3, f(v′8) = 3, f(v9) = 1, f(v′9) = 1.

This proper coloring gives the color dominating vertices as cdv(1) = v2, cdv(2) = v3, cdv(3) =

v6, cdv(4) = v4. Thus S′(C9) is four colorable. Hence b-coloring exists for every integer k satisfying

χ (S′ (C9)) ≤ k ≤ ϕ (S′ (C9)) (Here k = 3, 4, 5).

When n > 9, repeat the colors as in S′(C9) for the vertices {v1, v2, v3, v4, v5, v6, v7 , v8, v9, v′1, v′2, v′3,
v′4, v

′
5, v

′
6, v

′
7, v

′
8, v

′
9} and for the remaining vertices give the colors as



b-Chromatic number of some cycle related graphs 121

When k = 4:

f(vi) =

{
3, i even

1, i odd

Therefore, S′(Cn), for all n > 9 is b-continuous.

Definition 2.10. The edge splitting S′
e(G) of a graph G is obtained by adding to each edge ei = vivj a

new edge e′i = v′iv
′
j such thatN(v′i) = N(vi)∪

{
v′i+1

}
−{vi+1} andN(v′i+1) = N(vi+1)∪{v′i}−{vi}

in S′
e(G).

Illustration 2.11. For better understanding of the above definition the edge splitting graph of C5 is

shown in Figure 1 in which the light lines are of C5 while the dark lines are newly added in order to

obtain S′
e(C5).
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Figure 1: Edge Splitting Graph of C5.

Lemma 2.12.

χ
(
S′
e (Cn)

)
=

{
2 n even

3 n odd.

Proof: Let v1, v2, ..., vn be the vertices and e1, e2, .., en be the edges of cycle Cn such that ei =

vivi+1, for 1 ≤ i ≤ n − 1. Let v′1, v
′
2, ..., v

′
n and v1

′′
, v2

′′
, ..., vn

′′
be the vertices in S′

e(Cn) such

that when edge ei is duplicated then e′i = viv
′
i+1 for odd i and for even i, e′′i = v′′iv

′′
i+1. Also en

is duplicated by e′n = v′nv
′′
1 for odd n while e′n = v′′nv

′
1 for even n. Thus |V (S′

e(Cn))| = 3n and
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|E(S′
e(Cn))| = 4n. We consider the following two cases.

Case 1: When n is even.

Here χ (S′
e(Cn)) = 2, as the graph S′

e(Cn) is a bipartite graph

Case 2: When n is odd.

In this case, χ (S′
e(Cn)) ≥ 3 as the graph S′

e(Cn) contains odd cycles. Here the graph S′
e(Cn) −

{v1, v1′, v1
′′} is a bipartite graph and hence it is 2-colorable. The three mutually non-adjacent vertices

v1,v1′ and v1
′′

are adjacent to the vertices of both the color classes. Therefore, the third color must be

assigned to v1,v1′ and v1
′′

for proper coloring. Hence χ(S′
e(Cn)) = 3.

Theorem 2.13. ϕ(S′
e(Cn)) =


3 n = 3

4 n = 4

5 n > 4.

Proof: We continue with the terminology and notations used in Lemma 2.12 and consider the following

three cases.

Case 1: For n = 3.

We have |V ((S′
e(C3)))| = 9 and let V (S′

e(C3)) = {v1, v2, v3, v′1, v′2, v′3, v1
′′
v2

′′
, v3

′′}. Also the

graph S′
e(C3) has six vertices of degree two and three vertices of degree four. Then by Proposition 1.1,

ϕ(S′
e(C3)) ≤ 5, as ∆ (S′

e (C3)) = 4.

If ϕ (S′
e(C3)) = 5 then according to Proposition 1.2, the graph S′

e(C3) must have five vertices of degree

four, which is not possible as S′
e(C3) has three vertices of degree four.

If ϕ(S′
e(C3)) = 4 then according to Proposition 1.2, we need minimum four vertices of degree at least

three, which is not possible as there are only three vertices of degree four and remaining six vertices are

of degree two. Hence it is b-colorable by three colors.

For b-coloring consider the color class c = {1, 2, 3} and to assign the proper coloring to the vertices,

we define the color function f : V → {1, 2, 3} as f(v1) = f(v′1) = f(v1
′′
) = 1, f(v2) = f(v′2) =

f(v2
′′
) = 2, f(v3) = f(v′3) = f(v3

′′
) = 3.

This proper coloring gives cdv(1) = v1, cdv(2) = v2, cdv(3) = v3.

Therefore ϕ (S′
e(C3)) = 3.

Case 2: For n = 4.

In (S′
e(C4)) we have |V (S′

e(C4))| = 12 and let V (S′
e(C4)) = {v1, v2, v3, v4, v′1, v′2 , v′3, v′4, v1

′′
, v2

′′

v3
′′
, v4

′′}. Also the graph S′
e(C4) has eight vertices of degree two and four vertices of degree four. Then

by Proposition 1.1, ϕ (S′
e(C4)) ≤ 5 as in S′

e(C4), ∆ (S′
e(C4)) = 4.

If ϕ (S′
e(C4)) = 5 then according to Proposition 1.2, the graph S′

e(C4) must have five vertices of degree

four, which is not possible as S′
e(C4) has four vertices of degree four.

If ϕ (S′
e(C4)) = 4 then according to Proposition 1.2, the graph S′

e(C4) must have four vertices of degree

three which is possible as the graph S′
e(C4) has four vertices of degree four. Thus we can color the graph

by four colors.
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For b-coloring consider the color class c = {1, 2, 3, 4} and to assign the proper coloring to the vertices

define the color function f : V → {1, 2, 3, 4} as f(v1) = 1, f(v2) = 2, f(v3) = 3, f(v4) = 4, f(v′1) =

2, f(v′2) = 1, f(v′3) = 2, f(v′4) = 2, f(v1
′′
) = 4, f(v2

′′
) = 3, f(v3

′′
) = 3, f(v4

′′
) = 2.

This proper coloring gives the color dominating vertices as cdv(1) = v1, cdv(2) = v2, cdv(3) =

v3, cdv(4) = v4.

Thus ϕ (S′
e(C4)) = 4.

Case 3: For n > 4.

Subcase 1: For n = 5.

We have |V (S′
e(C5))| = 15 and let V (S′

e(C5)) = {v1, v2, v3, v4, v5, v′1, v′2, v′3, v′4, v′5 v1
′′
, v2

′′
,

v3
′′
, v4

′′
, v5

′′}. Also S′
e(C5) has ten vertices of degree two and five vertices of degree four. Then by

Proposition 1.1, ϕ (S′
e(C5)) ≤ 5, as in S′

e(C5), ∆ (S′
e(C5)) = 4.

If ϕ (S′
e(C5)) = 5 then according to Proposition 1.2, the graph S′

e(C5) must have five vertices of degree

four which is possible as there are ten vertices of degree two and five vertices of degree four.

For b-coloring consider the color class c = {1, 2, 3, 4, 5} and to assign the proper coloring to the vertices,

we define the color function f : V → {1, 2, 3, 4, 5} as f(v1) = 1, f(v2) = 2, f(v3) = 3, f(v4) =

4, f(v5) = 5, f(v′1) = 3, f(v′2) = 1, f(v′3) = 2, f(v′4) = 2, f(v′5) = 4, f(v1
′′
) = 5, f(v2

′′
) =

3, f(v3
′′
) = 4, f(v4

′′
) = 5, f(v5

′′
) = 1

This proper coloring gives cdv(1) = v1, cdv(2) = v2, cdv(3) = v3, cdv(4) = v4, cdv(5) = v5.

Thus ϕ (S′
e(C5)) = 5.

Subcase 2: For n = 6.

In (S′
e(C6)) we have |V (S′

e(C6))| = 18 and let V (S′
e(C6)) = {v1, v2, v3, v4, v5,

v6, v
′
1, v

′
2, v

′
3, v

′
4, v

′
5, v

′
6 v1

′′
, v2

′′
, v3

′′
, v4

′′
, v5

′′
, v6

′′}. Also the graph S′
e(C6) has twelve vertices of de-

gree two and six vertices of degree four. Then by Proposition 1.1, ϕ (S′
e(C6)) ≤ 5, as in S′

e(C6),

∆ (S′
e(C6)) = 4

If ϕ (S′
e(C6)) = 5 then according to Proposition 1.2, the graph S′

e(C6) must have six vertices of degree

four which is possible as there are twelve vertices of degree two and six vertices of degree four.

For b-coloring consider the color class c = {1, 2, 3, 4, 5} and to assign the proper coloring to the

vertices, we define the color function f : V → {1, 2, 3, 4, 5} as f(v1) = 1, f(v2) = 2, f(v3) =

3, f(v4) = 4, f(v5) = 2, f(v6) = 5, f(v′1) = 5, f(v′2) = 1, f(v′3) = 5, f(v′4) = 1, f(v′5) = 4, f(v′6) =

4, f(v1
′′
) = 3, f(v2

′′
) = 3, f(v3

′′
) = 4, f(v4

′′
) = 5, f(v5

′′
) = 1, f(v6

′′
) = 1.

This proper coloring gives cdv(1) = v1, cdv(2) = v2, cdv(3) = v3, cdv(4) = v4, cdv(5) = v6.

Thus ϕ (S′
e(C6)) = 5.

Subcase 3: For n = 7.

In (S′
e(C7)) we have |V (S′

e(C7))| = 21 and let V (S′
e(C7)) = {v1, v2, v3, v4, v5, v6, v7, v′1, v′2, v′3, v′4

v′5, v
′
6, v

′
7, v1

′′
, v2

′′
, v3

′′
, v4

′′
, v5

′′
, v6

′′
, v7

′′}. Also the graph S′
e(C7) has fourteen vertices of degree two

and seven vertices degree four.

Then by Proposition 1.2, ϕ (S′
e(C7)) ≤ 5 as in S′

e(C7), ∆ (S′
e(C7)) = 4. If ϕ (S′

e(C7)) = 5 then
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according to Proposition 1.2, the graph S′
e(C7) must have seven vertices of degree four which is possible

as there are fourteen vertices of degree two and seven vertices of degree four.

For b-coloring consider the color class c = {1, 2, 3, 4, 5} and to assign the proper coloring to the vertices,

we define the color function f : V → {1, 2, 3, 4, 5} as f(v1) = 1, f(v2) = 2, f(v3) = 3, f(v4) =

4, f(v5) = 5, f(v6) = 2, f(v7) = 5, f(v′1) = 5, f(v′2) = 1, f(v′3) = 2, f(v′4) = 1, f(v′5) = 1, f(v′6) =

3, f(v′7) = 4, f(v1
′′
) = 3, f(v2

′′
) = 3, f(v3

′′
) = 4, f(v4

′′
) = 5, f(v5

′′
) = 1, f(v6

′′
) = 3, f(v7

′′
) = 4.

This proper coloring gives cdv(1) = v1, cdv(2) = v2, cdv(3) = v3, cdv(4) = v4, cdv(5) = v5

Thus ϕ (S′
e(C7)) = 5.

Subcase 4: For n ≥ 8.

In (S′
e(C8)) we have |V (S′

e(C8))| = 24 and let V (S′
e(C5)) = {v1, v2, v3, v4, v5, v6, v7, v8, v′1, v′2

v′3, v
′
4, v

′
5, v

′
6, v

′
7, v

′
8, v1

′′
, v2

′′
, v3

′′
, v4

′′
, v5

′′
, v6

′′
, v7

′′
, v8

′′}. Also the graph S′
e(C8) has sixteen vertices

of degree two and eight vertices degree four. Then by Proposition 1.1, ϕ (S′
e(C8)) ≤ 5 as in S′

e(C8),

∆ (S′
e(C8)) = 4.

If ϕ (S′
e(C8)) = 5 then according to Proposition 1.2, the graph S′

e(C8) must have eight vertices of

degree four which is possible as there are sixteen vertices of degree two and eight vertices of degree

four.

For b-coloring consider the color class c = {1, 2, 3, 4, 5} and to assign the proper coloring to the vertices,

we define the color function f : V → {1, 2, 3, 4, 5} as f(v1) = 5, f(v2) = 1, f(v3) = 2, f(v4) =

3, f(v5) = 4, f(v6) = 5, f(v7) = 2, f(v8) = 1, f(v′1) = 4, f(v′2) = 5, f(v′3) = 1, f(v′4) = 2, f(v′5) =

1, f(v′6) = 1, f(v′7) = 1, f(v′8) = 1, f(v1
′′
) = 4, f(v2

′′
) = 3, f(v3

′′
) = 3, f(v4

′′
) = 4, f(v5

′′
) =

5, f(v6
′′
) = 1, f(v7

′′
) = 3, f(v8

′′) = 1

This proper coloring gives cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) = v5, cdv(5) = v6. Thus

ϕ (S′
e(C8)) = 5.

When n > 8, we repeat the colors as in the graph S′
e(C8) for the vertices {v1, v2, v3, v4, v5 v6, v7

v8, v
′
1, v

′
2, v

′
3, v

′
4, v

′
5, v

′
6, v

′
7, v

′
8, v1

′′
, v2

′′
, v3

′′
, v4

′′
, v5

′′
, v6

′′
, v7

′′
, v8

′′} and for the remaining vertices give

the colors as
f(v2i+1) = f(v′2i+1) = f(v

′′
2i+1) = 2; i = 4, 5, 6, ...

f(v2i) = f(v′2i) = f(v
′′
2i) = 1; i = 5, 6, 7, ...

The color dominating vertices are same as the color dominating vertices in the case of S′
e(C8). There-

fore ϕ (S′
e(Cn)) = 5, for all n > 8.

Corollary 2.14. S′
e(Cn) is b-continuous.

Proof: To prove the result we consider the following cases.

Case 1: n = 3.

In this case the graph S′
e (C3) is b-continuous as χ(S′

e(C3)) = ϕ (S′
e(C3))=3.

Case 2: n = 4.

In this case χ(S′
e(C4)) = 2 by Lemma 2.12 and ϕ (S′

e(C4)) = 4 by Theorem 2.13. It is obvious
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that b-coloring for the graph S′
e(C4) is possible using the number of colors k = 2, 4.

Now for k = 3 the b-coloring for the graph S′
e(C4) is as follows. Consider the color class c = {1, 2, 3}

and to assign the proper coloring to the vertices define the color function f : V → {1, 2, 3} as f(v1) =

1, f(v′1) = 1, f(v1
′′) = 1, f(v2) = 2, f(v′2) = 2, f(v2

′′) = 3, f(v3) = 1, f(v′3) = 2, f(v3
′′) =

3, f(v4) = 3, f(v′4) = 2, f(v4
′′) = 3. This proper coloring gives the color dominating vertices as

cdv(1) = v1, cdv(2) = v2, cdv(3) = v4. Thus the graph S′
e(C4) is three colorable. Hence b-coloring

exists for every integer k satisfying χ (S′
e (C4)) ≤ k ≤ ϕ (S′

e (C4))(Here k = 2, 3, 4). Hence S′
e(C4)

is b-continuous.

Case 3: When n is odd, n ≥ 5.

For n = 5 by Lemma 2.12, χ (S′
e(C5)) = 3 and by Theorem 2.13, ϕ (S′

e(C5)) = 5. It is obvious

that b-coloring for the graph S′
e(C5) is possible using the number of colors k = 3, 5.

Now for k = 4 the b-coloring for the graph S′
e(C5) is as follows. Consider the color class c = {1, 2, 3, 4}

and to assign the proper coloring to the vertices define the color function f : V → {1, 2, 3, 4} as

f(v1) = 1, f(v′1) = 1, f(v1
′′) = 2, f(v2) = 2, f(v′2) = 2, f(v2

′′) = 3, f(v3) = 3, f(v′3) =

2, f(v3
′′) = 4, f(v4) = 1, f(v′4) = 3, f(v4

′′) = 4, f(v5) = 4, f(v′5) = 2, f(v5
′′) = 2.

This proper coloring gives the color dominating vertices as cdv(1) = v1, cdv(2) = v2, cdv(3) =

v3, cdv(4) = v5. Thus the graph S′
e(C5) four colorable. Hence b-coloring exists for every integer k

satisfying χ (S′
e (C5)) ≤ k ≤ ϕ (S′

e (C5))(Here k = 3, 4, 5). Therefore S′
e(C5) is b-continuous.

When n > 5, repeat the colors as in the graph S′
e(C5) for the vertices {v1, v2, v3, v4, v5, v′1, v′2, v′3,

v′4, v
′
5, v1

′′, v2
′′, v3

′′, v4
′′, v5

′′, } and for the remaining vertices give the colors as follows.

When k = 4:

f(vi) = 1 f(vi
′) = 1 f(vi

′′
) = 2; i even

f(vi) = 4 f(vi
′) = 1 f(vi

′′
) = 2; i odd

Therefore, S′
e(Cn),for all n > 5 is b-continuous.

Case 4: When n is even, n > 5.

For n = 6, by Lemma 2.12, χ (S′
e(C6)) = 2 and by Theorem 2.13, ϕ (S′

e(C6)) = 5. It is obvious

that b-coloring for the graph S′
e(C6) is possible using the number of colors k = 2, 5.

Now for k = 3 the b-coloring for the graph S′
e(C6) is as follows. Consider the color class c = {1, 2, 3}

and to assign the proper coloring to the vertices, we define the color function f : V → {1, 2, 3}
as f(v1) = 1, f(v′1) = 1, f(v1

′′) = 2, f(v2) = 2, f(v′2) = 1, f(v2
′′) = 2, f(v3) = 3, f(v′3) =

1, f(v3
′′) = 1, f(v4) = 2, f(v′4) = 2, f(v4

′′) = 2, f(v5) = 1, f(v′5) = 1, f(v5
′′) = 1, f(v6) =

3, f(v′6) = 2, f(v6
′′) = 2. This proper coloring gives the color dominating vertices as cdv(1) =

v1, cdv(2) = v2, cdv(3) = v3.

Now for k = 4 the b-coloring for the graph S′
e(C6) is as follows. Consider the color class c = {1, 2, 3, 4}

and to assign the proper coloring to the vertices define the color function f : V → {1, 2, 3, 4} as

f(v1) = 1, f(v′1) = 3, f(v1
′′) = 3, f(v2) = 2, f(v′2) = 1, f(v2

′′) = 3, f(v3) = 4, f(v′3) =
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2, f(v3
′′) = 3, f(v4) = 3, f(v′4) = 4, f(v4

′′) = 3, f(v5) = 1, f(v′5) = 1, f(v5
′′) = 1, f(v6) =

4, f(v′6) = 4, f(v6
′′) = 4. This proper coloring gives the color dominating vertices as cdv(1) =

v1, cdv(2) = v2, cdv(3) = v4, cdv(4) = v3. Thus the graph S′
e(C6) is three and four colorable. Hence

b-coloring exists for every integer k satisfying χ (S′
e (C6)) ≤ k ≤ ϕ (S′

e (C6))(Here k = 2, 3, 4, 5).

Therefore S′
e(C6) is b-continuous. When n > 5,repeat the colors as in the graph S′

e(C6) for the vertices

{v1, v2, v3, v4, v5, v6, v′1, v′2, v′3, v′4, v′5, v′6, v1′′, v2′′, v3′′, v4′′, v5′′, v6′′} and for the remaining vertices as-

sign the colors as follows.

When k = 3:

f(vi) = f(vi
′) = f(vi

′′
) = 3; i even

f(vi) = f(vi
′) = f(vi

′′
) = 1; i odd

When k = 4:

f(vi) = f(vi
′) = f(vi

′′
) = 4; i even

f(vi) = f(vi
′) = f(vi

′′
) = 1; i odd

Hence S′
e(Cn) is b-continuous for all even n > 5.

3 Concluding Remarks

The clustering problems occurring in the process of data mining, web-services classifications and de-

composition of large distributed systems can be handled with b-coloring of graphs. Here we have

investigated b-chromatic numbers for the larger graphs obtained by means of graph operations on cycle

Cn and also discuss their b-continuity. To investigate similar results for other graph families is an open

area of research.
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